
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315
www.elsevier.com/locate/cma

A mesh-grading material point method and its parallelization for
problems with localized extreme deformation✩

Y.P. Liana,b, P.F. Yanga, X. Zhanga,∗, F. Zhanga, Y. Liua, P. Huangc

a AML, School of Aerospace, Tsinghua University, Beijing 100084, PR China
b Department of Mechanical Engineering, Northwestern University, Evanston IL, 60208, USA

c Institute of Structure Mechanics, China Academy of Engineering Physics, Mianyang, 621900, PR China

Received 29 November 2014; received in revised form 4 February 2015; accepted 16 February 2015
Available online 23 February 2015

Abstract

As a kind of meshless method, material point method (MPM) applies an Eulerian background grid served as a finite element
mesh in each time step, and therefore its accuracy and efficiency are mainly dependent on the cell size setting of background grid.
However, the conventional MPM commonly uses a regular background grid with uniform cells, which is not apposite for localized
extreme deformation problems from the view point of computation efficiency, where, in fact, a local refined background grid is
preferable. Hence, a mesh-grading material point method (MGMPM) is proposed here for such problems to supply MPM with
the ability for local refinement simulation. The edge displacement continuity associated with mesh grading is embedded in the
nodal shape functions. Besides, the truss element is incorporated into MGMPM to model the steel reinforcement bars in reinforced
concrete impacting problems, based on our previous work. Furthermore, the proposed method is parallelized using OpenMP (Open
Multi-Processing) to take advantage of PC power with multi-core and hyper threading technologies for large scale engineering
problems, where both loop-level parallelism and code-block parallelism are used. Several numerical examples including stress
wave propagation, Taylor bar impact, and penetration problems, are studied, which show that the efficiency of MGMPM is much
higher than that of conventional MPM, and with lower memory requirement.
c⃝ 2015 Elsevier B.V. All rights reserved.

Keywords: Material point method; Mesh grading; Parallel; Reinforced concrete; Extreme deformation

1. Introduction

There are many kinds of engineering problems with localized extreme deformations, such as bird impact, pene-
tration and local explosion problems, all of which involve extreme material deformation or failure. Compared with
conventional numerical methods such as finite element method, meshless/meshfree methods have shown their advan-
tages for such problems simulation. Up to now, many meshless methods have been proposed, such as the smoothed

✩ Supported by the National Basic Research Program of China (2010CB832701), National Natural Science Foundation of China (11272180,
11102195), and China Postdoctoral Science Foundation (International Postdoctoral Exchange Fellowship Program).

∗ Corresponding author.
E-mail address: xzhang@tsinghua.edu.cn (X. Zhang).

http://dx.doi.org/10.1016/j.cma.2015.02.020
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.02.020&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.02.020
http://www.elsevier.com/locate/cma
mailto:xzhang@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.cma.2015.02.020

292 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

particle hydrodynamics (SPH) method [1–3], the element free Galerkin (EFG) method [4,5], the reproducing kernel
particle method (RKPM) [6,7], material point method (MPM) [8,9], and the recently developed bond/stated-based
peridynamics [10–12], just to name a few.

This paper is focused on material point method, which is an extension of the particle in cell method to solid me-
chanics problems. The basic idea of MPM is to take a collection of Lagrangian material points (particles) to discretize
a given material domain, and to apply an Eulerian background grid to cover the material domain. All the state variables
associated with the material, such as displacements, velocities, stresses and others material properties, are assigned to
and updated on the particles, while the background grid is used for integrating momentum equations and calculating
spacial derivatives, but carries no permanent information when the particles move through it. The particle interval must
match the cell size of the background grid to guarantee the accuracy of particles quadrature and to avoid numerical
fracture. Usually the particle interval is set as half of the cell size. Except for a few implicit approaches, MPM typically
uses an explicit time integration scheme for solid mechanics problems. In contrast to some other meshless methods,
MPM is less complex and with better performance on efficiency and tension stability [13]. Due to its advantages,
MPM has been attracting more and more attentions and applied to a large range of science and engineering problems,
such as impact/penetration, explosion problems [14,15], crack expending problems [16,17], biomechanics problems
[18,19], fluid–structure interaction problems [20,21], multi-scale problems [22,23], geotechnical engineering prob-
lems [24,25], and so on. In order to suppress the artificial noise when the particles move across the cell boundary,
different methods, such as generalized interpolation material point (GIMP) method [9], convected particle domain
interpolation technique [26], dual domain material point method [27], were developed. Although MPM can handle
no-slip contact without additional treatment, much work has been done [28–30] on the contact/friction/separation
algorithm based on the Lagrangian multiplier method. In order to reduce oscillations of the contact force, a penalty
function is proposed [25]. Besides, different work has been performed by Zhang’s group to couple MPM with FEM
[31,32] or with finite difference method (FDM) [33] to take advantage of the strengths of each method.

Although there are many kinds of applications mentioned above, the computation efficiency of conventional MPM
can be further improved for large-scale engineering applications. The regular background grid with uniform cells is
commonly applied in conventional MPM. Such a type of background grid is not flexible for problems with localized
phenomena, where, in fact, a local refinement mesh is needed. For this issue, Lian and Zhang [34] proposed a tied
interface grid material point method (TIGMPM), in which the background grid is composed of several individual
regular grids with different cell sizes for different sub material domains. Each sub grid has an individual list of grid
nodes. The interaction between two adjacent sub grids is implemented by a tied interface method, and then additional
steps must be given to implement it based on the original steps of MPM.

Here an alternative method, the mesh-grading material point method (MGMPM), is propounded for MPM still to
achieve dramatic computational saving. In contrast to TIGMPM, the background grid constructed by MGMPM has
one list of grid nodes instead of several lists. In the view point of geometry, the background grid is divided into several
sub grids level by level with half cell size decreasing. In order to build the topology between two adjacent grids with
different cell sizes, add additional nodes to the corresponding cells, and then modify the shape functions of the cells
with additional nodes to take account of the influence of the refined cells. By this method, the background grid can be
refined locally, and therefore the total number of grid cells and particles can be reduced significantly. Considering that
the edge displacement continuity associated with mesh grading is embedded in the nodal shape functions, there is no
difference between the implementation of MGMPM and that of MPM except for different shape functions applied for
different cell nodes. Compared with TIGMPM, this salient characteristic of MGMPM makes it easy to be parallelized
based on the precursor work [35,36] which parallelized conventional MPM using OpenMP.

Although the dramatic computational savings can be obtained by MGMPM, development of its parallel algorithm
is still desirable. Compared with the MPI, OpenMP is developed for shared memory machines, such as PC with
multi-core and hyper threading technologies, and therefore may requires smaller modifications of the original serial
code. To fully exert the performance of the common PC available nowadays, the proposed method is parallelized using
OpenMP. There are two top difficulties in parallelizing MGMPM, load imbalance and data race. Huang and Zhang [35]
proposed two methods to parallelize MPM for the first time. One is the array expansion method. In order to prevent
data race, an accessory array for each thread is created; in the end of parallel region, these arrays are added together
to form the global array used by the background grid. The other is domain decomposition method. The background
grid is decomposed into some uniform patches, and the information of neighbor patches is exchanged through shared
variables. After updating nodes in all patches, their nodal variables are assembled to establish the global variables.

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 293

Fig. 1. Discretization scheme of MPM.

The first method is easy to implement without load imbalance, but with significant extra memory consuming when
threads increasing. The second method does not consume extra memory but needs a significant modification to the
original serial code. Based on the second method, Zhang [36] proposed another domain decomposition algorithm,
which needs only small modification to the original code and is much easier to achieve dynamic load balance. Here,
we extended this method in MGMPM for arbitrary number of bodies.

In order to simulate penetration problems involving reinforced concrete (RC) by MGMPM, the hybrid finite
element–material point (HFEMP) method [37] is applied to enable MGMPM with ability to simulate the steel re-
inforcement bars (rebar) in RC. In HFEMP, the rebars are discretized by both particles and rebar truss elements,
considering the tensile or compressive loading. The particles, serving as the nodes of the truss elements, only carry
mass position and velocity variables, whereas truss elements carry material properties. This method is also parallelized
using OpenMP.

