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In the incompressible material point method (iMPM), the momentum equations were
solved at the background grid nodes while the divergence-free conditions were enforced
at grid cell centers. The density of each particle was assumed to be constant but the
particles could distribute nonuniformly in space over time. Therefore, the fluid density
would be nonuniform and violate the incompressible condition. In this paper, the original
iMPM is improved by explicitly imposing the density-invariant condition. A new particle
shifting scheme is proposed for particle density correction. Particles are shifted along
their density gradient to guarantee that the density field of the fluid is constant and
the momentum is conserved. The proposed method has been implemented in our MPM
code, and validated by simulating a dam breaking inside a tank, another dam breaking
with an obstacle and a sloshing problem.
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1. Introduction

Fluid flow with free surface has been a hot and challenging issue in computational
fluid dynamics. Free surface flows are abundant in ship hydrodynamics, aerospace
engineering, hydraulic engineering, mechanical engineering, petrochemical and civil
engineering, etc. The meshfree/meshless methods such as the material point method
(MPM) [Lian et al. (2011); Mast et al. (2012); Li et al. (2014); Chen et al. (2015);
Zhang et al. (2017)], smoothed particle hydrodynamics (SPH) [Monaghan (1994);
Morris et al. (1997); Shao and Lo (2003); Colin et al. (2006); Lee et al. (2008);
Solenthaler and Pajarola (2009); Xu et al. (2009); Asai et al. (2012); Chen et al.
(2013); Ihmsen et al. (2014); Liu and Li (2016)], moving particle semi-implicit
(MPS) [Koshizuka and Oka (1996); Koshizuka et al. (1998); Pan et al. (2008);
Tanaka and Masunaga (2010); Khayyer and Gotoh (2011)], and finite point method
(FPM) [Onate et al. (1996)] have progressed significantly in simulating the nearly
incompressible or fully incompressible fluid problems.

The MPM proposed by Sulsky et al. [1994] is an extension of fluid implicit
particle (FLIP)/particle in cell (PIC) method [Harlow (1964); Brackbill and Rup-
pel (1986)] from fluid mechanics to solid mechanics. The MPM merges the advan-
tages of both Eulerian and Lagrangian methods. It is promising in handling large
deformation problems, such as impact/contact [Burghardt et al. (2010); Barden-
hagen et al. (2001); Huang et al. (2011); Zhou et al. (2013)], penetration [Lian
et al. (2011, 2014)], hypervelocity impact [Huang et al. (2008); Ma et al. (2009a);
Liu et al. (2015, 2016)], cracks and fracture [Chen et al. (2002); Tan and Nairn
(2002); Guo and Nairn (2004); Nairn (2007); Gilabert et al. (2011)], compressible
gas dynamics [York et al. (2000); Hu and Chen (2006); Ma et al. (2009b); Tran
et al. (2010)]. For the nearly incompressible fluid, Li et al. [2014] proposed a weak
compressible MPM (WCMPM) which uses a weakly compressible equation of state
(EOS) in MPM. By incorporating a grid-based contact algorithm into the WCMPM,
they studied the sloshing phenomenon in a container with specified motion. Mast
et al. [2012] have discussed how to mitigate the kinematic locking using the multi-
field variational principle in nearly incompressible flow simulations. Chen et al.
[2015] improved the coupling scheme of finite element method with MPM to simu-
late the contact between fluid and solid. Note worthily, WCMPM has encountered
the following difficulties: (1) The weakly compressible EOS relates the pressure to
the density of a fluid by an artificial sound speed, which is normally taken as 10
times higher than the maximum fluid velocity in order to reduce the density fluc-
tuation down to 1% [Monaghan (1994)]. Thus, the critical time step size of the
explicit time integration is very small and the computational cost is considerably
high. (2) As a large artificial sound speed was used in WCMPM, a small density
fluctuation would lead to a large pressure change followed by significant pressure
oscillations. (3) The material surface is not explicitly tracked inside one cell, so
it is difficult to accurately impose the pressure boundary conditions on the free
surface.
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To overcome the aforementioned shortcomings of the WCMPM, Zhang et al.
[2017] proposed a fully incompressible material point method (iMPM) based on
the operator splitting scheme. By assuming that the fluid density is constant, the
pressure satisfying the divergence-free condition was obtained from the pressure
Poisson equations (PPEs). It has been proved that the iMPM is much more accurate
and efficient than the WCMPM in solving free surface flow problems [Zhang et al.
(2017)]. However, in the iMPM, the fluid density is obtained as a summation of the
delta functions centered at the particles. The initial uniformly distributed particles
may become nonuniformly distributed over time. Therefore, the density-invariant
condition in the fluid domain was not satisfied. In the iMPM, there is no internal
force applied between particles to maintain the uniformity of particle distribution.
Nonuniform distribution of particles could lead to numerical instability and artificial
changes in fluid volume.

