Coupling of finite element method with material point method by local multi-mesh contact method

Y.P. Lian, X. Zhang*, Y. Liu
AML, School of Aerospace, Tsinghua University, Beijing 100084, PR China

Abstract

As a Lagrangian particle method, the material point method (MPM) has the potential to model extreme deformation of materials, where the traditional finite element method (FEM) often encounters mesh distortion and element entanglement which lead to numerical difficulties. However, FEM is more accurate and efficient than MPM for problems with small deformation. It is therefore desirable to model the body with extreme deformation by MPM and the body with small deformation by FEM, respectively. In this paper, a method to handle the contact interaction between the MPM body and the FEM body is proposed, which is implemented on the background grid of MPM. By this method, FEM is coupled with MPM and a hexahedral element is incorporated into our 3D explicit MPM code MPM3D®. Several numerical examples, including plate impact, sphere rolling, perforation of thick plate, and fluid–structure interaction problems, are studied and the numerical results are in good agreement with analytical solution and results available in the literature. The coupling of FEM and MPM offers advantages of both FEM and MPM.

1. Introduction

In recent decades, many Lagrangian meshless/meshfree and particle methods have been proposed to solve challenging mechanics problems, such as hyper-velocity impact, explosion, dynamic crack propagation, fluid–structure interaction (FSI) problems and so on. The smoothed particle hydrodynamics (SPH) method was proposed and used early for hyper-velocity impact [1–3], Johnson et al. [4,5] have done a lot of work to improve and apply SPH for impact and penetration problems; Rabczuk and Eibl [6] applied improved SPH–MLSPH to model dynamic failure of concrete; Liu et al. [7,8] applied SPH for explosion problems. For the crack problem, Belytschko and Tabbara [9] applied the element-free Galerkin method (EFGM) for the dynamic crack propagation for the first time. Then Rabczuk and Belytschko [10,11] developed a cracking particles method based on step function, namely EFG-P, which used cracked particle to represent the crack surface and to model the fracture of concrete. Similarly, Rabczuk and Zi [12], Rabczuk et al. [13] put forward an extended element free Galerkin method, XEFGM. For the FSI problem, Idelsohn et al. [14] proposed a particle finite element method (PFEM) for solving incompressible flows with free-surfaces and breaking waves. Recently, Rabczuk et al. [15] put forward an immersed immersed particle method for FSI of fracturing structures under high pressure loads, where both the structure and fluid are treated by meshfree method. Another representative of such methods is the material point method (MPM) [16], which has been used for impact [17,18] and penetration [19,20], explosion [21,22], dynamic crack propagation [23,24], film delamination [25], FSI [26,27] and saturated soil–structure interaction problems [28], just to name a few.

Up to now, many techniques have appeared for the coupling of meshless/meshfree methods with FEM. Rabczuk et al. [29] gave a detailed review of the various methods for coupling, such as master–slave coupling [4,30,31], coupling via mixed interpolation [32], coupling with Lagrange multipliers [33,34], and so on.

Attaway et al. [35] coupled SPH with FEM through master–slave algorithm for the first time. Using this coupled method, in each time step, they detected whether slave particles penetrate master element faces. Following the contact detection, a contact constraint is applied to calculate forces that push the slave particles back to remain on the master surface. Similarly, Johnson et al. [31,34] coupled SPH and FEM by master–slave algorithm with application for high velocity impact problems. Then Johnson and Stryk [36] extended this coupled particle method by converting damaged or failure elements into particles. Afterwards, Rabczuk et al. proposed an alternative method where the particles are rigidly fixed to the FE nodes via master–slave coupling [29]. Recently, Vuyst et al. [37] presented a novel method of combining SPH and FEM with contact method of SPH by treating the nodes as meshless particles.

Besides SPH, Belytschko et al. [32] developed a coupled method for EFGM and FEM. Interface elements between EFGM and FEM...
domains is employed with the shape function composed of FEM and EFGM shape functions. In addition, Hegen [33] coupled FEM with EFGM via Lagrange multipliers. Furthermore, Rabczuk and Belytschko [34] extended this coupled scheme to non-linear problems and applied it to deformable interfaces. For other meshless methods, Liu et al. [38] coupled the reproducing kernel particle method (RKPM) with FEM by modifying the shape functions in the transition area for both RKPM and FEM. Besides this, Liu and Li et al. [39–41] proposed a new method called reproducing kernel element method (RKEM) to combine the advantages of both FEM and meshless methods.

For MPM, Zhang et al. [19] developed a coupling method called explicit material point finite element (MPFE) method. In this method, the material domain is discretized initially by a mesh of finite elements with a predefined computational grid in the potential large deformation region. The nodes located in the predefined grid are treated as particles and their momentum equations are solved on the grid, whereas the remaining nodes are treated as finite element (FE) nodes whose momentum equations are solved on the FE mesh. Further, Zhang et al. proposed a FEMP method [20] for modeling reinforced concrete subjected to impact loading. The essential idea of this method is to introduce a hybrid bar element into MPM, where the nodal variables are updated from background grid and the stresses are updated on the element. By this hybrid bar element, the reinforced bar in concrete can be discretized easily.

