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Elasto-plastic behavior of pipe subjected to steady
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Abstract

The elasto-plastic behavior of a pipe subjected to a steady axial force and a cyclic bending moment is studied. By using two
parametersc andd, which describe the elasto-plastic interfaces of beam cross-section, the boundary curve equations between
various types of elasto-plastic behavior, such as shakedown, plastic fatigue, ratcheting, and plastic collapse, are derived. The
results are applicable for beams of any cross-section with two orthogonal axes of symmetry. As a result, the load regime diagram
for a pipe is obtained, which gives an intuitive picture of the elasto-plastic behavior of the pipe under a given combination of
constant axial load and cyclic bending moment.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Piping systems play an important role in many ap-
plications, especially in nuclear power plants. The dy-
namic design, including seismic design is a key part of
modern piping design and analysis (Slagis, 1991). The
criteria of piping design given by the ASME Boiler and
Pressure Vessel Code, Section III and VIII-2, is based
on linear elastic analysis. This analysis method has
proved to be too conservative in practice and in many
experimental studies since the 1980s (Slagis, 1996;
PVRC Subcommittee, 1994). The EPRI/NRC Piping
and Fitting Dynamic Reliability Test Program showed
that the failure mode of piping components subjected
to large seismic loading is not collapse, as in the static
case, but fatigue or fatigue-ratcheting (Tagart et al.,
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1990). Therefore, the fatigue and ratcheting analysis
of piping that is subjected to seismic or other cyclic
loads is very important for predicting the dynamic re-
sponse and lifespan of piping.Scavuzzo et al. (1991,
1992)have done valuable work on the ratcheting anal-
ysis of pressurized pipe subjected to cyclic bending
loads. They found that depending upon loading condi-
tions and specified material properties, three different
responses were observed from the finite element anal-
yses: cyclic plasticity, ratcheting of the hoop strain,
or shakedown. These analytical results are compared
to some experimental measurements.Hassan et al.
(1998)obtained good results in the prediction of the in-
cremental hoop ratchet strain of pressurized pipes sub-
jected to dynamic loading. The focus of these studies
was confined to the numerical and experimental anal-
ysis of ratcheting, one of the inelastic failure modes.
In this paper, we put emphasis on the limiting loading
conditions for different types of elasto-plastic behav-
ior, such as shakedown, ratcheting, and plastic fatigue,
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Nomenclature

A, B1, B2, coefficients of polynomial
B3, B4 regression

Loads
M amplitude of cyclic bending

moment
Me elastic limit load of bending

moment amplitude
m, M/Me dimensionless bending moment

amplitude
N steady axial force
Ne elastic limit load of axial force
n, N/Ne dimensionless axial force

Geometrical parameters
A area of the cross-section
a, b, a1, elastic–plastic interfaces of beam
b1, a2, b2 cross-section during moment

application and reversal
c, d distance from zero-stress line to

the elastic–plastic interface and to
the center line of the beam,
respectively

R half-depth of the beam, outer
radius of the pipe

r inner radius of the pipe
α ratio of inner to outer radius of

the pipe
β section shape coefficient
λc c/R dimensionless distance
λd d/R dimensionless distance
κ, κ1, κ2 curvature of the beam during

moment application and reversal

Physical parameters
E elastic modulus
Iz inertial moment
σy yield stress
σn, N/A axial stress caused by axial

forceN
σm, MR/Iz axial stress caused by bending

moment amplitudeM
σ stress distribution on the beam

cross-section

ε
p
i , εp

′
i plastic strain when moment

application and reversal during
the ith cycle

ηi,η′
i the increment of plastic strain

during theith moment application
and reversal

etc., which are an important basis of the inelastic dy-
namic evaluation of piping.

A pipe under seismic excitation is simplified
as an elastic-perfectly-plastic beam with tubular
cross-section subjected to steady axial force and fully
reversed cyclic bending moment.Yu and Johnson
(1982)examined the elastic-perfectly-plastic behavior
of a rectangular beam subjected to different combi-
nations of static axial tension and bending.Webster
et al. (1985)studied the same problem but with fully
reversed cyclic bending and gave a load regime dia-
gram identical to the “shakedown” diagram derived
by Gokhfeld and Cherniavsky (1980). In the present
paper, the boundary curve equations between various
load regimes are derived by introducing two param-
eters c and d, which indicate the interfaces of the
elastic and plastic region on the beam cross-section.
The results are applicable for beams with biaxial
symmetric cross-section that are loaded in their sym-
metry planes. A biaxial symmetric cross-section has
two orthogonal axes of symmetry, as shown inFig. 1.

