
Coupled shell-material point method for bird strike simulationI

Bo Wua, Zhenpeng Chena, Xiong Zhanga,∗, Yan Liua, Yanping Liana,b

aSchool of Aerospace Engineering, Tsinghua University, Beijing 100084, China
bDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract

In a bird strike, the bird undergoes large deformation like flows; whilemost part of the structure is in small
deformation, the region near the impact point may experience large deformations, even fail. This paper
develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is
modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-
Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface
contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The
proposed CSMPM takes full advantages of both the finite element method (FEM) and the material point
method (MPM) for bird strike simulation, and is validated by several numerical examples.
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1. Introduction

Bird strike is one of the most important safety concerns in aviation industries [1–3]. In the year 2014, about
13,000 bird strikes were reported to the Federal Aviation Administration (FAA) [4]. Consequently, specific
aviation regulations have been laid out, requiring aircraft to be certified for a proven level of bird impact
resistance before coming into service.

A bird strike happens with high intensity and short duration. At the velocities of interest, the stresses
of the bird are significantly higher than its own strength, so the bird behaves as a soft body and undergoes
large deformations like flows over the structure [3,5]. In addition, a deep interaction exists between the impact
loads and the dynamic response of structure. Therefore, it is hard to model the bird strike accurately.

Before powerful computers came out, only theoretical and experimental approaches were used for the
study of bird strike. Wilbeck and Barber [5] studied the bird strike on a flat rigid plate using the hydrody-
namic theory of soft body impacts, and their results showed good accordance with the experimental data.
However, the theoretical approach can be hardly used in practical applications, because it introduces too
many approximations and simplified assumptions [3].

On the other hand, experiment is the most reliable method to prove the bird impact resistance of struc-
tures. Many researchers have conducted specific experimental tests, but their results are usually not available
to the public. Besides, a bird strike experiment is difficult to be carried out , because it is expensive and
time consuming. Especially, a bird-strike test requires costly testing equipment, very accurate measurement
devices, and an intact aircraft component, which is very expensive but useless after being damaged in the
tests [3].

Numerical methods for developing high-efficiency bird-proof structures [6] have become popular. The finite
element method (FEM) has been successfully used to model aircraft structures. In a bird strike simulation, the
major challenge is to simulate the highly-deformed bird. Several numerical approaches have been established
to discretize the bird, including the FEM, arbitrary Lagrangian-Eulerian (ALE) method, and Smoothed
Particle Hydrodynamics (SPH) [1,3]. However, none of them is free from disadvantages: FEM encounters
mesh distortion; ALE is complex in material interface capturing and convection calculating; and SPH is
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somewhat time consuming due to neighbor searching [1,3,7] and suffers from boundary deficiency and tensile
instability. In general, SPH is preferred by most researchers [7,8].

Like SPH, material point method (MPM) [9,10] is also a particle method. In the MPM, the material domain
is discretized by a set of Lagrangian material points (particles), which carry all the state variables, such as
position, velocity, stress, strain, etc. Besides, an Eulerian background grid is used to integrate the momentum
equations and to calculate space derivatives [11,12]. In each time step, the particles are rigidly attached to the
Eulerian background grid and move with it. Firstly, the kinematic variables are mapped from particles to grid
nodes to establish grid nodal momentum equations. And then, the solutions of the grid nodal momentum
equations are mapped from the grid nodes back to the particles to update their positions and velocities. The
deformed background grid is discarded at the end of each time step, and a new regular background grid is
employed for the next time step. Therefore, the mesh distortion caused by extreme deformation is avoided,
and numerical difficulties associated with the Eulerian method are overcome. Moreover, the MPM shows
advantages of computational efficiency and stability over the SPH method [13]. So far, the MPM and its
extensions have been widely applied to many problems involving extreme material deformation [14], such as
explosion and impact [15], geomechanics [16], cracking expansion [17], and multiphase flows [18], just to name a
few. However, the efficiency of the MPM is lower than that of the FEM due to the mapping between the
background grid and particles, and the accuracy of particle quadrature used in the MPM is lower than that
of Gauss quadrature used in the FEM [11,14]. Hence, Zhang and his group developed several coupling schemes
to take full advantages of both MPM and FEM, such as the explicit material point finite element method
(MPFEM) [19], hybrid finite element material point method (HFEMP) [20], the coupled finite element material
point method (CFEMP) [21,12] and the adaptive finite element material point method (AFEMP) [11].