In MPM, material domain is discretized with a set of Lagrangian material points (particles), which carry all state variables in order to model history-dependent materials. An Eulerian background grid is used to integrate the momentum equation. In each time step, the particles are rigidly attached to background grid and move with the grid. Then kinematic variables are first mapped from particles to grid points to establish the momentum equations on background grid. Afterwards, the solutions of the momentum equation are mapped from grid points back to particles to update their positions and velocities. At the end of each time step, the deformed grid is discarded and a new regular grid is defined for the next time step. Hence, mesh distortion and element entanglement associated with the FEM are overcome; while numerical dissipation normally associated with Eulerian method is avoided.

Although MPM can be much more accurate, more efficient and more robust than FEM for problems involving severe distortions, the accuracy of particle quadrature used in MPM is lower than that of Gauss quadrature used in FEM. As a result, it is less accurate and efficient than FEM for problems with small deformations. In addition, MPM requires more computational storage because it makes use of both grid and particle data. Moreover, FEM is equipped with more mature development and comprehensive capabilities. In this paper, to take advantages of both methods, FEM is coupled with MPM, in which the body with mild deformation is modeled by FEM, while the body with extreme deformation is modeled by MPM. The interaction between the FEM body and the MPM body is handled by a local multi-mesh contact method [42–44,47]. The FE nodes located on the contact interface are treated as particles, so that the contact force is calculated on the background grid point to avoid penetration between the FEM body and the MPM body. Furthermore, a Coulomb friction model is implemented to allow friction slipping between bodies. This coupled finite element–material point (CFEMP) method is implemented in our 3D explicit MPM code MP3M® and several numerical examples are studied to validate the CFEMP method. Numerical results are in good agreement with analytical and available results.

The remaining parts of the paper are organized as follows. A brief review of the MPM and the FEM solution schemes is presented in Section 2, while the contact method for coupling MPM with FEM is presented in detail in Section 3. The numerical implementation of the proposed method is summarized in Section 4, and several numerical examples mentioned above are presented in Section 5. Finally, conclusions are given in Section 6.

2. Brief review of MPM and FEM solution schemes

2.1. Governing equations

In material domain \(\Omega \), the basic equations of continuum mechanics in an updated Lagrangian description are the mass conservation

\[
\rho(\mathbf{X}, t)\partial_t(\mathbf{X}, t) = \rho_0(\mathbf{X}),
\]

the momentum conservation

\[
\sigma_{ij} + \rho f_i = \rho \ddot{u}_i,
\]

and the energy equation

\[
\rho \frac{\partial u_{\text{kin}}}{\partial t} = D_\tau \sigma_{ii}.
\]

with the boundary conditions

\[
\begin{cases}
(n_i \sigma_{ij})_{|\Gamma} = f_i, \\
\mathbf{u}_{|\Gamma_x} = \mathbf{u}_i, \\
\mathbf{u} = \mathbf{u}_0(\mathbf{X}),
\end{cases}
\]

and initial conditions

\[
\begin{cases}
\mathbf{u} = \mathbf{u}_0(\mathbf{X}),
\end{cases}
\]

In the above equations, subscripts \(i \) and \(j \) denote the component of the space with Einstein summation convention, subscript \(0 \) signifies the initial value, the comma denotes covariant differentiation, and the superimposed dot indicates the time derivatives. \(\rho \) is the current density, \(J \) is the Jacobian determinant, \(\mathbf{X} \) is the Lagrangian coordinate, \(\sigma_{ij} \) is the Cauchy stress, \(f_i \) is the body force per unit mass, \(u_i \) is the displacement, \(D_\tau \) is the rate-of-deformation, \(w \) is the internal energy per unit mass, and \(n_i \) is the unit outward normal to the boundary. \(\Gamma_t \) and \(\Gamma_u \) signify the prescribed traction boundary and displacement boundary of \(\Omega \), respectively.

Taking the virtual displacement \(\delta u \) as test function, the weak form of the momentum equation can be obtained by the weighted residual method as

\[
\int_\Omega \rho \delta u \delta u_i \mathrm{d}\Omega + \int_\Omega \sigma_{ij} \delta u_{ij} \mathrm{d}\Omega - \int_\Omega \rho f_i \delta u_i \mathrm{d}\Omega - \int_{\Gamma_t} t_i \delta u_i \mathrm{d}\Gamma = 0,
\]

where the displacement boundary conditions are assumed to be satisfied as a priori.

2.2. MPM solution scheme

In MPM, the material domain is discretized by a set of particles, as shown in Fig. 1. As a result, the mass is lumped at each particle so that the density is approximated by

![Fig. 1. MPM discretization sketch.](image-url)
\[
\rho(x) = \sum_{p=1}^{n_p} m_p \delta(x - x_p),
\]
where \(n_p\) is the total number of the particles, \(m_p\) is the mass of particle \(p\), \(x_p\) is the coordinate of particle \(p\), and \(\delta\) is the Dirac delta function.

As particles are rigidly attached to the background grid in each time step, the kinematic information can be mapped between particles and grid points through the shape functions of the grid cell. For example, the grid nodal momentum can be obtained by mapping the particles momenta to the grid point, namely,

\[
P_g = \sum_{p=1}^{n_p} N_{bg} m_p v_p,
\]
where subscripts \(p\) and \(l\) denote variables associated with particle \(p\) and grid point \(l\), respectively. \(N_{bg}\) is the value of shape function of grid point \(l\) evaluated at the site of particle \(p\). In this paper, the 8-point hexahedral cell is employed, so that

\[
N_{bg} = \frac{1}{8} (1 + \zeta_1) (1 + \eta_1) (1 + \zeta_2) I = 1, 2, \ldots, 8.
\]
where \((\zeta \in [-1, 1], \eta \in [-1, 1], \zeta_2 \in [-1, 1])\) are the nature coordinates of particle \(p\), \(\zeta, \eta\) and \(\zeta_2\) take on their nodal value of \((1, 1, 1)\). If the particle \(p\) is outside of the cell, \(N_{bg}\) is equal to zero.