In the following investigation, the assumptions of
classical beam theory are adopted. The deflection of
the beam axis is assumed to be small compared to
the cross-sectional dimensions of the beam, and the
cross-section is assumed to remain plane and normal to
the deformed beam axis. During cyclic loading, effects
due to cyclic hardening and ovalization are assumed
to be negligible.

y

z

y y

z z

Fig. 1. Several examples of biaxial symmetric cross-sections of a
beam.
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2. Behavior classification and boundary curve
equations of load regime diagram

2.1. Behavior classification

The following discussion focuses on the limiting
conditions of various types of elasto-plastic behavior
and the corresponding stress and strain distributions.

For different combinations of a static axial forceN
and a bending momentM, four kinds of elasto-plastic
behavior are possible after the first 1/4 loading cy-
cle (Yu and Johnson, 1982): (a) elastic, (b) one-sided
plastic, (c) two-sided plastic, (d) plastic collapse, as
shown inFig. 2.

In Fig. 2, the two parametersc and d introduced
by Yu and Johnson (1982)are used, which are the
distance from the zero-stress line to the elastic–plastic
interface and to the center line, respectively. The stress
distributions characterized byc and d should satisfy
the equilibrium conditions:

N =
∫
A

σ dA; M =
∫
A

σy dA (1)

where A is the area of the cross-section. For given
N and M, the parametersc and d are determined

Fig. 2. Stress distributions across the section of a beam after first
moment application. (a) Elastic; (b) one-sided plastic; (c) two-sided
plastic; (d) plastic collapse.

by Eq. (1). Fig. 2 shows that one-sided plasticity,
two-sided plasticity, and plastic collapse correspond
to the conditionsc + d > R, c + d ≤ R, andc = 0,
respectively, whereR is half-depth of the beam.

After the first 1/4 loading cycle (equivalent to static
loading), the bending moment will be fully reversed
betweenM and −M. Various types of elasto-plastic
behavior of a beam under steady axial force and
cyclic bending moment will be discussed below. Us-
ing Bree’s familiar notation (Bree, 1967, 1989), the
load regime diagram is divided into various regions,
i.e. elastic (E), shakedown (S), plastic fatigue (P),
ratcheting (R), and plastic collapse (Cp).

2.1.1. Elastic region (E)
Elasticity governs until the maximum stress in the

beam reaches the yield stressσy. The limiting condi-
tion for elastic region is:

|σn ± σm| ≤ σy (2)

whereσn = N/A andσm = MR/Iz are the axial stress
and bending stress of the beam, respectively.

2.1.2. Shakedown region (S1)
Shakedown refers to the case that further plastic de-

formation does not occur after a few initial cycles. We
consider the one-sided plasticity case after the first 1/4
loading cycle, seeFig. 2b. For this caseσn +σm ≥ σy

at the upper plastic side, andc+ d > R. Furthermore,
if c ≥ d andσm ≤ σy, i.e. the elasto-plastic interface
does not exceed the center line of the cross-section,
compressive yielding will not occur in the upper half
while tensile yielding occurs in the lower half after
the reversal of the moment, as shown inFig. 3b. The
whole section will remain elastic in later reloading

Fig. 3. Stress distributions of regionS1. (a) First moment applica-
tion; (b) moment fully reversed; (c) second moment application.
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Fig. 4. Stress and strain distributions for regionP1. (a)–(c) Stress distributions; (d)–(f) plastic strain distributions.

and unloading cycles. The stress distribution repeats
again and again betweenFig. 3b and c. The beam has
shaken down to elastic action.

The limiting conditions of theS1 region are:

σn + σm ≥ σy; c + d ≥ R; c ≥ d; σm ≤ σy

2.1.3. Cyclic plasticity region (P1)
Consider the one-sided plasticity case, shown in

Fig. 2b again, in whichσn + σm ≥ σy, c + d > R,
andc ≥ d, but σm > σy now. In this case, compres-
sive yielding will occur in the upper half during the
reversal of the moment, as shown inFig. 4b.

Introduce two parameters:

a = c − d; Eκ = σy

c
(3)

whereE is the elastic modulus,κ is the curvature of
the beam, andEκ represents the slope of the stress
distribution inFig. 4a, seeEq. (4). In the same way,
a1, b1, κ1 anda2, b2, κ2 were introduced inFig. 4b and
c, seeEqs. (5) and (6), which represent the stress dis-
tributions during the reversal and the reloading of the
moment. The stress distributions must satisfy the
equilibrium conditionsEq. (1). Through this and the
continuity condition of the stress distribution, the
parametersai, bi, κi (i = 1, 2) can be deter-
mined. By using the constitutive relationship for an

elastic-perfectly-plastic material and the plane sec-
tion hypothesis referred to above, we can obtain the
corresponding plastic strain distributions asFig. 4d–f

shows, in whichεpi andε
p′
i are the plastic strain during

moment application (+M) and reversal (−M) at the
ith cycle, respectively. It can be proved that the stress
and strain distributions will come back toFig. 4b and
e during the second reversal of the moment. Thus,
Fig. 4b and crepresents the stress distributions of a
steady cycle.