In this paper, a coupled shell-material point method is developed for bird strike simulations to take full
advantages of both FEM and MPM. During a bird strike, the bird undergoes large deformation like flows
over the structures, while most part of the aircraft is in small deformation. Thus, the bird is discretized by
MPM particles, while the thin-walled structures in the aircraft are discretized by shell elements. The MPM
particles are coupled with shell elements based on a particle-to-surface contact algorithm [22] to model the
interaction between the bird and the aircraft. The structures near the impact point may experiences large
deformations, even fail, which may decrease the computational accuracy and the time step size. To avoid
these difficulties, the distorted and failed shell elements will be eroded if a certain criterion is reached.

The remaining parts of the paper is organized as follows. Section 2 and Section 3 briefly describe the
MPM and Belytschko-Lin-Tsay shell element formulation, respectively. The coupling scheme of the MPM
particles with shell elements is developed in Section 4. Section 5 summarizes the numerical algorithm of
the CSMPM, and Section 6 presents several numerical examples to validate the developed method. Finally,
conclusions are drawn in Section 7.

2. Brief review of MPM

As depicted in Figure 1, the material domain Ω is discretized by a set of particles, which carry all the state
variables. Due to the mass lumped at each particle, density is approximated by the Dirac delta function δ as

particle 

cell Ω

grid node

Figure 1: MPM discretization

ρ (x) =

np∑
p=1

Mpδ (x− xp) (1)
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where the subscript p indicates the variable carried by particle p, np is the total number of particles, and Mp

and xp are the mass and coordinate of particle p. The momentum equation for the material domain is given
as

σji,j + ρbi = ρüi (2)

where the subscripts i and j denote the components of the space with Einstein summation convention, the
superimposed dot indicates time derivatives, σij is the Cauchy stress, bi is the body force per unit mass, ρ is
the current density, and ui is the displacement. Taking the virtual displacement δui as the test function, the
weak form of the momentum equation of Eq.(2) with zero prescribed traction boundary can be written as∫

Ω

ρüiδuidΩ +

∫
Ω

σijδui,jdΩ−
∫

Ω

ρbiδuidΩ = 0 (3)

In each time step, the particles are rigidly attached to the background grid, and the displacement uip of
the particle p can be obtained by interpolating the grid nodal displacement uiI as

uip =

ng∑
I=1

NIpuiI (4)

where the subscript I denotes the variables associated with grid node I, ng is the number of nodes defining
the cell that contains material point p, and NIp = NI (ξp, ηp, ζp). For 3D problems, the 8-point hexahedral
cell is usually employed, so that the tri-linear shape function is applied as follows

NI (ξ, η, ζ) =
1

8
(1 + ξIξ) (1 + ηIη) (1 + ζIζ) I = 1, 2, . . . , 8 (5)

where ξ ∈ [−1, 1] , η ∈ [−1, 1] and ζ ∈ [−1, 1] are the nature coordinates, and ξI , ηI and ζI take their nodal
values of (±1,±1,±1).

Substituting Eqs.(1) and (4) into Eq.(3) and invoking the arbitrariness of δuiI leads to

ṗiI = f ext
iI − f int

iI I = 1, 2, . . . , ng (6)

where
piI = MIviI (7)

is the nodal momentum of grid point I,

f int
iI =

np∑
p=1

NIp,jσijp
Mp

ρp
(8)

is the internal force,

f ext
iI =

np∑
p=1

MpNIpbip (9)

is the external force, and σijp = σij (xp), bip = bi (xp).
In Eq.(7), the lumped mass matrix is used, namely

MI =

np∑
p=1

NIpMp (10)

The leap-frog central difference time integration algorithm is used to integrate the momentum equation
of Eq.(6). In the following equations, the superscript k denotes the value of variable at time tk. Given ukip
and u̇k−1/2

ip , we seek for the solution at time tk+1. From Eq.(6) and Fig.2, the grid nodal momentum can be
updated by

p
k+ 1

2

iI = p
k− 1

2

iI + (f ext,k
iI − f int,k

iI )∆tk (11)