Substituting Eqs. (7) and (8) into Eq. (6) and invoking the arbitrarity of \(\delta u_l\) lead to

\[
p_d = f_{ig} = \frac{1}{2}, \ldots, n_g,
\]
where

\[
p_d = m_t v_d
\]
is the momentum of grid point \(l\),

\[
f_d = f_{ig}^{ext} + f_{ig}^{int}
\]
is the nodal force of grid point \(l\),

\[
f_{ig}^{int} = -\sum_{p=1}^{n_p} N_{bg} \sigma_{p} m_p / \rho_p
\]
is the internal force,

\[
f_{ig}^{ext} = \sum_{p=1}^{n_p} N_{bg} \xi p h^{-1} m_p / \rho_p + \sum_{p=1}^{n_p} m_p \delta u_l
\]
is the external force, \(\sigma_p = \sigma_p(x_p)\), \(f_{ig} = f_{ig}(x_p)\), \(\xi_p = \xi_p(x_p)\), and \(h\) denotes the thickness of the layer of the boundary. In Eq. (11), the lumped mass matrix is used

\[
m_l = \sum_{p=1}^{n_p} m_p N_{bg}.
\]

2.3. FEM solution scheme

In FEM, the weak form of Eq. (6) can be used directly without any modifications. In this paper, the 8-node hexahedron element is implemented and the shape functions are the same to that given in Eq. (9). Consequently, the displacement \(u_l\) of material point \(X\) can be approximated by

\[
u_l(X, t) = \sum_{k=1}^{n_e} N_k(\zeta(X)) u_k(t),
\]
where the subscript \(K\) denotes the FE nodes. The integration over material domain in Eq. (6) can be calculated as the summation of the integration over all elements. Substituting Eq. (16) into Eq. (6) yields

\[
p_k = f_{ik}.
\]
where

\[
p_k = m_e v_k
\]
is the momentum of FE node \(K\),

\[
f_{ik} = f_{ik}^{ext} + f_{ik}^{int} + f_{ik}^G
\]
is the nodal force of FE node \(K\),

\[
f_{ik}^{int} = - \sum_{e} N_k \sigma_{e} m_e v_e
\]
is the internal force of FE node \(K\),

\[
f_{ik}^{ext} = \sum_{e} \left(\int_{V_e} \rho N_k f_d dV + \int_{F_e} N_k \xi d\Gamma \right) = \sum_{e} \left(m_e N_k f_{ik} + \int_{F_e} N_k \xi d\Gamma \right)
\]
is the external force, and \(f_{ik}^G\) is the hourglass-resisting nodal force to control the hourglass modes caused by one-point Gauss quadrature. Both the standard and Flanagan-Belytschko hourglass control schemes [45,46] are implemented in CFEMP method.

In Eqs. (20) and (21), subscript \(e\) denotes the value at the center of element \(e\), and \(m_e = \rho_e v_e\).

3. Coupling scheme

From Section 2, it can be found that MPM is very similar to FEM in one time step, so that FEM can be coupled with MPM readily by the contact method. A coupling scheme is developed based on the local multi-mesh contact method [47] in the framework of MPM. In each time step, MPM bodies and FEM bodies are first updated independently to obtain their trial values of nodal variables, as if they were not in contact. If the momenta of a MPM body and a FEM body are projected to the same grid point, two bodies contact at the grid point, so a contact force is imposed on them to prevent penetration.

In order to describe the algorithm more clearly, two bodies, as shown in Fig. 2, are considered. Body \(r\), denoted by \(\Omega_r\), is modeled by FEM, while body \(s\), denoted by \(\Omega_s\), is modeled by MPM. If contact occurs at a grid point \(l\), the FE node which is located on the surface of body \(r\) and has contribution to the grid point \(l\) is termed as hybrid node. Nodes \(a\), \(b\), and \(c\) in Fig. 2 are typical hybrid nodes.

3.1. Time integration

The central difference time integration algorithm is used to integrate the momentum equation, as shown in Fig. 3, where \(t^{k+1} = t^k + \Delta t^{k+1/2}\), \(t^{k+1/2} = t^k + \Delta t^{k+1/2}/2\), \(t^k = t^k - \Delta t^k\), and \(\Delta t^k = (\Delta t^{k+1/2} + \Delta t^{k+1/2})/2\).

In the follows, the superscript \(k\) denotes the value of variable at time \(t^k\). Given \(u_{ip}^k\) and \(u_{ip}^{k-1}\), we seek for the solution at time \(t^{k+1}\).

3.1.1. Time integration in domain \(\Omega_{fr}\)

From Eq. (10), the momentum of grid point at time \(t^{k+1/2}\) can be updated by

\[
p_{ip}^{k+1/2} = p_{ip}^{k-1/2} + f_{ip}^{ext} / \Delta t^k,
\]
where \(f_{ip}^{ext}\) is the nodal force of grid point \(l\) at time \(t^k\), given in Eq. (12).