The above problem exists in most particle methods for incompressible fluid if
the density-invariant condition is not imposed explicitly. In the SPH framework,
the original SPH uses a stiff EOS to simulate the nearly incompressible fluid like
that in WCMPM. However, a slight density variation will lead to a large pres-
sure fluctuation and disorder of particles [Monaghan (1994); Morris et al. (1997);
Lee et al. (2008); Yang et al. (2012)]. Solenthaler and Pajarola [2009] proposed a
predictive–corrective incompressible SPH (PCISPH) method without invoking an
EOS. The particle pressures were computed iteratively until the density converge to
physical constant value. Thus, the density-invariant condition is satisfied. Many ver-
sions of incompressible SPH (ISPH) solve a PPE obtained from the divergence-free
condition [Cummins and Rudman (1999); Colin et al. (2006); Chen et al. (2013)].
However, particle clustering could happen due to the spatial truncation error [Xu
et al. (2009)]. Shao and Lo [2003] proposed a density-invariant ISPH method which
uses the density difference as the source term in the PPE instead of the divergence
of flow velocity field. Recently, Ihmsen et al. [2014] proposed a new implicit ISPH
method which combines the symmetric SPH pressure force and continuity equation
to obtain a discretized form of the PPE. The density invariance of particles can be
greatly improved. A better scheme in which a hybrid PPE source including both
the velocity divergence term and relative density variance term is proposed by Asai
et al. [2012]. Numerical results show that the scheme can significantly improve the
distribution of particles and velocity field accuracy [Gui et al. (2013, 2015)]. This
hybrid idea has also been applied in the MPS method [Tanaka and Masunaga (2010);
Khayyer and Gotoh (2011)]. Recently, Nair and Gaurav [2015] proposed a deforma-
tion gradient-based approach to preserve the particle volume and maintain density
uniformity that was introduced in the ISPH method with divergence-free condition.

In the finite volume particle method (FVPM), Nestor et al. [2008] proposed a
particle velocity correction which maintains the uniformity of the moving particle
cloud by incorporating some extra diffusion terms to the total momentum. Xu et al.
[2009] modified the Nestor’s scheme by adding a small shift to the particle position

1850061-3



August 22, 2018 6:54 WSPC/0219-8762 196-IJCM 1850061

F. Zhang et al.

as that used in the SPH method. It can maintain accuracy and stability in high
Reynolds number problems. In the PIC/FLIP method, Ando and Tsuruno [2011]
and Ando et al. [2012] proposed a particle shift scheme by adding an anisotropic
displacement to particle position to move particles along the direction of an SPH-like
pressure force which is equivalent to a kind of spring force unrelated to the particle
density. Recently, Um et al. [2014] proposed a sub-grid-based particle correction
method to address the high-frequency errors in FLIP which ensures the proper
distribution of the particles.

In this paper, the original iMPM is improved by explicitly imposing the density-
invariant condition. The divergence-free condition is first enforced when solving the
momentum equations at the background grid nodes. The density-invariant condition
is then imposed at the end of each time step. The improved iMPM satisfies both
the divergence-free condition and the density-invariant condition. Compared to the
original divergence-free version of iMPM, the improved iMPM is more accurate and
stable due to the explicit satisfaction of the density-invariant condition.

The remaining part of this paper is organized as follows. The governing equations
for the iMPM are given in Sec. 2 and the Lagrangian particle density correction
scheme is presented in details in Sec. 3. The numerical implementation of the pro-
posed method is summarized in Sec. 4 whilst numerical examples are presented in
Sec. 5 to validate the proposed method. Finally, conclusions are given in Sec. 6.

2. Incompressible Material Point Method

The traditional MPM is a hybrid method which makes use of both the Eulerian
and Lagrangian descriptions. A material domain is discretized by a collection of
Lagrangian particles moving through a Eulerian background grid, as shown in Fig. 1.
The particles carry all state variables such as the position, velocity, strain and stress,
whereas the grid serves as a computational scratch pad upon which gradients and
spatial integrals are computed. At the beginning of each time step, the background
grid is rigidly attached to the particles. The grid then deforms with the particles so
that it can be viewed as a finite element discretization of the material domain. The
momentum equations are solved on the grid, whose solution is used to update the
kinematics variables of the particles. At the end of each time step, the deformed
background grid is reset to its initial state for the next time step. Based on the

Г

Ω

Fig. 1. MPM discretization of computational domain.