3



t = 0 t k-1 t k
t k+1

t k+1/2

t k-1/2

t k-1/2

t k+1/2

t k
∆

∆ ∆

t 

Figure 2: Time intervals

Then the position xk+1
ip and velocity vk+1/2

ip of particle p are updated by

xk+1
ip = xkip + ∆tk+1/2

ng∑
I=1

v
k+1/2
iI Nk

Ip (12)

v
k+1/2
ip = v

k−1/2
ip + ∆tk

ng∑
I=1

akiIN
k
Ip (13)

where vk+1/2
iI = p

k+1/2
iI /Mk

I , a
k
iI = fkiI/M

k
I and fkiI = f ext,k

iI − f int,k
iI . As shown in Figure 2, the time intervals

are defined as

∆tk =
∆tk−

1
2 + ∆tk+ 1

2

2
, ∆tk−

1
2 = tk − tk−1, ∆tk+ 1

2 = tk+1 − tk (14)

The critical time step size is determined by

∆tcr =
dc

max
p

(cp + |vp|)
(15)

where dc is the cell spacing, cp and vp are the material local sound speed and velocity of particle p. The cell
spacing dc is constant in the MPM because the same regular background grid cell is usually used in all time
steps.

After that, all the variables assigned to the grid nodes are reset to zero, which indicates that a new regular
background grid is used in the next time step.

3. Belytschko-Lin-Tsay shell element

The Belytschko-Lin-Tsay shell element [23], which is based on a corotational velocity-strain formulation, is
employed in this paper to model the aircraft. It shows significant speed advantage over other shell elements
in crash and impact simulations, and has been used in LS-DYNA [24], PAMCRASH [25] and ABAQUS [26].

The geometry of the shell is defined by its reference surface, which is usually the mid-surface of the
shell and determined by the nodal coordinates of the elements. The element corotational system (x̂, ŷ, ẑ)
is embedded in and deforms with the element. The unit vectors (e1, e2, e3) corresponding to this local
coordinate system are constructed, as shown in Fig.3 [27]. The midpoints of the sides are connected by lines,
rac and rbd, then the unit vector e3 is obtained by

e3 =
rac × rbd

‖rac × rbd‖
, (16)

where × denotes the vector cross product and ‖•‖ indicates the norm of a vector. Then the other two unit
vectors are defined by

e1 =
rac

‖rac‖
, (17)

e2 = e3 × e1. (18)

The transformation matrix q between the global and local element coordinate systems is defined by the
corotational triad (e1, e2, e3) as

q =

 e1x e2x e3x

e1y e2y e3y

e1z e2z e3z

 , (19)

4



1
2

3

4

a

c

b

d
cornor node

midside point

1e

3e

e2

Figure 3: Corotational coordinate system

where eix, eiy, eiz are the global components of the element coordinate unit vector ei. The transformation
from element coordinate components r̂ to global coordinate components r is defined as

r = qr̂, (20)

and the inverse transformation is defined by the matrix transpose, i.e.,

r̂ = qTr. (21)

The element employs the Mindlin [28] theory of plates and shells to partition the velocity of any point in
the shell as

v̂ = v̂m − ẑe3 × ω̂, (22)

where vm is the velocity of the reference surface, ω is the angular velocity vector, and ẑ is the distance to
the reference surface along the normal direction of the shell element.

The corotational components of the velocity strain (rate of deformation) are given by

d̂ij =
1

2

(
∂v̂i
∂x̂j

+
∂v̂j
∂x̂i

)
. (23)

Substituting Eq.(22) into Eq.(23) gives

d̂x =
∂v̂mx
∂x̂

+ ẑ
∂ω̂y
∂x̂

, d̂y =
∂v̂my
∂ŷ
− ẑ ∂ω̂x

∂ŷ
,

2d̂xy =
∂v̂mx
∂ŷ

+
∂v̂my
∂x̂

+ ẑ

(
∂ω̂y
∂ŷ
− ∂ω̂x

∂x̂

)
,

2d̂yz =
∂v̂mz
∂ŷ
− ω̂x, 2d̂xz =

∂v̂mz
∂x̂

+ ω̂y.