The velocities and the positions of particles at time \(t^{k+1/2}\) and \(t^{k+1}\), respectively, are updated by

\[
v_{ip}^{k+1/2} = v_{ip}^{k-1/2} + \Delta t^k \sum_{l=1}^{n_e} f_{ip}^{ext} N_{ip} / m_p,
\]
\[
x_{ip}^{k+1} = x_{ip}^{k} + \Delta t^{k+1/2} \sum_{l=1}^{n_e} p_{ip}^{k+1/2} N_{ip} / m_p.
\]
3.1.4. Artificial bulk viscosity

In order to treat shock waves, artificial bulk viscosity q [45] is applied, which is defined as:

$$q = \begin{cases} c_0 \rho L_s^2 |\dot{c}_{ck}|^2 - c_1 \rho L_s c_{ik} & \text{if } \dot{c}_{ik} < 0, \\ 0 & \text{if } \dot{c}_{ik} \geq 0, \end{cases}$$

where c_0 and c_1 are dimensionless constants, c is the local sound speed, \dot{c}_{ik} is the trace of the strain rate tensor, L_s is the characteristic length of grid cell in MPM, and the characteristic length of element in FEM.
For slip contact, the friction at the contact surface is described by the Coulomb friction model, in which the friction force is limited to \(\mu_i \sigma_{ij} \), where \(\mu_i \) is the friction coefficient. Therefore, the tangential contact force can be obtained as

\[
f_{i}^{\text{tan}k} = \min \left(\mu_i \sigma_{ij}^k, f_{i}^{\text{tie}k} \right).
\]

Finally, the contact force applied on body \(b \) can be expressed as

\[
f_{b}^{\text{fc}k} = f_{i}^{\text{out}k} n_{ib}^k + f_{i}^{\text{tan}k} t_{ib}^k.
\]

3.4. Stress update

In CFEMP, the stress at the time \(t^{k+1/2} \) is updated by

\[
\sigma_{ij}^{k+1} = \sigma_{ij}^k + \sigma_{ij}^k \Delta t^{k+1/2},
\]

where \(\sigma_{ij}^k \) is the material time derivative of the stress. \(\sigma_{ij}^k \) is determined by

\[
\sigma_{ij}^k = \sigma_{ij}^0 + \sigma_{ab} \Omega_{ab} + \sigma_{ab} \Omega_{ab},
\]

where \(\sigma_{ij}^0 \) is the Jaumann (co-rotational) stress rate, and \(\Omega_{ab} \) is the spin tensor. \(\sigma_{ij}^0 \) is determined from the strain rate \(\dot{e}_{ij} \) by a constitutive model.

In domain \(\Omega_e \), the strain rate and spin tensor are calculated at the element center by

\[
\dot{e}_{ij} = \frac{1}{2} \sum_{l=1}^{N_e} (N_{ij} u_{il} + u_{il} N_{ij}),
\]

\[
\Omega_{ij} = \frac{1}{2} \sum_{l=1}^{N_e} (N_{ij} \dot{u}_{il} - N_{il} \dot{u}_{ij}).
\]

In domain \(\Omega_m \), the strain rate and spin tensor are calculated at the particle by

\[
\dot{e}_{ij} = \frac{1}{2} \sum_{l=1}^{N_p} (N_{ij} \dot{u}_{il} + N_{il} \dot{u}_{ij}),
\]

\[
\Omega_{ij} = \frac{1}{2} \sum_{l=1}^{N_p} (N_{ij} \dot{u}_{il} - N_{il} \dot{u}_{ij}).
\]

The deviatoric stress and the pressure are updated here with a constitutive law and an equation of state (EOS), respectively.

4. Numerical implementation

It should be noted that \(f_{i}^{\text{out}k} \), the first part of the normal contact force in Eq. (37), will vanish if the momenta \(p_{ij}^{k+1/2} \) at the beginning of each time step satisfy the impenetrability condition Eq. (36). However, the deformed background grid in MPM is discarded at the end of each time step, and a new regular background grid is redefined for the next time step. Therefore, the impenetrability condition (36) may not be satisfied at the beginning of each time step, even if it has been imposed at the end of last time step [43]. As pointed out by Huang et al. [43], the nodal velocities \(\dot{v}_{ij}^{k+1/2} \) used to update the stresses may violate the impenetrability condition Eq. (36), which may introduce disturbance to the system.

To eliminate the artificial disturbance, before updating stresses of particles, the nodal momenta \(p_{ij}^{k+1/2} \) of grid point \(i \) are adjusted to their new values \(p_{ij}^{k+1/2} \) by using

\[
p_{ij}^{k+1/2} = p_{ij}^{k+1/2} + \Delta \dot{v}_{ij}^{k+1/2}.
\]

where \(f_{i}^{\text{out}k} \) is defined in Eq. (38). It can be verified that the adjusted nodal momenta \(p_{ij}^{k+1/2} \) satisfy the impenetrability condition Eq. (36). The velocities of hybrid nodes in FEM body \(r \) are also adjusted for the reason same to above by using

Fig. 4. Typical discretization of plate impact.
The detailed implementation of the method is presented as follows.

1. Initialize background grid points.
 Loop over all the particles in MPM body s to calculate their contributions to the masses and the momenta of grid points by
 \[
 m^{k-1/2}_d = \sum_p m^k_p N^k_p, \tag{54}
 \]
 \[
 p^{k-1/2}_d = \sum_p \rho^k_d u^{k-1/2}_d N^k_p. \tag{55}
 \]
 Loop over all the FE nodes located at the surface of FEM body r to calculate their contributions to the masses m^k_r and momenta $p^{k-1/2}_r$ of grid points in a way similar to that in Eqs. (54) and (55).