The equations of the numbered curves inFig. 4are
as follows:

Fig. 4a:

σ = Eκ(y − a) + σy; σ = σy (4)

Fig. 4b:

σ = σy; σ = Eκ1(y − a1) + σy;
σ = E(κ1 − κ)(y − b1) − σy; σ = −σy (5)

Fig. 4c:

σ = −σy; σ = E(κ2 − κ1)(y − a2) − σy;
σ = Eκ2(y − a1) + E(κ2 − κ1)(a1 − a2) − σy;
σ =E(κ2 − κ)(y − b1)+E(κ2 − κ1)(b1 − b2)+ σy;
σ = E(κ2 − κ1)(y − b2) + σy; σ = σy (6)
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Fig. 4d:

Eε
p

1 = Eκ(y − a) (7)

Fig. 4e:

Eε
p′
1 = Eκ1(y − a1); Eε

p′
1 = Eκ(y − a);

Eε
p′
1 = Eκ1(y − b1) + Eκ(b1 − a) (8)

Fig. 4f:

Eε
p

2 = Eκ2(y − a2) + Eκ1(a2 − a1);
Eε

p

2 = Eκ1(y − a1); Eε
p

2 = Eκ(y − a);
Eε

p

2 = Eκ1(y − b1) + Eκ(b1 − a);
Eε

p

2 = Eκ2(y − b2) + Eκ1(b2 − b1) + Eκ(b1 − a)

(9)

In the two regions ofy ≥ b2 andy ≤ a2 in Fig. 4c,
The same amount of plastic strain occurred with op-
posite sign during the application and reversal of the
moment. The total plastic strain after one steady cycle
is equal to zero, and therefore, the limiting conditions
of the cyclic plasticity regionP1 are:

σn + σm ≥ σy; c + d ≥ R; c ≥ d; σm ≥ σy

2.1.4. Ratcheting region (R1)
Ratcheting is defined as the accumulation of plastic

deformation with load cycles. There is a constant in-
crement of plastic strain during every steady cycle of
ratcheting.

Whenc ≤ d, the tensile yielding zone exceeds the
center line of the section during the first moment ap-
plication, as shown inFig. 5a. During the moment re-
versal, yield initially occurs in the zonea ≤ y ≤ 0
and then spreads further. The final stress distribution
equilibrating with the axial load and moment is a mir-
ror image ofFig. 5a, as shown inFig. 5b. The stress
distributions for further reversals of moment from−M
to +M and from+M to −M, are the same as those for
the first cycle. The corresponding strain distributions
are shown inFig. 5d–f. The equations of the numbered
strain distributions inFig. 5d–fare as follows:

Fig. 5d:

Eε
p

1 = Eκ(y − a) (10)

Fig. 5e:

Eε
p′
1 = −2Eκa; Eε

p′
1 = Eκ(y − a) (11)

Fig. 5. Stress and strain distributions for regionR1. (a)–(c) Stress
distributions; (d)–(f) plastic strain distributions.

Fig. 5f:

Eε
p

2 = −2Eκa; Eε
p

2 = Eκ(y − a) − 2Eκa

(12)

Defineηi = ε
p
i − ε

p′
i−1; η′

i = ε
p′
i − ε

p
i (13)

as the increments of plastic strain during theith mo-
ment application and reversal. The total strain incre-
ment per steady cycle is:

δ = η′
1 + η2 = −2κa (14)

δ is called ratcheting strain, which is homogeneous
through the cross-section.

The limiting conditions of the one-sided ratcheting
regionR1 are:

c + d ≥ R; c ≤ d

2.1.5. Shakedown region (S2)
Whenc + d ≤ R, two-sided yielding occurs close

to the surfaces of the beam after the first moment
application, as shown inFig. 2c.

If c ≥ d and σm ≤ σy, the whole cross-section
will remain elastic during subsequent unloading and
reloading cycles. The beam has shaken down. For a
pipe, the intersection of these conditions will be null
and shakedown regionS2 does not exist.
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Fig. 6. Stress distributions for regionR2.

2.2. Reverse plasticity region (P2)

If c+d ≤ R andc ≥ d, butσm > σy, similar steady
stress and strain distributions as those of the region
P1 can be obtained, but compressive yielding occurs
in the lower half of the beam during the first moment
application.