(24)

The velocity strain d̂z is computed from the plane stress assumption of

σ̂z = 0, (25)

where σ̂ is the physical Cauchy stress, which is work-conjugate to the above strain rate and can be updated
by a constitutive model.

The standard bilinear isoparametric shape functions are used to interpolate the translate velocity, the
angular velocity, and the element’s coordinates on the reference surface, namely

vm = NI (ξ, η)vI ,
ω = NI (ξ, η)ωI ,
xm = NI (ξ, η)xI ,

(26)

5



where
NI (ξ, η) =

1

2
(1 + ξIξ) (1 + ηIη) , (27)

and the subscript I denotes variables associated with node I. The standard summation convention is used
for repeated superscripts and subscripts.

Substituting Eq.(26) into Eq.(24) gives

d̂x = B1I v̂xI + ẑB1I ω̂yI , d̂y = B2I v̂yI − ẑB2I ω̂xI
2d̂xy = B2I v̂xI +B1I v̂yI + ẑ (B2I ω̂yI −B1I ω̂xI) ,

2d̂yz = B2I v̂zI −NI ω̂xI , 2d̂xz = B1I v̂zI +NI ω̂yI .

(28)

where
B1I =

∂NI
∂x̂

, B2I =
∂NI
∂ŷ

, (29)

By using the one-point quadrature, Eq.(29) at the center of the element, i.e., at ξ = η = 0, can be
calculated by {

B1I

B2I

}
=

1

2A

[
ŷ2 − ŷ4 ŷ3 − ŷ1 ŷ4 − ŷ2 ŷ1 − ŷ3

x̂4 − x̂2 x̂1 − x̂3 x̂2 − x̂4 x̂3 − x̂1

]
(30)

and A is the area of the element.
After the Cauchy stresses are updated by a constitutive model, the local nodal forces and moments can

be obtained by the principle of virtual work as

f̂xI = A
(
B1If

e
xx +B2If

e
xy

)
,

f̂yI = A
(
B2If

e
yy +B1If

e
xy

)
,

f̂zI = κA
(
B1If

e
xz +B2If

e
yz

)
,

m̂xI = A(B2Im
e
yy +B1Im

e
xy −

1

4
κf e

yz), (31)

m̂yI = A(−B1Im
e
xx −B2Im

e
xy +

1

4
κf e

xz),

m̂zI = 0,

where
f e
αβ =

∫
h

σ̂αβdẑ, me
αβ = −

∫
h

ẑσ̂αβdẑ, (32)

and κ is the shear factor of the Mindlin theory, which is usually taken to be 5
6 . Then the local forces and

moments are transformed to the global coordinate system using the transformation relation given previously
as Eq.(20).

Since the one-point quadrature is used, the hourglass modes are possible for this element. The hourglass
control scheme proposed by Flanagan and Belytschko [29] is used here, and its details will not be repeated
here for simplicity.

The translational momentum equation for the shell element node is quite similar to Eq.(2), while the
rotational one can be given as

RI ω̇iI = miI (33)

where RI is the rotational mass of node I. The leap-frog central difference time integration algorithm is used
to integrate the momentum equations. The translate and angular velocities, and positions of node I can be
updated by

v
k+ 1

2

iI = v
k− 1

2

iI +
fkiI
MI

(34)

ω
k+ 1

2

iI = ω
k− 1

2

iI +
mk
iI

RI
(35)

xk+1
iI = xkiI + ∆tk+ 1

2 v
k+ 1

2

iI (36)
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The critical time step size is determined by

∆t = min(Le/c) (37)

where Le is the characteristic length of element e, and c is the material local sound speed. In order to keep all
operations synchronic in the same loop, the minimum critical time step size of the FEM and MPM domains
is used as the time step size.

Under the high-velocity impact from the bird, the structures may undergo large deformation and even
fail. The FEM mesh may distort, which will decrease the numerical accuracy and efficiency dramatically.
The simplest way to deal with the problem is to introduce an erosion scheme of the distorted shell elements.
For instance, if a shell element’s equivalent plastic strain or its degree of element distortion exceeds a user-
specified value, the erosion will be activatived, and then the Gauss integration for this shell element will be
neglected, which has been widely used in many codes including LS-DYNA.