The proposed method is first validated by a stress wave propagation problem and a Taylor bar impact problem, and
then is applied to study the penetration of reinforcement concrete slabs and aluminum targets to show the accuracy
and efficiency of MGMPM and its parallel algorithm. The remaining part of this article is organized as follows. In
the next section, we provide a brief review of MPM and HFEMP. In Section 3, the mesh-grading background grid
algorithm is given, including its numerical implementation. Section 4 gives the parallel MGMPM using OpenMP. The
numerical examples are presented in Section 5, and some conclusions are drawn in Section 6.

2. Brief review of MPM and HFEMP

Both MPM and HFEMP are introduced briefly here for completeness. More detailed descriptions of MPM and
HFEMP are available in the literature [8,30,37].

In MPM, the material domain Ω is discretized by a set of particles and covered by an Eulerian background grid,
as shown in Fig. 1. In each time step, in order to calculate momentum equations on background grid, the mass and
momentum of the particles are mapped to grid nodes around them by shape functions, separately

m I =

n p
p=1

m p NI p (1)

pi I =

n p
p=1

m pvi p NI p (2)

where the subscript I denotes the variable of grid node, n p is the total number of particles, m p and vi p are the mass
and velocities of particle p. NI p is shape function associated with the grid node I evaluated at the site of particle p.
Then the nodal velocity of background grid can be obtained by

vi I =
pi I

m I
. (3)

With leap frog central difference algorithm, the momentum of grid node can be updated by

pk+1/2
i I = pk−1/2

i I + (f k,ext
i I + f k,int

i I)∆tk (4)

294 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 2. RC discretization in HFEMP method: hollow dots denote concrete material points, while solid dots denote rebar nodes and solid lines
connecting solid dots denote rebar elements.

where, the superscript k denotes the value of variable at time tk , the internal nodal force and external nodal force are
calculated, respectively, as follows.

f k,int
i I = −

n p
p=1

NI p, jσ
k
i j p

m p

ρp
(5)

f k,ext
i I =

n p
p=1

m p NI pbk
ip (6)

where bk
ip = bk

i (xp) is the body force per unit mass, σ k
i j p = σ k

i j (xp) is the Cauchy stress of particle p.

In MPM, constitutive calculation is carried on the particles, so σ k
i j p is updated by the corresponding constitutive law,

where the strain rate and spin tensor are used and calculated from the velocity field of background grid, respectively.

ε̇i j p =
1
2

ng
I=1

(NI p, jvi I + NI p,iv j I) (7)

Ωi j p =
1
2

ng
I=1

(NI p, jvi I − NI p,iv j I) (8)

where ng denotes the total number of background grid nodes which encompassed the particle within a certain distance.
After integrating the momentum equations on the nodes of background grid, map the results back to update

particles’ positions and velocities. Therefore, the positions xk+1
i p and velocities v

k+1/2
i p of particle p are obtained,

respectively, by

xk+1
i p = xk

ip + ∆tk+1/2
ng

I=1

v
k+1/2
i I N k

I p (9)

v
k+1/2
i p = v

k−1/2
i p + ∆tk

ng
I=1

ak
i I N k

I p (10)

where v
k+1/2
i I = pk+1/2

i I /mk
I , and ak

i I = f k
i I /mk

I . After that, all the variables assigned to the grid nodes are reset to
zero, which implies that no permanent information is stored on the grid nodes. Then, a new regular background grid
is used in the next time step.

HFEMP is a method, which can enable MPM with ability to simulate problems involving reinforce concrete (RC)
material. Considering that the main function of the steel reinforced bars in RC is to carry tensile loading, HFEMP [37]
discretizes the reinforced bars in RC by rebar elements as shown in Fig. 2. All the rebar element nodes (referred to as

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 295

rebar nodes hereafter) are treated as particles for momentum equations updating. Then the rebar nodes move through
the background grid together with others particles in the same single-valued velocity field for modeling the interaction
between rebars and concrete. However, the constitutive law and axial force are calculated on the Gauss point of rebar
element, which are same to that of the truss element in FEM. Then nodal mass, momentum, and force of rebar nodes
are mapped to background grid by shape functions as follows.

m I =

nr
r=1

mr NI r (11)

pi I =

nr
r=1

mrvir NI r (12)

f int
i I =

nr
r=1

NI r f int
ir (13)

f ext
i I =

nr
r=1

mr NI r f ext
ir (14)

where nr is the total number of rebar nodes, mr and vir are the lumped mass and velocity of rebar node r , respectively.
f int
ir and f ext

ir are the internal force and external force acting on rebar node r . Then the position and velocity of rebar
nodes are updated by Eqs. (9) and (10), separately, as was done with the particles.

From above, one can find that the efficiency of conventional MPM can be improved by changing the setting of
the background grid. In the current time step, the background grid is embedded in and deformed with the material
domain for solving the spatial derivatives and momentum equations in the current time step. The background grid can
serve as a finite element mesh. Due to this, the accuracy, efficiency and also memory requirement of MPM is mainly
dependent on the cell size setting of the background grid that is used. In MPM, a regular grid with uniform square (for
2D)/cubic (for 3D) cells is usually adopted as the background grid. However, such background grid is not optimal for
problems with localized extreme deformation which needs local refinement making the MPM time consuming. In this
paper, a mesh-grading background grid is proposed for MPM to obtain dramatic computation and memory savings.
The obtained method is referred to as mesh-grading material point method (MGMPM) hereafter.

3. Mesh-grading material point method

In MGMPM, the background grid is locally refined level by level, and the same to the particle interval setting.
Considering the accuracy of MPM dependent on the cell size setting, the refined sub grid is used for the material
domain undergoing extreme deformation, while the coarse sub grid for the material domain undergoing mild
deformation. In order to build the topology between two adjacent grids with different cell sizes, additional nodes
are added to the coarse cells located at the interface of the two sub grids. Then new shape functions are constructed
for those cells with additional nodes to keep the edge displacement continuity. The particle interval is still set as half
of the cell size of the background grid. The particles located in refined grid are referred to as refined particles, while
the particles in coarse grid as coarse particles. The particle splitting technique [34] is applied for the particles that
enter the refined sub grid from the adjacent coarse grid during the computation process.

3.1. Mesh-grading background grid

Take a 2D problem as an example to show the idea for the mesh-grading background grid. As shown in Fig. 3,
there are three levels of grids. The relationship between cell size hl of level l with that of the level 1 is hl = h1/2l−1,
where the h1 is the cell size of the coarsest grid.

The topology between the two adjacent grids is built by adding additional nodes to the coarse cell [38]. Due to
the mismatch of cell sizes, an additional node, mid-edge node, is added to the relatively coarser cells at the interface,
which results in 5-node quadrilateral elements as shown in Fig. 3. For clearness, the mid-edge node is marked with
hollow circle, which in fact is common to three cells, one coarse cell and two refined cells. It is clear that the additional
node is the corner node for the refined cell (such as node 5 for element b and c), and the mid-edge node for the coarse

296 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 3. Mesh-grading background grid.

(a) (b) N5.

(c) N2. (d) N4.

Fig. 4. Shape functions for 5-node linear quadrilateral element.

cells (such as node 5 for element a). The nodes 1, 5, and 2 are used to link elements a to b and c, and the new shape
functions for the 5-node quadrilateral element is constructed to take the contribution of the mid-edge node 5. Then the
shape functions of the element with additional nodes are important for the mesh-grading background grid.

For 2D problem, there are two kinds of elements, 4-node and 5-node quadrilateral element, respectively. Both
of them are linear quadrilateral elements. For a 4-node linear quadrilateral element, the standard shape functions of
isoparametric quadrilateral element are used as follows.

N S
I (ξ, η) =

1
4
(1 + ξξI)(1 + ηηI) I = 1, 2, . . . , 4 (15)

where the superscript S denotes standard shape functions for 4-node linear quadrilateral element. (ξ ∈ [−1, 1], η ∈

[−1, 1]) are the natural coordinates of particle p, ξI and ηI take on their nodal value of (±1, ±1).