The limiting conditions of the reverse plasticity re-
gion P2 are:

c + d ≤ R; c ≥ d; σm ≥ σy

2.2.1. Ratcheting region (R2)
If c ≤ d, the stress distribution after the first mo-

ment application is shown inFig. 6a. Similar to region
R1, the stress distribution after reversal of the moment
is a mirror image ofFig. 6a, as shown inFig. 6b.

The limiting conditions of the ratcheting regionR2
are:

c + d ≤ R; c ≤ d

2.2.2. Plastic collapse region (Cp)
When whole section yielding occurs during the first

moment application, infinite plastic flow takes place,
and the beam collapses. FromFig. 2d, the collapse
condition can be expressed byc = 0.

2.3. Boundary curve equations of the load regime
diagram

Introduce the following dimensionless variables:

λc = c

R
, λd = d

R
, m = M

Me
, n = N

Ne
(15)

whereNe and Me are the elastic limit load under an
axial forceN and under a bending momentM, respec-
tively. Using the dimensionless variables, the bound-

Fig. 7. Load regime diagram for the pipe (α = 0.95).

ary curve equations between various regions men-
tioned above become:

E vs. S1 n + m = 1
S1 vs. P1 m = 1
S1 vs. R1 λc = λd

P1 vs. P2 andR1 vs. R2 λc + λd = 1
P2 vs. R2 λc = λd

Cp vs. R2 λc = 0

All of the Eqs. – are expressed in terms ofn, m,
and parametersλc, λd . UsingEq. (1), λc, λd can be de-
termined byn, m. Plotting the curves of Eqs. – on
the load planen–m, we can obtain aload regime dia-
gram. For the cross-section of a pipe, the load regime
diagram is derived in followingSection 3and is shown
in Fig. 7.

3. Load regime diagram for a pipe

3.1. Analytical formulation

Eqs. – are applicable to beams of any
cross-section shape with two orthogonal axes of
symmetry. Moreover,Eq. (1)is dependent on the par-
ticular shape of the cross-section. In this section, we
focus on a pipe. For a round tube we have

Ne = π(1 − α2)σyR
2; Me = π

4
(1 − α4)σyR

3

(16)

whereα is ratio of inner to outer radius of the pipe.
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For the caseFig. 2b, Eq. (1)becomes

N =
(∫ R

c−d

σy × 2
√

R2 − y2 dy −
∫
c−d

σy × 2
√

r2 − y2 dy

)

+
(∫ c−d

−R

σy

c
(y + d) × 2

√
R2 − y2 dy −

∫ c−d

−r

σy

c
(y + d) × 2

√
r2 − y2 dy

)
;

M =
(∫ R

c−d

σyy × 2
√

R2 − y2 dy −
∫
c−d

σyy × 2
√

r2 − y2 dy

)

+
(∫ c−d

−R

σy

c
(y + d)y × 2

√
R2 − y2 dy −

∫ c−d

−r

σy

c
(y + d)y × 2

√
r2 − y2 dy

)
(17)

After integration we obtain:

nπ(1 − α2) =
(

λd

λc

− 1

)
(λc − λd)(

√
1 − (λc − λd)2 −

√
α2 − (λc − λd)2)

+
(

λd

λc

− 1

)[
arcsin(λc − λd) − α2 arcsin

(
λc − λd

α

)]
+
(

λd

λc

+ 1

)(
π

2
− πα2

2

)

− 2

3λc

[(1 − (λc − λd)
2)3/2 − (α2 − (λc − λd)

2)3/2];
mπ

4
(1 − α4) = 2

3

(
1 − λd

λc

)
[(1 − (λc − λd)

2)3/2 − (α2 − (λc − λd)
2)3/2]

+ 1

4λc

[
arcsin(λc − λd) + π

2
− α4 arcsin

(
λc − λd

α

)
− π

2
α4
]

+1

4

(
1 − λd

λc

){
[2(λc − λd)

2 − 1]
√

1 − (λc − λd)2 − [2(λc − λd)
2 − α2]

√
α2 − (λc − λd)2

}

(18)

For the caseFig. 2c, we have:

nπ(1 − α2) =
(

λd

λc

+ 1

)
(λc + λd)(

√
1 − (λc + λd)2 −

√
α2 − (λc + λd)2)

+
(

λd

λc

− 1

)
(λc − λd)(

√
1 − (λc − λd)2 −

√
α2 − (λc − λd)2)

+
(

λd

λc

+ 1

)[
arcsin(λc + λd) − α2 arcsin

(
λc + λd

α

)]