2. Apply the boundary conditions.

3. Detect the contact grid points.
 Loop over all the grid points to detect the contact grid points. If Eq. (33) is satisfied and the real physical distance between two bodies is less than a prescribed value, the two bodies contact at the grid point I. Label FE nodes which have contributions to the grid point I as hybrid nodes.

4. Loop over all the contact grid points to adjust their momenta $p^{k-1/2}_d$ to new values $\tilde{p}^{k-1/2}_d$ according to Eq. (52). Then loop over all the hybrid nodes to adjust their velocities $v^{k-1/2}_d$ to new values $\tilde{v}^{k-1/2}_d$ according to Eq. (53).

5. Update stresses.
 Loop over all the particles to calculate their incremental strains and spin tensors, respectively, from the background grid by using
 \[
 \Delta \varepsilon^{k-1/2}_d = \frac{1}{2} \Delta t \sum_{I=1}^n \left[N^k_{ij} \tilde{p}^{k-1/2}_d + N^k_{ij} \tilde{v}^{k-1/2}_d \right], \tag{56}
 \]
 \[
 \Delta \theta^{k-1/2}_d = \frac{1}{2} \Delta t \sum_{I=1}^n \left[N^k_{ij} \tilde{p}^{k-1/2}_d - N^k_{ij} \tilde{v}^{k-1/2}_d \right]. \tag{57}
 \]
 Loop over all the elements to calculate their incremental strains and spin tensors based on the adjusted velocities $\tilde{v}^{k-1/2}_d$ by using Eqs. (56) and (57), respectively.

Table 1

<table>
<thead>
<tr>
<th>Elements</th>
<th>Particles</th>
<th>Time steps to 15 μs</th>
<th>Cost/s</th>
<th>Separation time/μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8.63</td>
</tr>
<tr>
<td>CFEMP</td>
<td>1512</td>
<td>12,096</td>
<td>695</td>
<td>50</td>
</tr>
<tr>
<td>MPM</td>
<td>–</td>
<td>24,192</td>
<td>695</td>
<td>97</td>
</tr>
</tbody>
</table>
Then update the stresses of particles and elements by corresponding constitutive law and EOS. The density of a particle or an element is updated by
\[\rho_{k+1} = \frac{\rho_k}{(1 + D_{ik}^{1/2})}. \] (58)

6. Calculate the nodal force.
 Loop over all the particles to calculate internal forces \(f_{int,i}^{p,k} \) and external forces \(f_{ext,i}^{p,k} \) of grid points by using Eqs. (13) and (14), respectively.
 Loop over all the elements to calculate the nodal internal forces \(f_{int,i}^{e,k} \), external forces \(f_{ext,i}^{e,k} \) and hourglass resisting forces \(f_{C,i}^{e,k} \). If the node \(I \) is fixed in \(i \) direction, set \(f_{ip,i}^{e,k} = f_{ip,i}^{ext,k} + f_{ip}^{C,i} = 0 \) to make its acceleration \(a_{ip,i}^{e,k} = 0 \). Then loop over all the hybrid nodes to map their nodal forces to grid points.

7. Loop over all contact points to calculate \(f_{n,i}^{1,k} \), the second term of the normal contact forces, by Eq. (39) and the tangential contact force \(f_{tan,i}^{m,k} \) by Eq. (44).

8. Loop over all the grid points to update their momenta by
 \[p_{ip,i}^{k+1} = p_{ip,i}^{k+1/2} + \Delta t \left(f_{ip,i}^{e,k} + f_{ip,i}^{ext,k} + f_{ip,i}^{C,i} \right) \] (59)
 and apply the boundary conditions of the background grid.

9. Loop over all the particles to update their velocities and positions by using
 \[v_{ip,i}^{k+1} = v_{ip,i}^{k+1/2} + \Delta t \sum_{J=1}^{N_{J}} \left(f_{ij}^{p,k} + f_{ij}^{n,k} m_{ij}^{k} + f_{ij}^{tan,k} m_{ij}^{k} \right) \] (60)
 and Eq. (24), respectively.

10. Loop over all the FE nodes to update their velocities and positions by Eqs. (26) and (27), respectively. Loop over all the hybrid nodes to update their velocities and positions by Eqs. (25) and (27), respectively, and label them as FE nodes.

11. Discard the deformed background grid and define a new regular background grid. Return to step 1 to start a new time step.

Table 2

<table>
<thead>
<tr>
<th>Information for plate impact.</th>
<th>Elements</th>
<th>Particles</th>
<th>Time steps to 20 μs</th>
<th>Cost/s</th>
<th>Separation time/μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17.28</td>
</tr>
<tr>
<td>CFEMP</td>
<td>3024</td>
<td>12,096</td>
<td>2756</td>
<td>212</td>
<td>17.3</td>
</tr>
<tr>
<td>MPM</td>
<td>–</td>
<td>36,288</td>
<td>2777</td>
<td>582</td>
<td>17.3</td>
</tr>
</tbody>
</table>

5. Numerical examples

5.1. Symmetric plate impact

A series of plate impact with different material laws applied are investigated here to validate the accuracy and efficiency of CFEMP. In all the simulations, the initial gap between the two plates is set to zero, and the friction coefficient is zero.