For the 5-node quadrilateral element, the shape functions are constructed based on Eq. (15) and the standard rules
for isoparametric elements [38], and are introduced briefly as follows. Take cell a isolated from Fig. 3 as an example,
as shown in Fig. 4(a). The mid-edge node 5 creates two smooth sub-domains within the cell via dashed line, and the

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 297

a b

Fig. 5. Node numbering for the 26-node linear hexahedron element: (a) corner and optional mid-edge nodes; (b) optional mid-face nodes.

shape function associated with it is defined as:

N5(ξ, η) =
1
2
(1 + ξ)(1 − |η|). (16)

Within each sub-domain, the shape functions should be linear. Therefore N1 and N2 must be 0 at node 5. Considering
that the value of the linear basis function N S

1 and N5 is 1/2 and 1 at position of node 5, respectively, both N1 and N2
can be given as follows.

N1(ξ, η) = N S
1 (ξ, η) − 1/2N5(ξ, η) (17)

N2(ξ, η) = N S
2 (ξ, η) − 1/2N5(ξ, η). (18)

Fig. 4(b) shows the value distribution of N5 over the domain of element a, and Fig. 4(c) for N2. The mid-edge
node will only affect the shape functions of nearby corner nodes 1 and 2. The shape functions of node 3 or 4 are still
standard shape functions as in Eq. (15), see Fig. 4(c). By doing this, the edge displacement continuity associated with
mesh grading is embedded naturally in the nodal shape functions.

For 3D problem, there are 8- to 26-node linear hexahedron elements in the mesh-grading background grid. Optional
nodes could be mid-edge, mid-face nodes or both used in any desired combination depending on the mesh-grading
cases. Therefore, the total number of nodes for an element may be up to 26, which is composed of 8 mandatory nodes
at the 8 corners of the cube, 12 optional mid-edge nodes at the mid of 12 edges of the cube, and 6 optional mid-face
nodes at the center of 6 faces of the cube, as shown in Fig. 5. For the regular 8-node linear hexahedron, the standard
shape functions of isoparametric hexahedron element are used as follows.

N S
I =

1
8
(1 + ξξI)(1 + ηηI)(1 + ζ ζI) I = 1, 2, . . . , 8. (19)

Similar to the 5-node quadrilateral element mentioned above, it is straightforward to construct the shape functions
of the 9- to 26-node linear hexahedron elements. The basis functions for the mid-face nodes and mid-edge nodes, as
well as their adjacent corner nodes, are creased at the junction of the sub-domains created by them. Take an element
with 2 optional nodes in the position of nodes 10 and 25 as an example to derive the new shape functions. Assuming
the basis functions are linear within each sub-domain, N25 must take value 1 at node 25, and 0 at others nodes.
Therefore, N25 is given as

N25 = 1/2(1 − |ξ |)(1 − |η|)(1 + |ζ |). (20)

Due to the presence of node 25, N10 is given as

N10 = 1/4(1 − ξ)(1 − |η|)(1 + |ζ |) − 1/2P25. (21)

Due to the presence of node 25 and node 10, N3 can be obtained by modifying N S
3 to take account the influence of

N25 and N10, namely

N3 = 1/8(1 − ξ)(1 − η)(1 + ζ) − 1/2P10 − 1/4P25. (22)

298 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Table 1
Shape functions for the 3D grading element.

Node N (ξ, η, ζ)

26 1/2(1 − |ξ |)(1 − |η|)(1 − ζ)

25 1/2(1 − |ξ |)(1 − |η|)(1 + ζ)

24 1/2(1 − |ξ |)(1 − η)(1 − |ζ |)

23 1/2(1 − |ξ |)(1 + η)(1 − |ζ |)

22 1/2(1 − ξ)(1 − |η|)(1 − |ζ |)

21 1/2(1 + ξ)(1 − |η|)(1 − |ζ |)

20 1/4(1 + ξ)(1 − η)(1 − |ζ |) − 1/2(N21 + N24)

19 1/4(1 − ξ)(1 − η)(1 − |ζ |) − 1/2(N22 + N24)

18 1/4(1 − ξ)(1 + η)(1 − |ζ |) − 1/2(N22 + N23)

17 1/4(1 + ξ)(1 + η)(1 − |ζ |) − 1/2(N21 + N23)

16 1/4(1 + ξ)(1 − |η|)(1 − ζ) − 1/2(N21 + N26)

15 1/4(1 − |ξ |)(1 − η)(1 − ζ) − 1/2(N24 + N26)

14 1/4(1 − ξ)(1 − |η|)(1 − ζ) − 1/2(N22 + N26)

13 1/4(1 − |ξ |)(1 + η)(1 − ζ) − 1/2(N23 + N26)

12 1/4(1 + ξ)(1 − |η|)(1 + ζ) − 1/2(N21 + N25)

11 1/4(1 − |ξ |)(1 − η)(1 + ζ) − 1/2(N24 + N25)

10 1/4(1 − ξ)(1 − |η|)(1 + ζ) − 1/2(N22 + N25)

9 1/4(1 − |ξ |)(1 + η)(1 + ζ) − 1/2(N23 + N25)

8 1/8(1 + ξ)(1 − η)(1 − ζ) − 1/2(N15 + N16 + N20) − 1/4(N21 + N24 + N26)

7 1/8(1 − ξ)(1 − η)(1 − ζ) − 1/2(N14 + N15 + N19) − 1/4(N22 + N24 + N26)

6 1/8(1 − ξ)(1 + η)(1 − ζ) − 1/2(N13 + N14 + N18) − 1/4(N22 + N23 + N26)

5 1/8(1 + ξ)(1 + η)(1 − ζ) − 1/2(N13 + N16 + N17) − 1/4(N21 + N23 + N26)

4 1/8(1 + ξ)(1 − η)(1 + ζ) − 1/2(N11 + N12 + N20) − 1/4(N21 + N24 + N25)

3 1/8(1 − ξ)(1 − η)(1 + ζ) − 1/2(N10 + N11 + N19) − 1/4(N22 + N24 + N25)

2 1/8(1 − ξ)(1 + η)(1 + ζ) − 1/2(N9 + N10 + N18) − 1/4(N22 + N23 + N25)

1 1/8(1 + ξ)(1 + η)(1 + ζ) − 1/2(N9 + N12 + N17) − 1/4(N21 + N23 + N25)

Fig. 6. Generating process of mesh-grading background grid.

From above, one can find out that it is convenient to evaluate the basis functions in decreasing order, from P26 to
P1. Table 1 [38] lists all the shape functions for hexahedron element with 26 nodes. If one optional node is absent, its
basis function and all subsequent references to it should be removed from Table 1.

3.2. Generate mesh-grading background grid and particles

As shown in Fig. 6, the mesh-grading background grid is generated level by level in increasing order. At first,
one generates the grid of level 1, which is the largest grid covering the whole domain and also including the domain
covered by other sub grids. Then one generates the grid of level 2. The cells of level 1 grid that are covered by level 2
grid are replaced by the new cells of level 2 grid, but their nodes are reserved as the nodes of the new cells. Meanwhile,
optional nodes will be added to the cells of level 1 grid at the interface between the two grids, and the corresponding
cells will be labeled so that new shape functions are used in the calculation. Similarly, one can generate the remaining
level grids. During this generation, a single list of nodes is maintained with all sub grids grouped together. Due to this
reason, the background grid is grouped as a whole instead of composed by several individual grids. However, a list of
all sub grids is also formed. Using the latter list, it is easy to find a cell in which a particle is located, level by level in
decreasing grid order. It is straightforward to generate a 3D background grid in the same way.

In MGMPM, the particle interval should match the cell size of the sub grid, in which the particle is located as
shown in Fig. 7. The interaction and connection between particles are implemented by the background grid. If there is

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 299

Fig. 7. Particles distribution in mesh-grading background grid.

a b

Fig. 8. Numerical fracture due to particle moving: (a) particles position at initial time, (b) particles position after moving.

an empty cell or more between two particles, they will not have influence on each other, see Fig. 8(b) as an example.
Assuming a material discretized by 4 particles, there is an empty cell between them, so there is no connection between
them, which is referred to as numerical fracture hereafter. Based on this point, the particle interval must match the cell
size of the sub grid to avoid numerical fracture. In common, it is often set as half of the cell size of the grid at the initial
discretization. With such setting, the relationship of particle intervals dp between level l and 1 is dpl = dp1/2l−1.