4. Coupling scheme

The coupling of MPM particles with shell elements is implemented by a particle-to-surface contact algo-
rithm [22]. Each shell element has two faces, called segments, which are offset from its reference surface with
one half of the element’s thickness. The particle-to-surface contact algorithm is composed of three steps: a
global search step to find the potential contact pairs (a particle and a shell element), a local search step to
calculate the exact contact position and the gap between the contact pairs, and the contact force imposed
between the contact pair to prevent the penetration.

The global search uses the bucket-sorting scheme [30] to minimize the computational costs. As shown in
Fig.4, a uniform bucket cell structure is set to overlay all the contact bodies. The key part of this searching
procedure is to identify the cell number for each particle and segment. Then the segment and the MPM
particles, which locate in the same bucket cell, are considered as potential contact pairs. In consideration of
the thickness of shell and robustness of the scheme, a slightly larger range of the bucket cells is searched for
each shell element. Besides, the bucket cell size is taken to be close to the average segment size for higher
efficiency, as recommended by Belytschko and Lin [30].

particle

shell element
shell node

offset face

bucket cell

c
g

Figure 4: Bucket-sorting

The local search determines the exact contact position and the gap between the contact pairs. Assume
that the contact point of particle P on the element’s reference surface is point C, as shown in Fig.5, whose
coordinates can be obtained by interpolating the element’s nodal coordinates using Eq.(26). The two tangent
vectors of the surface at point C can be obtained by

tξ =
∂x

∂ξ
, tη =

∂x

∂η
. (38)

where x denotes the position vector of point C.
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Figure 5: Local search

The vector from the contact point C to particle P should be perpendicular to the reference surface, so
that the local coordinates (ξC , ηC) of the contact point C can be obtained by solving

∂x
∂ξ

(ξC , ηC) · [xP − x (ξC , ηC)] = 0

∂x
∂η

(ξC , ηC) · [xP − x (ξC , ηC)] = 0
(39)

which are binary cubic nonlinear equations and can be solved by the Newton-Raphson iterative method. The
gap of this contact pair can be calculated by

gc = nC · [xP − x (ξC , ηC)]− h

2
(40)

where h is the thickness of the element and

nC =
tξ × tη∥∥tξ × tη

∥∥ (ξC , ηC) (41)

is the unit normal vector of the surface pointing outwards at the contact point C.
If penetration appears, i.e., gc < 0, an appropriate contact force should be imposed between the contact

pair to prevent the penetration. The normal contact force can be determined by the penalty method [24] or
the Lagrangian multiplier method [22]. The penalty contact force imposed on particle P can be expressed as

f c,pen
p = −spenKcgcnC (42)

where spen is a user-defined scale factor for contact stiffness, and Kc is the contact stiffness, which can be
calculated by [24]

Kc =

{
KA2

V for solid element
KA
Dmax

for shell element
(43)

where A, Dmax, K and V are the segment’s area, maximum of diagonals, bulk modulus and volume of the
element that contains the segment, respectively. The contact force of the Lagrangian multiplier method can
be expressed as [22]

f c,lag
P =

MPMC (vC − vP )

(MP +MC) ∆t
(44)

where MP and vP are the mass and velocity of particle P , vC is the interpolated velocity of the contact
point C, and MC denotes the equivalent mass of the contact point, which can be calculated by [22]

MC =
1

nI∑
I=1

N2
I (ξC ,ηC)

MI

(45)

where nI is the total number of nodes of the segment, and the summation convention is not used for subscript
I here.

As the explicit momentum equations are solved at the grid node in the MPM domain, the contact force
of particle P is transformed to grid node I by the shape function as

f c
I = NMPM

I (ξp, ηp)f
c
P (46)

Similarly, the contact force of point C in the finite element domain is transformed to element node I as

f c
I = NFEM

I (ξc, ηc)f
c
C (47)

where f c
C = −f c

P .
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5. Computer Implementation

The proposed ASMPM has been implemented in our three-dimensional explicit MPM code, MPM3D [31,32].
The Numerical algorithm for one time step can be summarized as follows:

1. Redefine the background grid, map the masses and momenta of all the particles to the background grid
nodes by

Mk
I =

np∑
p=1

Nk
IpMp (48)

p
k− 1

2

iI =

np∑
p=1

Nk
IpMpv

k− 1
2

ip (49)

where Nk
Ip is the shape function of grid point I evaluated at material point p at the kth time step.