1850061-4



August 22, 2018 6:54 WSPC/0219-8762 196-IJCM 1850061

Improved iMPM Based on Particle Density Correction

framework of the MPM, an iMPM was proposed by Zhang et al. [2017] in which
operator splitting scheme was used to uncouple the pressure and velocity fields. The
divergence-free condition was enforced in each fluid cell to establish the PPEs. The
only difference between MPM and iMPM is the calculation of the fluid pressure.
More details of the interpolations between the particles and the grid in explicit time
step can be found in the published papers, Zhang et al. [2016, 2017].

2.1. Governing equation

Decomposing the stress σ into the sum of deviatoric stress s and hydrostatic pres-
sure p, i.e., σ = −pI + s, the momentum equation of a fluid can be written as

ρv̇ = −∇p + ∇ · s + ρb, (1)

where v is the velocity, ρ is the density and b is the body force per unit mass.
For fully incompressible fluid, the velocity field must satisfy the divergence-free
condition, i.e.,

∇ · v = 0. (2)

2.2. Operator splitting

Using the operator splitting method, the computations of velocity and pressure
fields can be decoupled. This method consists of two stages [Chorin (1968)]. In the
first stage, the pressure gradient term is ignored in Eq. (1) to obtain an intermediate
velocity field v∗, namely

ρv̇∗ = (∇ · s + ρb), v∗|Γv = v̄, (3)

where v is the velocity at time tn and v̄ is the rigid wall velocity at background
grid. For Newtonian fluid, the deviatoric stress is updated by

s = 2uε̇′, (4)

where coefficient of dynamic viscosity µ is constant and ε̇′ is the tensor of deviatoric
strain rate.

In the second stage, the intermediate velocity v∗ is corrected with the pressure
gradient term to obtain the final solution vn+1, namely

vn+1 = v∗ − �t

ρ
∇pn+1, vn+1|Γv = v̄, (5)

which satisfies the divergence-free condition (2).
Equation (3) is independent of volumetric deformation, so that it can be solved

using an explicit time integration scheme efficiently with a large time step. Thus,
the intermediate grid nodal velocity v∗

I can be obtained as

v∗
I = vn

I +
∆t

mI
(f ext

I + f int,s
I ), (6)
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where the subscript I denotes the background grid node, vn is the velocity at
time tn,

f ext
I =

np∑
p=1

mpNIpbp (7)

is the external grid nodal force due to the body force such as gravity and NIp =
NI(xp) is the grid shape function of node I evaluated at the location of particle p.
Taking the eight-node brick element as an example, the grid shape functions are
given by

NI =
1
8
(1 + ξξI)(1 + ηηI)(1 + ζζI), I = 1, 2 . . . , 8, (8)

where (ξI , ηI , ζI) are the natural coordinates of grid node I in the reference coordi-
nate system (ξ ∈ [−1, 1], η ∈ [−1, 1], ζ ∈ [−1, 1]),

f int,s
I = −

np∑
p=1

(∇NIp)Tsp
mp

ρp
(9)

is the internal grid nodal force contributed by the deviatoric stress only like the
viscous force.

2.3. Pressure Poisson equations

Substituting Eq. (5) into Eq. (2) results in the following PPE:

∇ · v∗ =
�t

ρ
∇2pn+1. (10)

Equation (10) can be solved approximately by collocation at the cell centers. Thus,
the terms ∇·v∗ and ∇̀2p need to be evaluated at cell centers. Because the velocity is
carried by the cell vertexes in MPM, the divergence of the intermediate velocity field
v∗ at cell center (i, j, k) can be approximated by the finite element approximation as

∇ · v∗(xi,j,k) =
∑

I

v∗
I · ∇NI(xi,j,k). (11)

The second-order derivative of the pressure p with respect to x can be approxi-
mated at the cell center (i, j, k) by using the central difference method, i.e.,(

d2p

dx2

)
i,j,k

=
pi+1,j,k + pi−1,j,k − 2pi,j,k

∆x2
, (12)

where ∆x is the cell side length in x direction. In this paper, cubic cells are used so
that ∆x = ∆y = ∆z = dl . Thus, the Laplacian ∇2p can be approximated at the
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cell center (i, j, k) by using the seven-point stencil finite difference formula as

(∇2p)i,j,k =
pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k

dl2
.

(13)

Substituting Eqs. (11) and (13) into Eq. (10) leads to a system of linear equations
which can be expressed as

Ap = b, (14)

where A is the coefficient matrix, p is a vector consisting of pressure at all cell
centers, b is a vector consisting of the negative divergences of the intermediate
velocity at each cell center. The matrix is symmetric and positive semi-definite.
The equation can be solved efficiently by a preconditioned conjugate gradient (PCG)
solver.