3.3. Particle splitting scheme

Particle splitting scheme is needed. At the initial discretization, there are several levels of particle intervals that
match the corresponding cell sizes. However, during the calculation process, the particles could move relatively to the
background grid, while the background grid is fixed in space. So numerical fracture may still occur when there is a
mismatch between particles and cells, such as coarse particles moving from lower level grid to higher level grid, as
shown in Fig. 8. For this case, the coarse particle should be split to refined particles, so that the empty cells can be
filled out by the new refined particles, as shown in Fig. 9.

The particle splitting method proposed by Lian and Zhang et al. [34] is applied here. Since the cell size ratio
between two adjacent grids is 2, a coarse particle is split into four particles for 2D or eight particles for 3D problems.
Take a 2D problem as an example. The mass, volume, and internal energy of the coarse particle are distributed to the
four new particles evenly, while the stress, strain and other material variables of the new particles are set to those of the
coarse particle. Assuming that the configuration domain of each particle is a cuboid, the new particles are uniformly
distributed in the material domain occupied by the coarse particle, as shown in Fig. 9. In the current configuration, the
length of the coarse particle domain can be simply obtained by its strain as follows,

L i = L0(1 + εi) (23)

where L0 =
3
√

m/ρ is the particle initial length for 3D problem, and εi indicates the accumulated strain of the particle
in i th direction.

There is no need to split the rebar element nodes due to their connection based on the element linking instead of
background grid.

3.4. Numerical implementation

The detailed implementation of MGMPM is presented here using the USF scheme [39] for one time step in the
absence of contact.

300 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 9. Split one coarse particle to 4 refined particle.

1. Loop over all bodies to map the mass and momentum of particles and rebar nodes to the background grid via the
shape functions as follows,

mk
I =

n p
p=1

m p N k
I p (24)

pk
i I =

n p
p=1

m pv
k
ip N k

I p (25)

where the formulation of N k
I p depends on the type of grid nodes, as shown in Table 1.

2. Loop over all the nodes located at the boundary of the background grid to apply boundary conditions.
3. Loop over the bodies discretized by particles, calculate the strain rate and spin tensor of particles by the velocity

field of the background grid as follows,

ε̇
k−1/2
i j p =

1
2

ng
I=1

[N k
I p, jv

k−1/2
i I + N k

I p,iv
k−1/2
j I] (26)

Ω k−1/2
i j p =

1
2

ng
I=1

[N k
I p, jv

k−1/2
i I − N k

I p,iv
k−1/2
j I] (27)

where the superscript ng denotes the total number of nodes of the cell in which the particle is located. Update
particle stresses by a specified constitutive material law.

4. Loop over the bodies discretized by rebar elements, calculate the strain rate of rebar elements, then update their
stresses by a constitutive material law, and finally calculate the nodal forces.

5. Loop over all bodies to calculate the nodal force of background grid:
(a) For bodies discretized by particles, loop over all particles to calculate the internal nodal force and external

nodal forces, respectively,

f k,ext
i I =

n p
p=1

m p N k
I pbk

ip (28)

f k,int
i I = −

n p
p=1

N k
I p, jσi j p

m p

ρp
. (29)

(b) For bodies discretized by rebar elements, loop over all rebar element nodes to calculate nodal force of
background grid nodes by Eqs. (13) and (14).

6. Loop over all background grid nodes to integrate the momentum equations as

pk+1/2
i I = pk−1/2

i I + (f k,ext
i I + f k,int

i I)∆tk (30)

where both f k,ext
i I and f k,int

i I take the value 0, if the grid node is fixed in i direction.
7. Loop over all bodies to update the position and velocity of particles and rebar nodes by Eqs. (9) and (10),

respectively.
8. Loop over the bodies discretized by particles to split the coarse particles that moved to refined grid using the

method presented in Section 3.3.

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 301

Fig. 10. Fork-join model: at the beginning of a parallel section, the master thread forks some slave threads and runs with them concurrently across
the parallel section; at the end of the section, all the threads join together and only the master thread continues to run.

Fig. 11. Decomposition of the computing domain.

4. Parallelizing MGMPM using OpenMP

To expedite the calculation process for large scale engineering problems based on PC with multi-core and hyper
threading technologies, the proposed method is parallelized using OpenMP. As shown in Fig. 10, the model of
parallelism in OpenMP is a fork-join model, by adding compiler directive to the original code to state a parallel section.
There are two common styles of programming, loop-level parallelism and code-block parallelism, respectively. The
former parallelism is suitable for loop iterations without data dependence, and is easy to implement without load
balance issue. The latter is suitable for loop iterations with data dependence, and needs the user to take charge for
both the load balance and data race issues. As listed in Section 3.4, there are 8 computational steps for one time step
in MGMPM. Both parallelisms are used for different steps, mainly ascribed to their data dependence.

4.1. Code-block parallelism for steps 1, 4, and 5

The code-block parallelism is applied for steps 1, 4, and 5 due to the data dependence. For steps 1 and 5, different
particle or rebar node loops may operate the same grid node at the same time, while for step 4, different rebar element
loops may operate simultaneously the same rebar node. Then code-block parallelism is used. Take a 2D problem as an
example. As shown in Fig. 11, the computing domain is first divided into several sub-domains in horizontal direction,
and the particles in each sub-domain is denoted by a set. Let each thread take one set of particles in each sub-domain.
Even in this case, data race will still occur when map particles and rebar nodes information to the same grid nodes,
such as grid node I . Zhang [36] has proposed one simple method to solve such data race issue for MPM. Here, this
method is applied in MGMPM and extended to more than one particle lists, which is a more flexible data structure.

To avoid data race occurring, additional decomposition for each sub-domain (set) is done. Take two threads as an
example. In each sub-domain, the set of particles is further divided into two parts, referred to as L part and R part

302 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 12. Decomposition of the computing domain: solid dots denote particles in L part, and hollow dots denote particles in R part.

denoted by solid dots and hollow dots, respectively, as shown in Fig. 12. We can let all threads update its L part first,
and then update its R part, namely, the L and R parts are updated alternately. All L parts of set 0 and set 1 do not
overlap each other, and the same to the R parts of set 0 and set 1. Therefore, there is no overlap between two adjacent
sets for grid nodes information updated at the same time, and no data races emerge.

In our code, a body list is used to manage the whole material domain, and each body object has a particle or rebar
node list for the current body discretization. Therefore, in the body class we add two pointer arrays, LPindex and
RPindex, to store the particles or rebar nodes ID for each set. One is for the L part, the other for the R part. A compiler
directive, #pragma omp barrier, is added between the L part and R part update. Before the barrier, loop over all bodies
and let all threads update their L part in the current body in parallel. After the barrier, loop over all bodies again and
let all threads update their R part in the current body in parallel. Besides, each thread will loop over its own particles
instead of all the particles. The pseudo code for making the index array is given as follows.

for(int b=0; b<nb_body; b++)
{

#pragma omp parallel num_threads(nthread)
{

int ithread=omp_get_thread_num();
int m=0,n=0;
for(int i=0; i<nb_point; i++)
{

Particle = body_list[b]->particle_list[i];
if(Particle belongs to L part of ithread)

body_list[b]->LPindex[ithread][m++] = i;
elseif(Particle belongs to R part of ithread)

body_list[b]->RPindex[ithread][n++] = i;
}

}
}

Based on the index arrays made above, steps 1 and 5 can be parallelized with the same method. Here, the pseudo
code for step 1 is given as follows.