The first example is a symmetric plate impact. The length of the plate is 21 mm and the area is 3 x 3 mm. Two plates are traveling with an equal and opposite velocity of 100 m/s towards each other. Elastic material law is applied for both plates, whose Young’s modulus \(E = 65 \times 10^3 \) MPa, Poisson’s ratio \(\nu = 0 \), and density \(\rho = 2.75 \times 10^{-3} \) g/mm³. A typical discretization of the two plates is shown in
Fig. 4, where the left plate is modeled by FEM, while the right plate by MPM. Plane strain assumption is applied along the sides of the model, which result in a 1D wave propagation in the plates. The element size is 0.5 mm, the grid cell size 0.5 mm, and the particle space 0.25 mm.

The numerical results of stress profile and separation time are in good agreement with 1D analytical solution. Fig. 5(a) compares the stress profiles in the plates for time 3.0 μs obtained by CFEMP and 1D analytical solution, while Fig. 5(b) shows the energy curve of the simulation. The protuberance of the profile given by CFEMP is located in the region of MPM near to the contact interface due to the asymmetry of discrete of MPM and FEM, but the influence is limited to local region so that it could be ignored. Moreover, some oscillations are observed in the MPM domain but not in the FEM domain. Table 1 lists the separation time of two plates and the computational cost for both CFEMP and MPM, which shows that the CFEMP is more efficient than the MPM for this simulation.

Obviously, the accuracy of the contact method is dependent on the ratio R between the finite element size and MPM cell size. Therefore, the aspect ratio effect is further investigated for the example given above by fixing the cell size of 0.5 mm and increasing the finite element size from 0.25 mm to 1.5 mm. The numerical results obtained for different R are illustrated in Fig. 6, which shows that the numerical result agrees well with the analytical result when the R is less than 2, but significant oscillation can be seen when the R is larger than 2 in the profile of MPM domain due to the unmatched mesh at the contact interface. Besides, penetration is observed in the simulation due to the unmatched mesh for R larger than 1.

In addition, an elasto-plastic material law with isotropic hardening is applied for both plates, whose Young's modulus $E = 65 \times 10^3$ MPa, tangent modulus $E_T = 30 \times 10^3$ MPa, Yield stress $\sigma_y = 300$ MPa and density $\rho = 2.75 \times 10^{-3}$ g/mm3. Other parameters are the same to the above example and set $R = 1$. In this example, double waves of elastic wave and plastic wave will propagate along the plates at the same time. The numerical result is given in Fig. 11.

Table 3

<table>
<thead>
<tr>
<th>Elements</th>
<th>Particles</th>
<th>Time steps to 2.0 ms</th>
<th>Cost/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFEMP</td>
<td>8000</td>
<td>17,259</td>
<td>3391</td>
</tr>
<tr>
<td>MPM</td>
<td>–</td>
<td>81,259</td>
<td>3622</td>
</tr>
</tbody>
</table>

Fig. 11. Center-of-mass position for sphere as a function of time: (a) the angle of inclination $\theta = \pi/4$, and coefficient of friction $\mu = 0.1$ and 0.4, respectively. (b) the angle of inclination $\theta = \pi/3$, and coefficient of friction $\mu = 0.2$ and 0.6, respectively.

Fig. 12. Energy evolution of sphere rolling: (a) for case 1; (b) for case 2.

Fig. 13. Schematic of the ogive-nose projectile.
5.2. Asymmetric elastic plate impact

An asymmetric elastic plate impact with different length and material parameters is further studied here. One plate is with size of $3 \times 3 \times 42$ mm and modeled by elastic constitutive with $E = 65 \times 10^3$ MPa, $\rho = 2.75 \times 10^{-3}$ g/mm3, while the other is with size of $3 \times 3 \times 21$ mm and modeled by elastic constitutive with $E = 32.5 \times 10^3$ MPa, $\rho = 5.5 \times 10^{-3}$ g/mm3. Other parameters are the same to example in Section 5.1 and set $R = 1$. The sound speed of the first plate is two times that of the other, but the impedance is matched. The longer plate is modeled by FEM, while the other by MPM.

Fig. 8(a) compares the stress profile obtained by CFEMP and MPM with the analytical solution at time $3.6 \mu s$. The energy curve is shown in Fig. 8(b). Table 2 lists the information about the contact separation time and computational cost, which shows the accuracy and efficiency of CFEMP method is higher than that of MPM.

5.3. Sphere rolling simulation

The third example is an elastic sphere rolling on an inclined elastic plate due to gravity, as shown in Fig. 9. The plate is inclined at an angle θ from the horizontal. The radius of sphere is $R = 1.6$ m, and the size of plate is $20 \times 4 \times 0.8$ m. The gravity $g = 10$ g/s2 is vertically downward.

From rigid body dynamics, the sphere will roll and either stick or slip at the point of contact depending on the angle of inclination and the friction coefficient. For convenience, the direction tangent to the surface of the plane is chosen as x-direction, so that the kinematics equation of the center-of-mass of the sphere can be expressed as

$$
\begin{align*}
x(t) &= x_0 + \frac{1}{2} gt^2 (\sin \theta - \mu \cos \theta) \tan \theta > 3 \mu \\
x(t) &= x_0 + \frac{1}{2} gt^2 \sin \theta \tan \theta \leq 3 \mu
\end{align*}
$$

where $x_0 = 0$ is the x-component of the initial center-of-mass position.