3. Particle Density Correction

In incompressible flows, the fluid density is spaciously uniform and constant over
time. That is to say, the spacious density of the particles must remain invariant
over time. However, in iMPM, only the divergence-free condition is imposed and
the density invariance cannot be guaranteed. In the SPH, the internal forces between
particles depend on the particle distribution and provide the mechanism to maintain
the uniformity of the particles. Unfortunately, the momentum equations in iMPM
are solved at the background grid nodes, i.e., the particles serve as quadrature
points. Thus, there are no explicit internal forces between the particles to restore
the uniformity of the particle distribution.

3.1. Other particle shifting schemes

Several particle shifting schemes, such as Xu’s scheme and Ando’s scheme, have been
developed for other methods. They can be integrated into iMPM and be compared
with our new scheme.

3.1.1. Xu’s scheme

The idea of shifting the particles was first proposed in a meshfree method called
FVPM by Nestor et al. [2008]. Xu et al. modified Nestor’s scheme for the ISPH
method [Xu et al. (2009)]. The particle convection distance and the particle distri-
bution were taken into consideration so that the position shift vector reads

∆xp = CαRp, (15)

where C is a constant taken between 0.01 and 0.2, α = Umax∆t is the maximum
particle convection distance and Umax is the maximum particle velocity. The vector
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Rp is determined by

Rp =
N∑

j=1

r̄2
p

r2
pj

npj , (16)

where rpj is the distance between particles p and j, r̄p = 1
N

∑N
j=1 rpj is the average

particle spacing in the neighborhood of p, npj is the unit distance vector between p

and its neighbors j. The weighting function r̄2
p/r2

pj was used to reduce the influence
of remote neighboring particles.

3.1.2. Ando’s scheme

Ando proposed a scheme in which the particle is shifted slightly along the direction
of an SPH-like pressure force [Ando and Tsuruno (2011); Ando et al. (2012)]. The
shift vector ∆xp was determined by

∆xp = �tγsdpRp, (17)

where γs = 50 is the chosen stiffness of the displacement [Ando et al. (2012)], dp is
the smoothing length of particle p,

Rp =
N∑

j=1

xp − xj

|xp − xj |W (xp − xj , dp), (18)

where xp is the position of the particle that needs to be shifted, and xj is the
position of neighboring particles in the support domain of p.

Both Xu’s and Ando’s schemes are implemented in our MPM3D code to compare
their performance with our improved scheme.

3.2. Particle shifting

To maintain the uniformity of the particle distribution, we redistribute the particles
at the end of each time step to make the new density field equals the rest density
ρ0. The particle p will be shifted by ∆xp. Accordingly, its density will change from
ρ(xp) to ρ0(xp + ∆xp). Expanding the density ρ0(xp + ∆xp) using Taylor series
gives

ρ0(xp + ∆xp) = ρ(xp) + ∆xp· ∇ρp + O(|∆xp|2), (19)

where ∇ρp ≡ ∇ρ(xp). The shift vector ∆xp can be obtained from Eq. (19) as

∆xp = βcn∇ρp , (20)

where the coefficient β is taken as 0.01 in this paper,

c =
ρ0 − ρ(xp)

|∇ρp| (21)
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and

n∇ρp =
∇ρp

|∇ρp| (22)

is the unit vector along the density gradient. Therefore, the shifted position of
particle p is given as

xnew
p = xp + �xp. (23)

To keep the velocity field consistent over the whole domain, the particle’s velocity
at its new position is recalculated from the grid nodal momentum as

vnew
p = χ

N∑
I=1

vn+1
I NpI(xnew

p ) + (1.0 − χ)(vn
p + ∆vp(xnew

p )), (24)

where the coefficient χ is taken as 0.03 in this paper [Ando et al. (2012); Zhu and
Bridson (2005)].

3.3. Density kernel approximation

In Eq. (20), the density gradient is used to calculate the shift vector �xp. In the
standard MPM/iMPM, the density of a fluid at a point x is approximated as

ρ(x) =
np∑

p=1

mpδ(x − xp), (25)

where np is the total number of particles; mp and xp are the mass and coordinate of
particle p, respectively; and δ is the Dirac delta function. According to Eq. (25), the
density field of the fluid domain is discontinuous due to the infinitesimal support
domain of each particle. To calculate the density gradient, a continuous density field
is constructed by employing the following kernel approximation:

ρ(x) =
np∑

p=1

mpW (x − xp, h), (26)

where W is the kernel function and h is the smooth length. Thus, the density
gradient is

∇ρ(x) =
np∑

p=1

mp∇W (x − xp, h). (27)

In the traditional SPH method, bell-shaped spline kernels such as the following
cubic spline kernel function have been commonly used [Monaghan (1985)]:

WB(R, h) = ad




2
3
− R2 +

1
2
R3, 0 ≤ R < 1,

1
6
(2 − R)3, 1 ≤ R < 2,

0, R ≥ 2.