#pragma omp parallel num_threads(nthread)
{

int ithread=omp_get_thread_num();
for(int b=0; b<nb_body; b++)
{

nb_particle = <The number of particles belong to L part of

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 303

Fig. 13. Decomposition of the computing domain: solid dots denote rebar nodes in L part, and hollow dots denote rebar nodes in R part.

ithread for the current body>
for(int i=0; i<nb_particle; i++)
{

j = body_list[b]->LPindex[ithread][i];
Particle=body->particle_list[j];
< Map variables of particle to background grid nodes>

}
}
#pragma omp barrier
for(int b=0; b<nb_body; b++)
{

nb_particle = <The number of particles belong to L group of
ithread for the current body>

for(int i=0; i<nb_particle; i++)
{

j = body_list[b]->RPindex[ithread][i];
Particle=body->particle_list[j];
< Map variables of particle to background grid nodes>

}
}

As shown in Fig. 13, the same decomposition method is applied for bodies discretized by rebar elements. Also the
same index arrays for rebar nodes and rebar elements of the body are built by the method mentioned above. Then the
index arrays LPindex and RPindex for rebar nodes are used similarly to that of particles in steps 1 and 5, while the
index arrays LEindex and REindex are used for rebar elements in step 4. Because the coordinate is used for the set and
part division, let rebar element center position represent it when build the index arrays for rebar elements. Here, the
pseudo code for step 4 is given as follows.

#pragma omp parallel num_threads(nthread)
{

int ithread=omp_get_thread_num();
for(int b=0; b<nb_body; b++)
{

nb_element = <The number of rebar elements belong to L part
of ithread for the current body>

for(int i=0; i<nb_element; i++)
{

j = body_list[b]->LEindex[ithread][i];
<LEindex is an index of rebar elements ID
in the left part of each sub-domain for the current body>
Element=body->element_list[j];
......

304 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

< Update element stress, based on which calculate
nodal force of rebar nodes>

}
}
#pragma omp barrier
for(int b=0; b<nb_body; b++)
{

nb_element = <The number of rebar elements belong to R part
of ithread for the current body>

for(int i=0; i<nb_element; i++)
{

j = body_list[b]->REindex[ithread][i];
<REindex is an index of rebar elements ID
in right part of each sub-domain for the current body>
Element=body->element_list[j];
......
< Update element stress, based on which calculate
nodal force of rebar nodes>

}
}

Another issue associated with code-block parallelism is load balance. If one aims for high efficiency the load
assigned to each thread should be equal, otherwise there will be load imbalance which can deteriorate the parallel
program efficiency. The load assigned to each thread is dependent on the number of particles and rebar nodes of the
set looped on by thread, and therefore the number of particles and rebar nodes in each thread should be kept balanced
always. So the decomposition position of the computing domain is dependent on the distribution of the total number
of particles and rebar nodes in each layer of the background grid, as shown in Figs. 12 and 13. After several time steps
the distribution of particles and rebar nodes will be changed, therefore the computing domain needs to be decomposed
dynamically and the index arrays for particles and rebar nodes need to be rebuilt at the same time. However, the
decomposition of rebar elements is done only once at the initial time step based on the background grid, as shown in
Fig. 13. This is because the rebar elements are in absence of relationship with grid nodes updating.

4.2. Loop-level parallelism for remaining steps

The loop-level parallelism is applied for steps 2, 3, 6 and 7. In step 2, the loop over all grid nodes is used to apply
boundary conditions; in step 3, the loop over all particles is used to update their strains and stresses; in step 6, the
loop over all grid nodes is used to integrate momentum equations; in step 7, the loop over all particles and rebar nodes
is used to update their positions and velocities. It is clear that there is no data dependence in those steps. Therefore,
the loop-level parallelism is applied for all these steps. Then, we can simply add compiler directive #pragma omp for
before those for loops. Take steps 2 and 7 for an example. The pseudo code for step 2 is as follows:

#pragma omp parallel num_threads(nthread)
{

#pragma omp for
for(int i=0; i<nb_gridnode; i++)
{

CgridNode *cgd=node_list[i];
if(!(cgd->FixX|| cgd->FixY || cgd->FixZ))

continue;
cgd->Apply_Boundary_Conditions();

}
}

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 305

Fig. 14. Discretization model of elastic rod.

The pseudo code for step 7 is as follows:

// for particles
#pragma omp parallel num_threads(nthread)
{

#pragma omp for
for(int i=0; i<nb_particles/nodes; i++)
{

CParticle *p=particle_list[i];
<Update particle’s position and velocity>;

}
}
// for rebar nodes
#pragma omp parallel num_threads(nthread)
{

#pragma omp for
for(int i=0; i<nb_nodes; i++)
{

CNode *p=node_list[i];
<Update rebar nodal position and velocity>;

}
}

In contrast to code-block parallelism, the load balance of the loop-level parallelism is guided automatically by
OpenMP.

4.3. Others

In step 8, the particle splitting scheme will add particles to the end of the particle list, which will manipulate
memory directly. In OpenMP standard, such manipulations are inherently serial and therefore this step cannot be
parallelized. These might decrease the efficiency based on the Amdahl’s law.

5. Numerical examples

5.1. Propagation of elastic wave

The propagation of elastic stress wave in an elastic rod is studied to validate the accuracy of MGMPM. As shown
in Fig. 14, the rod is fixed at one end, and subjected to a force of 2.5N at the other end. The rod has a length of
100 mm and cross sectional area of 4 mm × 4 mm. An elastic material with Young’s modulus E = 100 GPa, density
ρ = 5 kg/m3, and Poisson ratio ν = 0 is applied. The sound speed is c =

√
E/ρ = 4472.1 m/s.

The discretization model is also shown in Fig. 14. A background grid with two levels is applied to cover the material
domain, while the sub grid with the higher level is predefined at the center of the rod with a length of 40 mm, and the
other sub grid covers the material domain elsewhere. Symmetric boundary conditions are applied on the four sides
of the rod in length direction to mimic a 1D case. Then, the stress distribution can be obtained analytically from the
1D wave propagation theory. The cell size of the coarse sub grid is set as 0.5 mm, and the coarse particle interval as
0.25 mm. For comparison, this problem is also simulated by MPM with the refined cell size 0.25 mm.

306 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

a b

c d

Fig. 15. Elastic rod stress profiles at times of: (a) t = 0.009 ms, (b) t = 0.018 ms, (c) t = 0.031 ms, (d) t = 0.04 ms.

Table 2
Material constants of the Taylor bar.

ρ (g/mm3) E (MPa) ν A (MPa) B (MPa) n C

8.93 × 10−3 117 × 103 0.35 157 425 1.0 0.0

The stress profiles at four different times obtained by both MGMPM and MPM are compared with the analytical
results in Fig. 15. Fig. 15(a) compares the stress profiles at time of t = 0.009 ms, where the stress wave front
has propagated into the grid of level 2 from the grid of level 1. Fig. 15(b) compares the stress profiles at time of
t = 0.018 ms. At this time, the stress wave front has propagated into the grid of level 1 from the grid of level 2.
Fig. 15(c) and (d) compare the stress profiles at time of t = 0.031 ms and t = 0.04 ms, respectively. At those times,
the stress wave has been reflected from the fixed end forward to the other end, and therefore the magnitude of the
stress wave is doubled. The results obtained by both MGMPM and MPM are close to each other and agree well with
the analytical results. The small deviation is due to the coarse grid used in MGMPM, which also indicates that the
accuracy of MPM is dependent on the cell size of the background grid.

Besides, another compression is given as follows. Two cases of MPM are given, fixing the cell size of MPM
as 0.5 mm, and changing the particle interval as 0.25 mm (MPM1) and particle interval as 0.125 mm (MPM1),
respectively. The stress profiles at four different times obtained by both MGMPM and such two cases of MPM are
compared with the analytical results in Fig. 16. One can find that the results by MGMPM are better than those by both
MPM1 and MPM2 when wave front propagates to coarse mesh from refined mesh, for example Fig. 16(b) and (d),
while before wave front propagates to refined mesh from coarse mesh, there is no clear difference between the results
for all cases, except that the result of MGMPM is marginally better than others in Fig. 16(c), where the wave front is
reflected from the fixed side and heads to the other side.

Summarizing, the results obtained by MGMPM are very close to those by MPM with refined cell size. However,
MGMPM takes 14 min for the simulation with end time 0.05 ms, but MPM takes 21 min.