2. Apply the essential boundary conditions on the background grid nodes. If node I is fixed in the i
direction, set pk−

1
2

iI = 0.
3. For the MPM body, loop over all the particles to calculate their rate of deformations

D
k− 1

2
ijp =

1

2

8∑
I=1

[
Nk
Ip,jv

k− 1
2

iI +Nk
Ip,iv

k− 1
2

jI

]
(50)

spin tensors

Ω
k− 1

2
ijp =

1

2

8∑
I=1

[
Nk
Ip,jv

k− 1
2

iI −Nk
Ip,iv

k− 1
2

jI

]
(51)

densities

ρk+1
p =

ρkp

1 +4εk−
1
2

iip

(52)

and then update the Cauchy stress σkijp using the corresponding constitutive model and equation of

state. In the above equations, vk−
1
2

iI = p
k− 1

2

iI /Mk
I is the velocity of grid node I, and 4εk−

1
2

ijp = 4tkDk− 1
2

ijp

is the incremental strain. Finally, the MPM grid nodal internal forces f int,k
iI and external force f ext,k

iI

are calculated by using Eqs.(8) and (9), respectively.
4. For shell elements, calculate the nodal force and moment as described in Section 3.
5. Assume that the MPM particles are not in contact with any shell elements, calculate the trial momenta
p
k+ 1

2 ,trial

iI of the MPM grid nodes and the FEM nodes using Eq.(11) , and then calculate the trial
velocities of the particles and the FEM nodes.

6. Calculate the contact force f c,k
iI of the MPM grid nodes and the FEM nodes with the trial velocity, as

described in Section 4.
7. Update the momenta and force of the MPM grid nodes and the FEM nodes by

p
k+ 1

2

iI = p
k+ 1

2 ,trial

iI + ∆tkf c,k
iI (53)

fkiI = f ext,k
iI − f int,k

iI + f c,k
iI (54)

8. Update the velocities vk+ 1
2

ip and positions xk+1
ip of all the MPM particles by Eqs.(13) and (12). Update

the translate velocities vk+ 1
2

iI , the angular velocities ωk+ 1
2

iI , and positions xk+1
iI of all the FE nodes by

Eqs.(34), (35) and (36), respectively.
9. All distorted shell elements will be eroded according to a certain criterion.
10. Discard the deformed background grid for MPM and go to step 1 to start a new time step.
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6. Numerical Simulations

To validate the method, the bird impacts on a rigid plate, an aluminum plate, and a wing leading edge
are simulated in this section. As suggested by many studies [1,5,8,33,34], the substitute bird is approximated
as a hemispherical-ended cylinder with a length-to-diameter ratio of two, as shown in Fig.6(a), and the bird
has a density of 950 kg/m3 and a porosity of 10%. In accordance with certification requirements, the bird’s
mass usually takes 1.82 kg (4 lb) or 3.64 kg (8 lb) [1], from which the diameter D in Fig.6(a) is determined
to be 114mm or 143mm, respectively. Then the bird is discretized by evenly distributed particles, as shown
in Fig.6(b).

L=2D

D

(a) (b) 

Figure 6: Bird model geomenty (a) and particle discretization (b)

At the velocities of interest, the bird does not have enough shear strength against the generated high
pressures and behaves as a homogenous jet of fluid [3,5]. Hence, a null material model with an equation of
state (EOS) is usually adopted to represent the behavior of the bird. In this paper, the cubic polynomial
EOS is used, which relates the pressure and volume by

P = C0 + C1µ+ C2µ
2 + C3µ

3 +
(
C4 + C5µ+ C6µ

2
)
E (55)

where P is the pressure, µ = ρ/ρ0 − 1, ρ and ρ0 are the current and initial densities of the material,
respectively; E is the internal energy per volume, and parameters C0 to C6 are material constants. The null
material model relates the stress and strain by

σij = −Pδij + 2νdḊij (56)

where δij and Ḋij are the identity and the rate-of-deformation tensors, respectively, and νd is the dynamic
viscosity.