(28)
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Fig. 2. Comparison of the kernel functions and their first derivatives.

In the expressions, R = |x − xp|/h, ad = 1/h, 15/7πh2 and 3/2πh3 for one-, two-
and three-dimensional spaces, respectively. However, the first derivative of the cubic
spline kernel is not monotonic as shown by the black dash-dot line in Fig. 2.

Physically, the particle closer to a point x should have larger weight |∇W | for
the density gradient of the point using Eq. (27). However, |∇WB| increases with R

when R < 2/3, and then decreases. If the cubic spline kernel function WB is used,
the particle closer to the point x will have smaller weight |∇WB | when R < 2/3.
Consequently, the shift vector (20) calculated using WB as the kernel function may
not be along the expected density gradient and may even be opposite to the expected
density gradient. In other words, WB may lead to unphysical particle clustering or
voids, as shown in Fig. 3(a).

Liu et al. [Yang and Liu (2012); Yang et al. (2014)] employed the following
hyperbolic-shaped kernel in their study

WH(R, h) = ad




R3 − 6R + 6, 0 ≤ R < 1,

(2 − R)3, 1 ≤ R < 2,

0, R ≥ 2,

(29)

where ad = 1/7h, 1/3πh2 and 15/62πh3 for one-, two- and three-dimensional spaces,
respectively. The first derivative of WH increases monotonically with R as shown
by the red dash-dot line in Fig. 2. Employing WH as the kernel function in calcu-
lating the density effectively eliminates the unphysical particle clustering or voids,
as shown in Fig. 3(b).

3.4. Boundary particle density correction

There are two types of boundaries in the incompressible fluid flow with free surface,
namely, the free surface and the rigid wall. The density of the fluid near the bound-
aries will be underestimated if Eq. (26) is used to construct the continuous density
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(a) (b)

Fig. 3. Shifted particles using (a) the cubic spline kernel and (b) the hyperbolic-shaped kernel in
dam breaking simulation.

field. Therefore, the obtained density gradient near the boundaries will point out-
ward to the boundaries, and the particles near boundaries will be shifted outside
the fluid region by using Eq. (20).

For particles near the free surface, the unit outward normal of the free surface
should be subtracted from the estimated density gradient to guarantee shifting them
within the fluid domain. In other words, the particles near the free surface will be
shifted by

∆xp = βc[n∇ρp − (n∇ρp · n∇ϕp)n∇ϕp ], (30)

where n∇ϕp = ∇ϕp/|∇ϕp| is the unit outward normal of the free surface calculated
from the gradient of the level set function ϕ [Zhang et al. (2017)].

For particles near the rigid wall, the ghost particle scheme proposed by Akinci
et al. [2012] is employed to correct the fluid density. A single layer of uniformly
distributed ghost particles is created outside the rigid wall. The volume of a ghost
particle g can be calculated by

Vg =
mg∑

kmkWgk
, (31)

where mg is the mass of the ghost particle g, k denotes all the neighboring particle
of g inside its kernel support domain. To attain a continuous density ρ0 which is
the rest density of the fluid, the mass of ghost particle g should take the value of

Mg(ρ0) = ρ0Vg. (32)

Therefore, the modified density of a fluid particle p near the rigid wall is

ρp =
∑

j

mpWpj +
∑

k

Mk(ρ0)Wpk, (33)

where j and k denote the neighboring fluid particles and neighboring ghost particles
of the particle p, respectively.

4. Numerical Implementation

The explicit time integration for momentum equations can be used directly in the
proposed scheme. The sound speed of viscosity, the body force, the velocity of

1850061-11
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fluid flow as well as the Courant–Friedrichs–Lewy (CFL) condition are taken into
account, the size of time step can be represented by

∆t = α min

(
dc

‖up‖max
,
d2

c

2ν
,

√
2dc

‖b‖

)
, (34)

where ‖up‖max is the maximum velocity of all fluid particles, the parameter ν = µ
ρ

is the kinematic viscosity of the fluid, dc is the characteristic length which is set to
be the size of cell dl, α is the dimensionless coefficient of CFL which is set to be
0.15 in this work. It should be noted that the term of the viscosity in Eq. (34) is
very low for water, then ‖up‖max and ‖b‖ are dominant to determine the size of the
time step in the improved iMPM which is much larger than that in explicit MPM.

The implementation of the improved iMPM is summarized as follows:

(1) Initialize the background grid by resetting all the grid nodal variables to zero.
(2) Loop over all particles in the fluid domain to calculate their contributions to

the masses and the momenta of the grid nodes by

mn
I =

np∑
p

mpN
n
Ip, (35)

pn
iI =

np∑
p

mpv
n
ipN

n
Ip. (36)

(3) Solve the grid nodal velocity at time tn by

vn
iI = pn

iI/mn
I . (37)

(4) Calculate the intermediate grid nodal velocities v∗i and impose the velocity
boundary conditions using Eq. (3).