5.2. Taylor bar impact

The second example is a typical Taylor bar test conducted by Johnson et al. [40], where the bar with an initial
velocity of 190 m/s impacts on a rigid wall. In the test, the bar has a length of L0 = 25.4 mm, a diameter of
D0 = 7.6 mm. Johnson–Cook model is applied for the bar and the material constants are listed in Table 2.

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 307

a b

c d

Fig. 16. Elastic rod stress profiles at times of: (a) t = 0.009 ms, (b) t = 0.018 ms, (c) t = 0.031 ms, (d) t = 0.04 ms.

Fig. 17. Discretization models: (a) for MGMPM, (b) for MPM with cell size 0.19 mm.

As shown in Fig. 17, a background grid with two levels is applied, where the cell sizes of two levels grids are
0.19 mm and 0.38 mm, respectively. The space domain of the level 2 grid covers the part of length 3.8 mm from the
bottom. For comparison, this problem is simulated by MPM with two cases of cell sizes of 0.19 mm (referred to as
MPM1), and 0.38 mm (referred to as MPM2), respectively.

The final configurations of the bar obtained by both MGMPM and MPM are shown in Fig. 18 in color for the
equivalent plastic strain. One can find that the color contour in the local domain near the interface obtained by
MGMPM is not as smooth as that by MPM1. This is because, during the computation process, more and more coarse
particles moving to the bottom refined grid are split and the splitting is a non-consecutive discretization compared
with the initial discretization. Moreover, the difference of the color contour is confined in the domain occupied by the
splitting particles. Overall, the total configuration shown in Fig. 18(a) is close to that in Fig. 18(b), although coarse grid
is used in MGMPM. Besides, the bottom diameter D and the final length L of the deformed bar obtained by MGMPM
and MPM are compared with the experimental data in Table 3. The variable D mainly measures the result obtained by

308 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Table 3
The computational results and computation cost comparison.

DCell (mm)/Case L (mm) D (mm) n p CPU (s)

Experiment 16.2 13.5 – –
MPM1 0.19 16.21 13.28 1 342 408 9488
MPM2 0.38 16.29 13.14 169 376 963
MGMPM 0.19 & 0.38 16.28 13.28 345 056∼565 656 5966

Fig. 18. Final configurations of Taylor bar obtained by: (a) MGMPM, and (b) MPM with cell size of 0.19 mm.

Fig. 19. Profile of ratio of the number of particles used in MGMPM to that in MPM1.

the refined grid, while the variable L measures the result obtained by the whole background grid. Therefore, the value
of D obtained by MGMPM is very close to that by MPM1 and better than that by MPM2; the value of L obtained by
MGMPM is between those by MPM1 and MPM2 but close to that of MPM2 due to the influence of the coarse grid.

Furthermore, the CPU time and the total number of particles n p for all cases are also listed in Table 3. Due to
the particle splitting, both the numbers of the particles used in MGMPM at the beginning and end times are given
in Table 3. From comparison, n p of MGMPM is no more than 45% of that of MPM1 throughout the computation
process, while the cell numbers of MGMPM is about a quarter of MPM, and therefore the memory requirement by
MGMPM is smaller than MPM1. However, the CPU time taken by MGMPM is just about 63% of that by MPM1.
This is because there are more and more particles split as shown in Fig. 19 and this costs CPU time.

In other words, the computation cost of MGMPM is expensive with some improvement in accuracy compared
with the results by MPM2. So, MGMPM should be used for problem with localized extreme deformation such as
penetration problems.

5.3. Penetration of reinforced concrete slab

In this example, a penetration of a steel projectile to a reinforced concrete slab [41] is simulated. In the test, the
projectiles (see Fig. 20) with several different initial velocities were fired against on RC slab with three layers of
square pattern rebars (see Fig. 21). Besides, the targets were aligned so that the projectile did not strike the rebars.

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 309

Fig. 20. Projectile geometry (0.5 kg).

Fig. 21. RC geometry with location of the steel reinforcement bars (5.59 mm diameter).

Table 4
Material constants of the concrete.

Mass/Thermal Constants Value Damage Constants Value

ρ (kg/m3) 2440 D1 0.04
Specific Heat (J/kg · K) 654 D2 1.0

E f min 0.01

Strength Constants Value Pressure Constants Value
A 0.79 Pcrush (GPa) 0.016
B 1.60 µcrush 0.001
N 0.61 K1 (GPa) 85
C 0.007 K2 (GPa) -171
f ′
c (GPa) 0.048 K3 (GPa) 208

Smax 7.0 Plock (GPa) 0.80
Shear modulus (GPa) 14.86 µlock 0.10

T (GPa) 0.004

Then the physical model is symmetric. The recovered projectile showed that there was no permanent deformation but
minor nose erosion [41]. Then the projectile can be treated as an elastic material in the modeling.

In the simulation, the projectiles are modeled as elastic material with a density of ρ = 8.147 g/cm3, elastic modulus
of E = 212.42 GPa, and Poisson’s ratio of ν = 0.3. The HJC model [42] is used for concrete with the material param-
eters listed in Table 4. An ideal elastic–plastic model is used for the rebars with a density of ρ = 7.5 g/cm3, elastic
modulus of E = 210 GPa, Poisson’s ratio of ν = 0.284, and yield stress of 235 MPa. The fracture of the rebar is taken
into account by deleting the rebar element when its plastic strain is larger than 0.26 [37]. Once ε p > ε

p
max = 0.26,

this element is treated as an erosion element, while the nodes are reserved in the following computation process to
take the effect of inertia.

Due to the symmetry, a quarter of the model is modeled as shown in Fig. 22. The background grid near the projectile
is locally refined. The spacing of the refined grid is set as 80 mm in x direction, 80 mm in y direction, and the same

310 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 22. Discrete model of penetration to RC for MGMPM: (a) projectile and target, (b) steel reinforcement bars isolated from RC target.

Fig. 23. Comparison of damage contour of targets obtained by: (a) MGMPM, (b) HFEMP.

Table 5
The residual velocities vr (m/s) and the computation cost comparison.

v0 vr EndTime/(ms) CPU (min)
Experiment MGMPM HFEMP MGMPM HFEMP

434 214 200 185 2 216 697
606 449 413 400 0.6 52 193
749 615 584 564 0.5 40 166

1058 947 908 899 0.3 31 118

to the coarse domain in z direction, which will cover the projectile throughout the computations process. The cell
size for the coarse grid is 0.8 mm. For comparison, this problem is simulated by HFEMP with the refined cell size of
0.4 mm. The particle interval is set as one half of the cell size, and the rebar element size as 0.4 mm.

Four cases with striking velocities of 434 m/s, 606 m/s, 749 m/s, and 1058 m/s, respectively, are simulated. First,
the damage contour of the targets obtained by MGMPM and HFEMP is shown in Fig. 23. From the comparison one
can find that the damage zone obtained by MGMPM is slightly larger than that obtained by HFEMP. This is because
there is wave reflection from the interface between two level grids in MGMPM. Besides, due to the coarse cell size
used in level 1 grid, some details are not obtained in the coarse domain compared with the result by HFEMP with
refined cell size. However, the result of MGMPM is close to that of HFEMP overall. For such problem, the residual
velocity of the projectile is an important variable to prove the accuracy of MGMPM and MPM. Then the residual
velocities of the projectile obtained by MGMPM and HFEMP are listed in Table 5, which shows that the results
obtained by MGMPM and HFEMP are in good agreement between them and with the experimental data. For this
example, the efficiency of MGMPM is about 3 to 4 times that of HFEMP(or MPM), as shown in Table 5.

In addition, this example shows that wave reflection exists in the proposed MGMPM due to different element sizes
applied in the background grid. However, compared with the result in this section, the result in Section 5.1 is smoother.
This is explained by the fact that a linear elastic material with Poisson’s ratio 0 was used, which mimics the problem
for 1D problem, while 3D HJC model with multi-parameters was used in the example of this Section. Furthermore, a
damage model is included in HJC model.