Referring to many studies [35–37], we chose these parameters as: C0 = C2 = . . . = C6 = 0, C1 = 2250 MPa
and νd = 0 Pa·s.

In the third bird strike simulation, if any quadrature point’s equivalent plastic strain exceeds εf = 0.2,
the parent shell element will be eroded.

6.1. Bird impact on a rigid plate
As a benchmark calculation, a 1.0 kg bird impacts onto a 500 mm×500 mm square steel plate perpendic-

ularly. Given the geometry of Fig.6(a) and a density of 950 kg/m3, the bird has a diameter of 93 mm and
a length of 186 mm, and is discretized by 38734 evenly distributed particles with a spacing of 3 mm. The
plate has a thickness of 15 mm, which is large enough to be considered as rigid, and is meshed by 25×25
shell elements with dimension of 20 mm. The plate is modelled by an elastic material model with density
ρ = 7800 kg/m3, elastic modulus E = 200 GPa and Poisson’s ratio ν = 0.3. We don’t use the rigid model
because in our penalty contact algorithm the penalty parameter is decided by Young’s modulus of the plate.

All the nodes of the plate are fixed, and the initial velocity of the bird is set as 116 m/s. The total
simulation time is 1.6 ms. For comparison, we build a similar model in LS-DYNA, which simply replaces the
MPM bird with a SPH bird and uses the soft constraint penalty contact formulation.

Fig.7 shows the typical phases of the impact. The red particles are MPM particles and the gray particles
are SPH particles. As can be seen, both our MPM bird and the DYNA’s SPH bird behave like fluid, and the
configurations at all times match well. However, the SPH bird seems to be scattered, which may be a result
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of the tensile instability, while the MPM bird doesn’t suffer such issue. In the tensile instability, the particles
clump together and large voids are formed. The instability results from an effective stress with a negative
modulus (imaginary sound speed) being produced by the interaction between the constitutive relation and
the kernel function [38].

(a) t = 0 ms (b) t = 0.4 ms (c) t = 0.8 ms (d) t = 1.2 ms

DYNA SPH

MPM3D

Figure 7: Configurations of the bird at different times. The red particles are MPM particles and the gray particles are SPH
particles

Fig.8 compares the time history of the normalized pressure at the center of the impact. The pressure is
measured at the element located at the center of the plate, with the element’s normal contact force divided by
its area, and then normalized by the theoretical stagnation pressure (i.e., 7.1 MPa) [8]. The time is normalized
by the duration of the impact (i.e. 1.6 ms). All the four profiles are good in the sense that there is a rise of
pressure at the initial impact and then the pressure stabilizes around its stagnation value. The experimental
results of Wilbeck [5,8] for the Hugoniot pressure are much lower than the numerical results. Part of the
explanation of the maximums not being reached resides in the fact that the Hugoniot pressure results from
a very sharp peak and the duration of the impact is very short (in the range of milliseconds). Since the data
obtained depend on the response time of the transducers used to measure the pressure, it is possible that the
maximums were not properly captured [8]. According to the theoretical analysis [5,8], the Hugoniot pressure is
expected to have a maximal value of about 93.6 MPa and a stagnation pressure of 7.1 MPa, giving normalized
values of 13.2 and 1.0, respectively. Although the simulated peak value is much higher than Wilbeck’s test
result, it agrees with the SPH’s and the theoretical results reasonably. Our Lagrangian multiplier coupling
scheme gives a very close Hugoniot pressure to the theoretical value. It can be concluded that the bird model
used in this paper is appropriate.

The time histories of the penalty coupling scheme shows a much greater low-frequency fluctuation than the
time history of other two schemes. It is hard to determine an appropriate scale factor spen in Eq.(42) when
the contact pair possesses significant different material properties, which is the usual case for bird strike.
After some tedious tuning work, we chose a small scale factor to obtain a relatively good result. On the
contrary, the Lagrangian multiplier coupling scheme does not need additional user-defined parameters, and
gives much better results than the penalty method. All the tests below will take the Lagrangian multiplier
coupling scheme as default.