In the simulation, the sphere has a Young’s modulus of $E = 4.2 \times 10^6$ Pa, Poisson’s ratio of $\nu = 0.4$, and density of $\rho = 1000$ Kg/m3. The plate has a Young’s modulus of $E = 4.2 \times 10^7$ Pa, Poisson’s ratio of $\nu = 0.4$, and density of $\rho = 10,000$ Kg/m3. As shown in Fig. 10, the plate is modeled by FEM with fixed boundary condition at the bottom surface, while the sphere is modeled by MPM. The element size is 0.2 m, cell size is 0.2 m, and particle space is 0.1 m.

Four cases are studied. In the first and the second cases, the inclined angle is $\theta = \pi/4$ with frictional coefficient of $\mu = 0.1$ and 0.4, respectively. In the third and fourth cases, the inclined angle is $\theta = \pi/3$ with frictional coefficient of $\mu = 0.2$ and 0.6, respectively. In the first and third cases, the sphere will roll and slip, and in other cases the sphere will roll and stick.
Fig. 11(a) compares the numerical results of the center-of-mass position with the analytical solutions for case 1 and 2, and Fig. 11(b) for case 3 and 4. The numerical results obtained by CFEMP method are in good agreement with analytical results. Table 3 lists the computational cost of case 1 for both CFEMP and MPM, which shows that the CPU time required for the MPM simulation is more than that of CFEMP simulation. The energy curves of case 1 and 2 are illustrated in Fig. 12.

5.4. Perforation of thick plate

In order to validate the robustness of CFEMP method, a projectile against oblique thick plate is investigated. The inclined angle is 30°. The experiments were conducted by Piekutowski et al. [48], where ogive-nose hardened steel projectiles and 6061-T651 aluminum plates were adopted. As shown in Fig. 13, the projectile has a length of 88.9 mm and a diameter of 12.9 mm with a 3.0 caliber-radius-head. The target has a thickness of 26.3 mm and an area of 110 × 110 mm.

The projectile is discretized with an unstructured elements arrangement and modeled by an elasto-plastic material law with isotropic hardening. The target is discretized with a structured particle arrangement and modeled by an elastic–plastic material law, Johnson–Cook model whose yield stress is calculated by

\[
\sigma_y = \left(A + B\varepsilon_y^p \right) \left(1 + C \ln \dot{\varepsilon} \right) \left(1 - T^m \right),
\]

where \(A, B, C, n \) and \(m \) are the material constants, \(\varepsilon_y \) is the effective plastic strain, \(\dot{\varepsilon} = \frac{d\varepsilon}{dt} \) is the dimensionless plastic strain rate for \(\dot{\varepsilon}_0 = 1.0 \, \text{s}^{-1} \), and \(T = (T - T_{\text{room}})/(T_{\text{melt}} - T_{\text{room}}) \in [0, 1] \) is the dimensionless temperature. Besides, the pressure of target material is updated by the Mie–Grüneisen EOS. Material failure is taken into account by setting the deviatoric components of the stress tensor to zero when the effective plastic strain reaches the plastic strain.

<table>
<thead>
<tr>
<th>(v_0)</th>
<th>Experiment</th>
<th>CFEMP</th>
<th>MPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>217</td>
<td>229</td>
<td>241</td>
</tr>
<tr>
<td>446</td>
<td>288</td>
<td>293</td>
<td>306</td>
</tr>
<tr>
<td>575</td>
<td>455</td>
<td>456</td>
<td>471</td>
</tr>
<tr>
<td>730</td>
<td>655</td>
<td>631</td>
<td>652</td>
</tr>
</tbody>
</table>

The projectile's residual velocities for different striking velocities (m/s).

Fig. 15. Contour plot of the effective plastic strain at final time 0.28\,\mu s.

Fig. 16. The energy error for the case 4 in time.

Fig. 17. Projectile-target interaction at the striking velocity \(v_0 = 400 \, \text{m/s} \).
fail = 1.6 at failure. The material constants for the projectile and the target listed in Tables 4 and 5, respectively, are taken from references [48,49]. In our simulation, the friction between projectile and target is ignored.

We will focus first on the experiment of projectile with striking velocity of 575 m/s. Four different cases are investigated to study the mesh refinement effect on the accuracy of CFEMP as shown in Table 6. In each case, the particle space is half of the cell size and the ratio R ranges from 0.14 to 1 due to the complicated geometrical shape of ogive-nose. The residual velocity of the projectile given by CFEMP is listed in Table 6, which shows that the numerical results converge to the experimental data with decreasing the sizes of the cell and the element.

In case 4, the residual velocity of the projectile obtained by CFEMP method is 456 m/s, which is closed to experimental result. Moreover, the projectile-target interactions obtained in the experiment and in the simulation are compared in Fig. 14, where Fig. 14(a) shows a sequence of X-ray photographs at three times of impact and Fig. 14(b) shows the numerical results at the same times. The projectile’s shapes obtained by the CFEMP method are consistent with the experimental results during the perforation process. In addition, the effective plastic strain contour plot of the target at 0.28 ms is shown in Fig. 15, and the energy error in time for case 4 is illustrated in Fig. 16 which does not exceed 5.5%.