(5) Initialize the signed distance function and identify the fluid cell, air cell and
free surface either based on the isocontour of particle spherical function or
based on a user defined initial grid level set function, readers can see related
articles from Foster and Fedkiw [2001], Zhang et al. [2017] for further details.

(6) Calculate the fluid cell divergence and solve the PPE (14) using a PCG solver.
(7) Update the corrected velocities vn+1

iI using Eq. (5), and the calculation of
pressure gradient can refer to Zhang et al. [2017].

(8) Update the particle velocities using a linear combination scheme [Zhu and
Bridson (2005)], i.e.,

vn+1
ip = χ

ng∑
I=1

vn+1
iI NpI + (1.0 − χ)(vn

ip + ∆vip), (38)

where 0 ≤ χ ≤ 1 is a coefficient taken to be 0.03 in this paper.
(9) Update the particle positions using RK3-TVD method [Shu and Osher (1988)]

with the updated grid velocities vn+1
i .
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(10) Calculate the density of each particle using Eq. (26) with the hyperbolic-
shaped kernel at time tn+1.

(11) Estimate the gradient of particle density, and calculate the position shifting
vector ∆xp using Eq. (20), Eq. (15) or Eq. (17).

(12) Recalculate the new position and velocity of all particles using Eqs. (23)
and (24), respectively.

(13) Return to step 1 to start a new time step.

In the above implementation, the divergence-free condition is imposed in solving
the PPE from step 4 to step 10, and the density-invariant condition is imposed by
our proposed scheme explicitly from step 11 to step 13. The improved iMPM can
satisfy the divergence-free condition and density-invariant condition simultaneously.

5. Numerical Examples

The improved iMPM has been implemented in our MPM3D code. Its improve-
ments and advantages over the original iMPM are illustrated by several numerical
examples in this section.

5.1. Two-dimensional (2D) Dam breaking inside a tank

The dam break experiment conducted by Zhou et al. [1999] and Lobovsk et al.
[2014] is first simulated to evaluate the improved iMPM. A schematic diagram of
the test is shown in Fig. 4. Before the experiment, water with depth 0.6m was at
rest in the 1.2m long reservoir area on the left side of a flap. The reservoir and the
flap are contained at left end of a rigid tank of length l0 = 3.22m and height 2.5m.
A background grid with 161×125 cells of side length 0.02m is employed. The water
density ρ, water viscosity µ and gravity g are 1.0×103 kg/m3, 1.01×10−3 Pa · s and
9.8m/s2, respectively. At time equal to zero, the flap is removed instantaneously
and the column of water in the reservoir area crashes under the force of gravity.

Reservoir area Impact plate

1200 mm
1,028 mm 1,525 mm
3,220 mm

Flap

160 m
m

1P

1,200 mm

1H 2H

Fig. 4. Schematic diagram for 2D dam breaking.
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In our simulations, 2×2 particles are initially placed inside each fluid cell. Thus,
the water column is discretized by a total of 7,200 fluid particles. Moreover, 1,144
ghost particles are placed outside the fluid domain to correct the density of the
particles near the rigid walls. Figure 5 compares the fluid profiles obtained by the
original iMPM and the improved iMPM at different time steps. The flow profiles
predicted by both methods can reflect the whole process including dam breaking,
plunging wave and water merging. However, the particle distribution obtained by
the improved iMPM is much more uniform than that of the original iMPM. The
uneven particle distribution not only reduces the accuracy of velocity field but also
leads to pressure oscillations. Furthermore, particle clustering and disordering lead
to significant unphysical loss of fluid volume in the original iMPM. These problems

(a) (b)

Fig. 5. Fluid profiles at different time instants obtained by (a) the original iMPM and (b) our
improved iMPM.
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can be mitigated by using more particles in each cell, like 4 × 4 particles in each
cell, at the expense of significant higher computational cost. Our new scheme can
maintain the numerical stability and accuracy by using as less particles as possible.

To compare the numerical results quantitatively, the following normalized den-
sity error and average velocity divergence error are defined:

Eden(t) =
1
N

N∑
p=1

∣∣∣∣ρ0 − ρ(xp)
ρ0

∣∣∣∣, (39)

Ediv(t) =
1
M

M∑
i=1

|(∇ · v)i|, (40)

where N and M represent the number of fluid particles and the number of fluid cells,
respectively. Note worthily, the density and velocity divergence errors are evaluated
at the fluid particle and the fluid cell center, respectively.