Finally, the case with striking velocity of 749 m/s is simulated by parallel MGMPM to show its parallel efficiency.
This example is accomplished on a shared memory machine with two Quad-Core Xeon 5520 CPUs with four threads
each. The operating system is CentOS and gcc 4.2.1 compiler is applied.

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 311

Fig. 24. Schematic of the ogive-nosed projectile.

Table 6
Parallel Efficiency for the case with striking velocity of 749 m/s.

Threads 1 2 3 4 5 6 7 8

Efficiency 1 0.86 0.79 0.69 0.48 0.45 0.39 0.34

Table 7
Material constants of Projectile.

ρ (g/mm3) E (GPa) µ σy (GPa) ET (GPa)

0.00785 202 0.3 1.43 14.759

Table 8
Material constants of A6061-T651 for strength model and EOS.

ρ (g/m3) E (MPa) µ A (MPa) B (MPa) n C m

0.0027 69 0.3 262 52.1 0.41 0 0.859
c0 (mm/ms) s γ0 Tmelt(K) Troom(K)

5,350 1.34 2.0 875 293

We decomposed the computing domain along the direction of the striking velocity. Table 6 lists the overall parallel
efficiency with respect to the thread number used, which shows that the overall efficiency is decreasing with increasing
the number of threads. When the number of threads increases, load balance will deteriorate because the computing
domain is decomposed into two times the number of threads. Besides, in this simulation, adaptive particle splitting
method and contact method based on local multi-background grid [43] are used. However, both methods cannot be
parallelized in OpenMP standard because they will manipulate memory directly. These might decrease the efficiency
with the number of threads increasing based on Amdahl’s law. However, it can be found from Table 6 that a good
efficiency of about 70% can be achieved when using 4 threads.

5.4. Penetration of thick plate

This example is about a penetration of a high strength steel projectile against a A6061-T651 thick plate conducted
by Piekutowski et al. [44]. In the test, the projectile has a length of 88.9 mm and a diameter of 12.9 mm with a 3.0
caliber-radius-head as shown in Fig. 24, while the target has a thickness of 26.3 mm and an area of 110 mm×110 mm.
The projectile impacted the target obliquely at an angle of 30◦.

In the simulation, the projectiles are modeled as an elastic–plastic material, while the targets are modeled by
Johnson–Cook constitutive model for deviatoric stress, and Mie–Grüneisen equation of state for pressure. The material
constants for the projectile and target are listed in Tables 7 and 8 [44,45], respectively. For the target, material failure
is taken into account by setting the deviatoric components of the stress tensor to zero when the effective plastic strain
reaches the value of εfail = 1.6. The friction coefficient between projectile and target is set to zero.

Due to symmetry, one half of the model is studied as shown in Fig. 25. A background grid with two levels is ap-
plied. The cell size of the grid of level 1 is 2 mm. The space domain of the grid of level 2 is set as length of 48 mm in
x direction, 24 mm in y direction, and 110 mm in z direction, which covers the projectile throughout the computation
process. For comparison, this problem is also simulated by MPM with the refined cell size of 1 mm.

312 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

Fig. 25. The discretization model of penetration to thick plate for MGMPM.

Table 9
Residual velocities vr (m/s) and the computation cost comparison.

v0 vr EndTime/(ms) CPU (min)
Experiment MGMPM MPM MGMPM MPM

446 288 299 306 0.4 252 467
575 455 472 471 0.3 177 391
730 655 651 652 0.21 127 258

Table 10
Parallel efficiency for the case with striking velocity of v0 = 575 m/s.

Threads 1 2 3 4 5 6 7 8
Efficiency 1 0.82 0.63 0.53 0.39 0.34 0.3 0.29

The numerical results obtained by MGMPM and MPM are compared with experiment data. First, the projectile–
target interactions at three impact times are studied for the case in which the striking velocity of projectile is 575 m/s.
Fig. 26(a) shows a sequence of experimental X-ray photographs, Fig. 26(b) shows the numerical results by MGMPM,
and Fig. 26(c) by MPM, which show that the projectile’s shapes obtained by both MGMPM and MPM are in good
agreement between them and the experimental results. Then, the residual velocities of the projectile obtained by
MGMPM and MPM are compared in Table 9, which shows that the numerical results agree well with the experimen-
tal data. The difference between the residual velocities by two methods is due to the coarse grid used in MGMPM and
is negligible, while the efficiency of MGMPM is much higher than MPM as shown in Table 9.

We also studied the case with striking velocity of 575 m/s by parallel MGMPM to show its parallel efficiency.
We decomposed the computing domain along the direction of the initial velocity. The overall parallel efficiency with
respect to thread number used is listed in Table 10, which shows that the efficiency in this simulation is not better than
that of example 3. Besides the reason mentioned above, the particles distribution in this simulation is not as good as
that in the example 3, and therefore the position of particles in the particle index does not match their spacial position
[36]. This causes “cache miss”, which also can deteriorate the overall efficiency. Therefore, further optimization of the
original serial program to avoid cache miss is also needed. All the results were obtained by using the release version
of MGMPM with -O3 optimization.

6. Conclusion

In this paper, a mesh-grading material point method (MGMPM) is proposed for problems with localized extreme
deformation with efficiency higher than that of conventional material point method (MPM). In this method, the
background grid as a whole is divided into several sub grids level by level with half of the coarse cell size decreasing.
Then, the material domain undergoing localized extreme deformation can be covered by locally refined background

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 313

a

b

c

Fig. 26. Comparison of projectile–target interactions for the case with striking velocity of v0 = 575 m/s.

grid, and correspondingly discretized by refined particles, while elsewhere by coarse background grid and particles.
Cells with mid-face nodes and/or mid-edge nodes are used to link two adjacent sub grids. The edge displacement
continuity associated with the linking cells is embedded in the nodal shape function. Besides, the truss element is
incorporated into MGMPM to enable it with ability to model the steel reinforcement bars (rebars) in reinforced
concrete impact problems. Furthermore, parallelization is implemented via OpenMP. Several numerical examples
including stress wave propagation, Taylor bar impact, and penetration problems, are given, which show that the
proposed method is a better method to solve localized extreme deformation problems with higher efficiency and lower
memory requirement than MPM. The parallelization scheme for MGMPM performs well, and the overall parallel
efficiency will deteriorate when the number of threads increases due to the load balance issue, serial code section, and
catch miss. Therefore, further optimization of the original serial program is still needed in the future.

Acknowledgment

The first author would like to acknowledge Miguel Bessa, for his helpful suggestions concerning this manuscript.

References

[1] J.J. Monaghan, An introduction to SPH, Comput. Phys. Comm. 48 (1988) 89–96.
[2] M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng. 17 (2010)

25–76.
[3] A. Rafiee, K.P. Thiagarajan, An SPH projection method for simulating fluid-hypoelastic structure interaction, Comput. Methods Appl. Mech.

Engrg. 198 (33–36) (2009) 2785–2795.
[4] T. Belytschko, Y.Y. Lu, L. Gu, Element free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (1994) 229–256.

http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref1
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref2
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref3
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref4

314 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315

[5] X.F. Pan, H. Yuan, Computational algorithm and application of element-free Galerkin methods for nonlocal damage models, Eng. Fract.
Mech. 77 (2010) 2640–2653.

[6] W.K. Liu, Y.J. Chen, Wavelet and multiple scale reproducing kernel methods, Internat. J. Numer. Methods Fluids 21 (10) (1995) 901–931.
[7] J.S. Chen, C. Pan, C.M.O.L. Roque, H.P. Wang, A Lagrangian reproducing kernel particle method for metal form analysis, Comput. Mech.

22 (3) (1998) 289–307.
[8] D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg. 118 (1–2)

(1994) 179–196.
[9] S.G. Bardenhagen, E.M. Kober, The generalized interpolation material point method, CMES Comput. Model. Eng. Sci. 5 (6) (2004) 477–495.