Furthermore, the projectile with different striking velocity \(v_0 \) is investigated with the same cell and element sizes used in case 4. The residual velocity of projectile given by both CFEMP and MPM is listed in Table 7, which shows that the numerical results are close to the experimental data. The residual velocities given by CFEMP method are less than that of MPM, but the difference is not significant. The computational cost of CFEMP is more than that of MPM due to the smallest ratio \(R \) is less than 1, but the efficiency of CFEMP per time step is higher than that of MPM.

From the observation of experiments, the shapes of the projectiles are dependent on the striking velocity \(v_0 \). Therefore, the projectile-target interaction for projectile with \(v_0 = 400 \) m/s is given in Fig. 17. From the comparison, we can find that the projectile’s

![Figure 18. Schematic of the water column with an elastic obstacle.](image)

<p>| Table 8 |
|---------------------|---------------------|---------------------|---------------------|</p>
<table>
<thead>
<tr>
<th>(\rho) (kg/m(^3))</th>
<th>(c_0) (m/s)</th>
<th>(s)</th>
<th>(\gamma_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1647</td>
<td>1.921</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(\gamma_0 \) = 1.6 at failure. The material constants for the projectile and the target listed in Tables 4 and 5, respectively, are taken from references [48,49]. In our simulation, the friction between projectile and target is ignored.

Fig. 18. Schematic of the water column with an elastic obstacle.

![Figure 19. Comparison between CFEMP results and PFEM [50] results for water column collapse on a flexible obstacle.](image)
used for both water and obstacle, which consist of 10,608 particles which is set to 0.006 MPa. Plane strain assumption is applied in the simulation of the upper left corner of the obstacle.

The water column is modeled by MPM with null material constants and Mie–Gruneisen EOS, whose material constants are listed in Table 8. In order to keep the surface of water smoothed, the water is assumed to be able to sustain certain level of tension, $\mu = 2.5 \times 10^{-3}$ g/mm2, Young modulus $E = 1$ MPa and Poisson ratio $\nu = 0$. The water column is modeled by MPM with null material model and Mie–Gruneisen EOS, whose material constants are listed in Table 8. In order to keep the surface of water smoothed, the water is assumed to be able to sustain certain level of tension, which is set to 0.006 MPa. Plane strain assumption is applied in the simulation. The particle space is 2 mm, and both the cell and the element sizes are 4 mm, where $R = 1$. Structured discretization is used for both water and obstacle, which consist of 10,608 particles for water, and 60 elements for the obstacle.

Finaly, a fluid–structure interaction problem is investigated by CFEMP. As shown in Fig. 18, a water column will collapse through a flexible obstacle to the right wall due to the gravity.

The water column is of width $L = 146$ mm and of height 2L, and the flexible obstacle is of width $b = 12$ mm and of height 80 mm. The gap between obstacle and water column is of length L_b. The water will flow freely due to the gravity acting downwards with $g = 9.8 \times 10^{-3}$ mm/ms2. The air is neglected. In the simulation, the flexible obstacle is modeled by FEM with density $\rho = 1.3$ g/mm3, Young modulus $E = 1$ MPa and Poisson ratio $\nu = 0$. The water column is modeled by MPM with null material model and Mie–Gruneisen EOS, whose material constants are listed in Table 8. In order to keep the surface of water smoothed, the water is assumed to be able to sustain certain level of tension, which is set to 0.006 MPa. Plane strain assumption is applied in the simulation. The particle space is 2 mm, and both the cell and the element sizes are 4 mm, where $R = 1$. Structured discretization is used for both water and obstacle, which consist of 10,608 particles for water, and 60 elements for the obstacle.

Although there are no available experimental results, this problem was investigated by other researchers using PFEM [50] and a staggered method with level-set method [51], respectively. Here, the numerical results of CFEMP method are compared with the results given by Idelsohn et al. [50], as shown in Fig. 19. Both the deformed shape of the obstacle and the free surface of water obtained by CFEMP agree well with those obtained by PFEM. The time history of the deflection of the upper left corner of the obstacle is compared with other available numerical results [50,51] in Fig. 20. Finally, the energy curve of this problem is given in Fig. 21.

6. Conclusion

In this paper, we put forward a contact method to handle the interaction between the body modeled by FEM and the body modeled by MPM. In this method, the FE nodes located on the contact interface are treated as hybrid nodes, whose momentum equations are established and integrated on the contact grid points like particles. The contact force is calculated on the background grid points and imposed on the hybrid nodes and particles. Different from the contact of MPM, the normal vector of body surface is calculated by the surface of elements for FEM body.

Based on the contact method, a coupled finite element–material point method is proposed in this paper, in which the body with mild deformation is modeled by FEM, while the body with extreme deformation is modeled by MPM. The accuracy of FEM is higher than MPM for body with mild deformation because the particle quadrature rather than Gauss quadrature is used in MPM. Besides, the ratio between element size and grid cell size should be less than 2 to avoid penetration occurring due to the background grid based contact method. Central difference time integration is used to integrate the momentum equation so that if the critical time step is controlled by the MPM body the efficient of CFEMP is higher than that of MPM. Two plates impact and a sphere rolling on an inclined plane are investigated to validate the accuracy and efficiency of CFEMP, and a series of impact experiment of projectile against an inclined plane are studied to validate the robustness of CFEMP. Finally, a fluid–structure interaction of collapse of water column through an elastic obstacle is studied. All the problems are three dimensional and the numerical results obtained by CFEMP are in good agreement with analytical solution or results available in the literature.

References