Figure 6 compares the normalized particle density error obtained by the original
iMPM with those of the improved iMPMs using different particle shifting schemes.
The original iMPM leads to significant error in the particle density, which reaches
up to 160%. On the contrary, the iMPM improved with the three particle shifting
schemes reduce the particle density error significantly, which ranges from 6% to 32%.
In terms of the minimum variation of density error over time, our shifting scheme is
the optimized one among the three schemes as our scheme shifts the particle along
the density gradient whilst those of Xu and Ando shift along a weighted direction.

Figure 7 further compares the fluid velocity errors. The peaks in the velocity
divergence error curves are associated with the violent flow merger. Obviously, the
particle shifting schemes can effectively decrease the velocity error and improve the
accuracy of velocity field. Since the original iMPM has imposed the divergence-free
condition, the improvement of new schemes in velocity field is not as remarkable as
in the density invariance.

Original iMPM 
iMPM with our scheme
iMPM with Xu’s scheme
iMPM with Ando’s scheme

t/s
0 5 10 15

E
de

n

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 6. Normalized particle density error.
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Original iMPM 
iMPM with our scheme
iMPM with Xu’s scheme
iMPM with Ando’s scheme

t/s
0 5 10 15

E
di

v
(1

0 
   

)
−4

0

8

16

Fig. 7. Fluid cell average velocity divergence error.

Finally, the impact pressure measured at the location P1, see Fig. 4, is compared
with the experiment data obtained by Zhou et al. [1999] in terms of the following
nondimensional time and pressure:

T = t

√
h0g

l20
, P (T ) =

p(T )
ρgh0

.

To demonstrate the superiority of the improved iMPM over the original iMPM, this
problem is also studied using 4 × 4 particles per cell (ppc), respectively. The non-
dimensional pressure predictions are compared with the experimental data in Fig. 8.
When 2× 2 ppc are used, the original iMPM results in significant pressure oscillation
which does not present in the predictions of the improved iMPM. The oscillation
in the original iMPM disappears when 4 × 4 ppc are used at the expense of a

Original iMPM  (ppc = 2×2)
Improved iMPM  (ppc = 2×2)

Original iMPM (ppc = 4×4)
Improved iMPM (ppc = 4×4)
Exp. data [Zhou (1999)]

T

P
(T

)

0.0 1.0 2.0 3.0

0

1

Fig. 8. Comparison of time history of pressure at location P1.
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significant higher computational cost. This example shows that the improved iMPM
with particle shifting not only immensely improves the particle density invariance
and the accuracy of velocity field but also suppresses the pressure oscillation.

5.2. Three-dimensional (3D) dam breaking inside a tank with

an obstacle

To further verify the capability of the proposed method, the collapse of a water
column with a rigid obstacle is studied. This problem has also been studied
experimentally and numerically by other authors [Kleefsman et al. (2005)]. The
height of the water column is 550mm and the size of the rigid obstacle is
403 mm×161 mm×161 mm as shown in Fig. 9. The water column is initially closed
by a flap. It then flows into the tank when the flap is removed.

The fluid parameters of water and the background grid size are the same as
those used in Sec. 5.1. The 3D water column is discretized by 671,000 fluid particles
whilst 218,644 ghost particles are located outside the fluid domain and within the
static obstacle for correcting the density of the particles near the rigid walls.

Figure 10 shows the fluid profiles and pressure distributions obtained by the
improved iMPM at different time instants. During the evolution of the flow, the
pressure distribution is smooth and the main flow characteristics agree well with
those described by Kleefsman et al. [2005] and Amicarelli et al. [2013]. In Fig. 10(a),
the water front impacts on the obstacle and a water tongue is developed laterally
due to the resistance from the rectangular obstacle. In Fig. 10(b), the back wave
collides with the downward frontier and then moves on. In Fig. 10(c), a reflecting

Reservoir area Flow area Impact plate

1,200 mm

1,
00

0 
m

m

40
3 

m
m 29

8.
5 

m
mFlap

P1P2

(a)

1,
00

0 
m

m

1200 mm

550 m
m

161 m
m

161 mm

1,228 mm 1,248 mm 744 mm

P1

P2

21 mm

101 m
m

(b)

Fig. 9. 3D dam breaking with an obstacle: (a) top view and (b) side view.
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Pressure/MPa Pressure/MPa

(a) (b)

Pressure/MPa Pressure/MPa

(c) (d)

Fig. 10. The pressure distribution of fluid particle at different time instants: (a) t = 0.6 s,
(b) t = 1.2 s, (c) t = 2.2 s and (d) t = 3.8 s.

steep fronted wave is generated at the right of the tank and the obstacle is completely
submerged. In Fig. 10(d), the new water front reaches the original upflow frontier
and another reflected front is generated.