[10] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, J. Elasticity 88 (2007) 151–184.
[11] J.T. Foster, S.A. Silling, W.W. Chen, Visoplasticity using peridynamics, Internat. J. Numer. Methods Engrg. 81 (2010) 1242–1258.
[12] M.A. Bessa, J.T. Foster, T. Belytschko, W.K. Liu, A meshfree unification: reproducing kernel peridynamics, Comput. Mech. 53 (2014)

1251–1264.
[13] S. Ma, X. Zhang, X.M. Qiu, Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int. J. Impact. Eng. 36 (2009)

272–282.
[14] W.Q. Hu, Z. Chen, Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM, Int. J.

Impact. Eng. 32 (12) (2006) 2066–2096.
[15] Y.P. Lian, X. Zhang, X. Zhou, S. Ma, Y.L. Zhao, Numerical simulation of explosively driven metal by material point method, Int. J. Impact.

Eng. 38 (2011) 237–245.
[16] J.A. Nairn, On the calculation of energy release rates for cracked laminates with residual stresses, Int. J. Fract. 139 (2006) 267–293.
[17] P.F. Yang, Y. Liu, X. Zhang, X. Zhou, Y.L. Zhao, Simulation of fragmentation with material point method based on Gurson model and random

failure, CMES Comput. Model. Eng. Sci. 85 (3) (2012) 207–236.
[18] J.E. Guilkey, J.B. Hoying, J.A. Weiss, Computational modeling of multicellular constructs with the material point method, J. Biomech. 39

(2006) 2074–2086.
[19] S.Z. Zhou, X. Zhang, H.L. Ma, Numerical simulation of human head impact using the material point, Int. J. Comput. Methods 10 (04) (2013)

1350014.
[20] J.E. Guillkey, T.B. Harman, B. Banerjee, An Eulerian–Lagrangian approach for simulating explosions of energetic devices, Comput. Struct.

85 (2007) 660–674.
[21] Y. Gan, Z. Chen, S.M. Smith, Improved material point method for simulating the zona failure response in piezo-assisted intracytoplasmic

sperm injection, CMES Comput. Model. Eng. Sci. 73 (1) (2011) 45–76.
[22] Y. Liu, H.K. Wang, X. Zhang, A multiscale framework for high-velocity impact process with combined material point method and molecular

dynamics, Int. J. Mech. Mater. Des. 9 (2013) 127–139.
[23] Z. Chen, S. Jiang, Y. Gan, H.T. Liu, T.D. Sewell, A particle-based multiscale simulation procedure within the material point method

framework, Comp. Part. Mech. (2014).
[24] S. Andersen, L. Andersen, Modelling of landslides with the material-point method, Comput. Geosci. 14 (2010) 137–147.
[25] J. Ma, D. Wang, M.F. Randolph, A new contact algorithm in the material point mehtod for geotechnical simulations, Int. J. Numer. Anal.

Methods Geomech. (2014).
[26] A. Sadeghirad, R.M. Brannon, J. Burghardt, A convected particle domain interpolation technique to extend applicability of the material point

method for problems involving massive de-formations, Internat. J. Numer. Methods Engrg. 86 (2011) 1435–1456.
[27] D.Z. Zhang, X. Ma, P.T. Giguere, Material point method enhanced by modified gradient of shape function, J. Comput. Phys. 230 (2011)

6379–6398.
[28] S.G. Bardenhagen, J.U. Brackbill, D. Sulsky, The material-point method for granular materials, Comput. Methods Appl. Mech. Engrg. 187

(3–4) (2000) 529–541.
[29] S.G. Bardenhagen, J.E. Guilkey, K.M. Roessig, J.U. Brackbill, W.M. Witzel, J.C. Foster, An improved contact algorithm for the material

point method and application to stress propagation in granular material, CMES Comput. Model. Eng. Sci. 2 (4) (2001) 509–522.
[30] P. Huang, X. Zhang, S. Ma, X. Huang, Contact algorithms for the material point method in impact and penetration simulation, Internat. J.

Numer. Methods Engrg. 85 (4) (2011) 498–517.
[31] Y.P. Lian, X. Zhang, Y. Liu, Coupling of finite element method with material point method by local multi-mesh contact method, Comput.

Methods Appl. Mech. Engrg. 200 (2011) 3482–3494.
[32] Y.P. Lian, X. Zhang, Y. Liu, An adaptive finite element material point method and its application in extreme deformation problems, Comput.

Methods Appl. Mech. Engrg. 241–244 (1) (2012) 275–285.
[33] X.X. Cui, X. Zhang, X. Zhou, Y. Liu, F. Zhang, A coupled finite difference material point mehtod and its application in explosion simulation,

CMES Comput. Model. Eng. Sci. 98 (2014) 565–599.
[34] Y.P. Lian, X. Zhang, F. Zhang, X.X. Cui, Tied interface grid material point method for problems with localized extreme deformation, Int. J.

Impact Eng. 70 (2014) 50–61.
[35] P. Huang, X. Zhang, S. Ma, Shared memory OpenMP parallelization of explicit mpm and its application to hypervelocity impact, CMES

Comput. Model. Eng. Sci. 38 (2008) 119–147.
[36] Y.T. Zhang, X. Zhang, Y. Liu, An alternated grid updating parallel algorithm for material point method using OpenMP, CMES Comput.

Model. Eng. Sci. 69 (2) (2010) 143–165.
[37] Y.P. Lian, X. Zhang, X. Zhou, Z.T. Ma, A FEMP method and its application in modeling dynamic response of reinforced concrete subjected

to impact loading, Comput. Methods Appl. Mech. Engrg. 200 (17–20) (2011) 1659–1670.
[38] J.M. McDill, J.A. Goldak, A.S. Oddy, M.J. Bibby, Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms, Int. J. Numer.

Methods Bio. 3 (2) (1987) 155–163.
[39] S.G. Bardenhagen, Energy conservation error in the material point method for solid mechanics, J. Comput. Phys. 180 (2002) 383–403.

http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref5
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref6
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref7
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref8
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref9
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref10
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref11
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref12
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref13
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref14
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref15
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref16
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref17
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref18
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref19
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref20
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref21
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref22
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref23
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref24
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref25
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref26
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref27
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref28
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref29
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref30
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref31
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref32
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref33
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref34
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref35
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref36
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref37
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref38
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref39

Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 291–315 315

[40] G.R. Johnson, T.J. Holmquist, Evaluation of cylinder-impact test data for constitutive model constants, J. Appl. Phys. 64 (8) (1988)
3901–3910.

[41] S.J. Hanchak, M.J. Forrestal, E.R. Young, J.Q. Ehrgott, Perforation of concrete slabs with 48 MPa (7ksi) and 140 MPa (20ksi) unconfined
compressive strengths, Int. J. Impact Eng. 12 (1) (1992) 1–7.

[42] T.J. Holmquist, G.R. Johnson, W.H. Cook, A computational constitutive model for concrete subjected to large strains, high strain rates, and
high pressures, in: 14th International Symposium on Ballistics Quebec, Candan, 26–29 September 1993, 1993.

[43] Z. Ma, X. Zhang, P. Huang, An object-oriented MPM framework for simulation of large deformation and contact of numerous grains, CMES
Comput. Model. Eng. Sci. 55 (1) (2010) 61–87.

[44] A.J. Piekutowski, M.J. Forrestal, K.L. Poormon, T.L. Warren, Perforation of aluminum plates with ogive-nose steel rods at normal and oblique
impacts, Int. J. Impact Eng. 18 (1996) 877–887.

[45] M.A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York, 1994, p. 133.

http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref40
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref41
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref43
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref44
http://refhub.elsevier.com/S0045-7825(15)00069-9/sbref45

	A mesh-grading material point method and its parallelization for problems with localized extreme deformation
	Introduction
	Brief review of MPM and HFEMP
	Mesh-grading material point method
	Mesh-grading background grid
	Generate mesh-grading background grid and particles
	Particle splitting scheme
	Numerical implementation

	Parallelizing MGMPM using OpenMP
	Code-block parallelism for steps 1, 4, and 5
	Loop-level parallelism for remaining steps
	Others

	Numerical examples
	Propagation of elastic wave
	Taylor bar impact
	Penetration of reinforced concrete slab
	Penetration of thick plate

	Conclusion
	Acknowledgment
	References