+
(

λd

λc

− 1

)[
arcsin(λc − λd) − α2 arcsin

(
λc − λd

α

)]

− 2

3λc

{
[1 − (λc − λd)

2]3/2 − [1 − (λc + λd)
2]3/2 − [α2 − (λc − λd)

2]3/2 + [α2 − (λc + λd)
2]3/2

}
;

mπ

4
(1 − α4) = 2

3

(
λd

λc

+ 1

)
[(1 − (λc + λd)

2)3/2 − (α2 − (λc + λd)
2)3/2]

(19)

+2

3

(
1 − λd

λc

)
[(1 − (λc − λd)

2)3/2 − (α2 − (λc − λd)
2)3/2]
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+ 1

4λc

[
arcsin(λc − λd) + arcsin(λc + λd) − α4 arcsin

(
λc − λd

α

)
− α4 arcsin

(
λc + λd

α

)]

+1

4

(
1 − λd

λc

){
[2(λc − λd)

2 − 1]
√

1 − (λc − λd)2 − [2(λc − λd)
2 − α2]

√
α2 − (λc − λd)2

}

+1

4

(
1 + λd

λc

){
[2(λc + λd)

2 − 1]
√

1 − (λc + λd)2 − [2(λc + λd)
2 − α2]

√
α2 − (λc + λd)2

}

For the caseFig. 2d, we get:

nπ(1 − α2) = 2 ×
(

arcsinλd − α2 arcsin
λd

α

)
+ 2λd(

√
1 − λ2

d −
√

α2 − λ2
d)

mπ

4
(1 − α4) = 4

3
[(1 − λ2

d)
3/2 − (α2 − λ2

d)
3/2]

(20)

3.2. Load regime diagram

By substituting boundary curve Eqs.– into equi-
librium conditions (18)–(20), we can get the boundary
curves onn–m plane by using a numerical method. All
the boundary curves form a load regime diagram for
the pipe. The diagram for the caseα = 0.95 is shown
in Fig. 7.

In Fig. 7, the load planen–m is divided into seven
regions: elastic regionE, shakedown regionS1, cyclic
plasticity regionP1, reverse plasticity regionP2, ratch-
eting regionsR1 and R2, and plastic collapse region
Cp.

The pointsA and B in Fig. 7 represent the elas-
tic limit loads under axial force and bending mo-
ment, respectively, i.e.N = Ne andM = Me. Point
C is the plastic limit load under bending moment.
The value ofm at C is called section shape coeffi-
cient β, which indicates the bending capacity of the
beam. For pipe sections,β is equal to 1.27–1.7 when
α = 1–0, respectively. InFig. 7, α = 0.95 andβ =
1.3. D is the intersection point of regionsS, P, and
R. By letting c + d = R and c = d simultane-
ously, we getc = d = R/2, and the coordinates of

Table 1
Results of polynomial regression for curves in the load regime diagram

Curve Order Parameter estimates R-square Standard deviation

3 A = 1.0007;B1 = 0.9318;B2 = −2.7873;B3 = 0.8540 0.9999 7.5604E-4
2 A = 1.3054;B1 = −0.0047;B2 = −2.1082 1 1.8671E-4
4 A = 1.3051;B1 = 0.0077;B2 = −1.6651;B3 = 0.1339;B4 = 0.2184 1 1.7524E-4

point D are:

n = 1 − 4(1 − α3)

3π(1 − α2)
; m = 1 (21)

3.3. Polynomial fitting of curves in the load regime
diagram

In the load regime diagramFig. 7, curves – have
analytical expressions as follows:

n + m = 1

m = 1

m = 3π(1 − α2)(1 − n)

4(1 − α3)

The curves – were obtained by numerical meth-
ods in order to give easy-to-use expressions for these
curves, a polynomial fitting is performed. The general
equation of polynomial regression is:

m = A + B1 × n + B2 × n2 + B3 × n3 + · · · (22)

Fitting coefficientsA, B1, B2, B3, etc. are listed in
Table 1.
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By using the load regime diagram we can
justify the elasto-plastic behavior of a pipe un-
der given axial forcen and bending momentm
directly.

4. Summary

The boundary curve equations for various elasto-
plastic behaviors of beams subjected to steady ax-
ial force and cyclic bending have been derived.
The curves are obtained using two elasto-plastic
characteristic parametersc and d. For a given
cross-section, these curve equations can be cal-
culated numerically and approximated by polyno-
mial fitting. The load regime diagram for a pipe
is obtained and plotted. This diagram indicates the
elasto-plastic behavior of the pipe under a given
combination of steady axial load and cyclic bending
moment.
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