To quantitively study the accuracy, the time history of the pressure obtained by
the improved iMPM at gauge points P1 and P2 are compared with those obtained
by δ-SPH method [Marrone et al. (2011)] and experiment [Kleefsman et al. (2005)]
in Fig. 11. The time history of pressure obtained by the improved iMPM agrees rea-
sonably with the experimental results, although some overestimation occurs when
plunging wave or spray drops into the water surface again. The pressure at points

iMPM 

-SPH  [Marrone (2011)]
Exp. [Kleefsman (2005)]

T/s

δ

0 1 2 3 4

0.002
0

0.004
0.006
0.008
0.010

0.012
0.014
0.016

Pr
es

su
re

/M
Pa

iMPM 

-SPH  [Marrone (2011)]
Exp. [Kleefsman (2005)]

T/s

δ

0.002

0.004

0.006

0.008

0 1 2 3 4
0
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su
re

/M
Pa

(a) (b)

Fig. 11. Time history of pressures at (a) gauge point P1 and (b) gauge point P2.
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near the free surface fluctuates more intensively than that at other points, which has
also been observed in other numerical methods such as the Volume of Fluid [Kleef-
sman et al. (2005)] and weak compressible SPH [Amicarelli et al. (2013); Gilbert
(2015)]. The main reason is that violent flow occurs close to the free surface. On the
contrary, the underwater flow away from free surface is less violent than that the flow
close to free surface. These explain why the lower plot contains less ripples than the
upper plot. The prediction of the δ-SPH method is exceptionally smooth because
an artificial numerical dissipation term was employed to smooth the pressure.

5.3. 2D water tank sloshing

In this example, the improved iMPM is used to simulate the water sloshing experi-
ments conducted by Faltinsen et al. [2000]. A tank with length LB = 1.730m stores
water with initial depth HW = 0.6m as shown in Fig. 12. The tank is displaced
horizontally and the displacement is S = A cos(2πt/T ), where A = 0.032mm is the
amplitude and T is period of the excitation. A probe was placed on the initial free
surface for recording the water level change H at 0.05m from the left wall of the
tank in the sloshing process.

This experiment is simplified as a 2D problem whilst the two cases with T = 1.5 s
and T = 1.3 s are considered. The water column is discretized by 40,000 fluid parti-
cles and 2,327 ghost boundary particles are employed. The computational domain
is 1.75 m × 1.17 m which is discretized into uniform cells with side length 0.01m.
In the iMPM simulation, the external excitation is realized as a body force b in
Eq. (3), i.e., b = A(2π/T )2 cos(2πt/T ). As the water column begins to move right-
ward, water particles will run up along the right wall. After reaching the maximum
height, they gradually fall down and continue to move back and forth. The ampli-
tude of the fluid motion would vary with the natural period T of the sloshing. In
Fig. 13, the fluid profiles and pressure distributions are shown at different time
instants for T = 1.5 s.

x

y S=Acos(2 )

Air

Water

L  = 1,730 mmB

0.05m
Probe A

HW

Fig. 12. Illustration of 2D water sloshing in rectangular tank.
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(a) (b)

(c) (d)

Fig. 13. The fluid profiles and pressure distributions at (a) t = 7.75 s, (b) t = 8.00 s, (c) t = 8.25 s
and (d) t = 8.50 s.

iMPM result
Exp.data [Faltinsen (2000)]

0

T/s
1 2 3 4 5 6 7 8 9 10

-0.2
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Fig. 14. Time history of the wave height for cases (a) T = 1.5 s and (b) T = 1.3 s.
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Figure 14 compares the time history of the water heights obtained by our sim-
ulation and recorded by the probe in the experiments [Faltinsen et al. (2000)]. For
this moderate intensive flow, the flow pattern, period and amplitude predicted by
the improved iMPM agree well with the experimental results.

6. Conclusions

In this paper, a density correction scheme is proposed to improve the iMPM. By
explicitly imposing the density-invariant condition, a new particle shift scheme is
developed based on the kernel approximation. The improved iMPM has following
advantages: (1) our density correction scheme is derived from the density-invariant
condition whilst the existing schemes are based on some kinds of weak spring force or
numerical experiences; (2) the proposed density correction scheme does not impose
the Poisson equation and can be implemented conveniently; (3) the density correc-
tion scheme is applied at each particle to ensure fluid volume conservation which
would be destroyed in the WCMPM and the original iMPM; (4) our density cor-
rection scheme is inspired by the SPH kernel approximation, so it can be extended
directly to ISPH and MPS methods to impose the density-invariant condition.

The numerical results presented in Sec. 5 show that the improved iMPM not only
immensely improves the particle density invariance and the accuracy of the velocity
field, but also suppresses the spurious pressure oscillation commonly occurring in
violent fluid impact problems. In summary, the improved iMPM is a powerful tool
for simulating the incompressible fluid flow with free surface.
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