The radial pressure distribution at a typical steady state is plotted in Fig.9 . Wilbeck [5,8] gave the
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Figure 8: Time history of the normalized pressure at the center of the impact

Nondimensional radius (r/R)

N
o
n
d
im

en
si

o
n
al

 p
re

ss
u
re

 (
P

r/P
S
)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Analytical (Wilbeck)

Our lagrangian coupling

DYNA SPH

Figure 9: Radial distribution of the stagnation pressure

12



analytical radial pressure distribution as

Pr = PS · exp

[
−1

2

( r
R

)2
]

(57)

where r is the radial position, R is the radius of the projectile and PS is the stagnation pressure. Since the
time history of pressures obtained by the SPH method and our coupling scheme fluctuate a lot, we take the
average pressure readings about the normalized time 0.5, i.e. from 7 ms to 9 ms. Fig. 9 shows that the results
of our lagrangian coupling scheme and LS-DYNA agree with the analytical solution of Wilbeck reasonably.

The computational cost required by our approach and LS-DYNA are listed in Table 1. Model 1 is just
the model described above. The time steps of both our approach and LS-DYNA are controlled by the shell
element, and remain the same during the whole simulation. It can be seen that our approach costs only 58%
of LS-DYNA. In model 2, the mesh of the plate is replaced by a coarse mesh of 1 shell element, and the time
steps of both our approach and LS-DYNA are controlled by the particles of the bird. In model 3, the plate
is removed, and the bird flies freely. All the results show that, our approach costs much less than LS-DYNA
does.

Table 1: Comparsion of computational cost
4tmax/µs 4tmin/µs Steps CPU time/s

Model 1 LS-DYNA 2.40 2.40 668 161
MPM3D 2.40 2.40 668 94

Model 2 LS-DYNA 3.17 3.03 518 125
MPM3D 3.26 2.64 568 48

Model 3 LS-DYNA 3.17 3.17 505 107
MPM3D 3.26 3.09 518 38

6.2. Bird impact on an aluminum plate
The square plate has a length of 500 mm, and a thickness of 14 mm. It is meshed by 2500 shell elements

with the dimension of 10 mm and modelled by an isotropic elastic-plastic material model with density
ρ = 2780 kg/m3, elastic modulus E = 71 GPa, Poisson’s ratio ν = 0.3, yield strength σY = 345 MPa and
tangent modulus Et = 690 MPa. The bird weights 1.82 kg, and has a diameter of 114 mm in Fig.6(a). It is
discretized by 29365 evenly distributed particles with a spacing of 4 mm. All the edges of the plate are fixed,
and the initial velocity of the bird is 120 m/s. The total simulation time is 3 ms.

Fig.10 shows the configurations of the bird and the von Mises stress of the plate at different times. Both
the maximum and distribution of the stress obtained by our approach are in good agreement with those of
LS-DYNA. Fig.11 compares the time history of the normal displacement and equivalent plastic strain at the
center of the plate. Our results agree well with those of LS-DYNA SPH approach.
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Figure 11: Deflection (a) and equivalent plastic strain (b) at the center of the plate
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Figure 10: Configurations of the bird and von Mises stress of the plate at different times obtained by (a) MPM3D and (b)
LS-DYNA

6.3. Bird strike a wing leading edge
The wing leading edge is one of the most likely place to be struck by a bird. As shown in Fig.12, the leading
edge structure is composed of four ribs, one skin and one spar, which has a length of 1200 mm, a left height of
280 mm and a right height of 240 mm. The four ribs are evenly placed along the x-direction with a distance
of 400 mm. As a demonstration example, all parts take a thickness of 2 mm. All parts are connected by
rivets. For simplicity, only 17 rivets on one rib are plotted in Fig.12. The structure is meshed by 16309 shell
elements with dimensions of about 10 mm, and modelled by an isotropic elastic-plastic material model with
density ρ = 2780 kg/m3, elastic modulus E = 71 GPa, Poisson’s ratio ν = 0.3, yield strength σY = 345
MPa and tangent modulus Et = 690 MPa. The equivalent plastic strain beyond 0.2 is chosen as the failure
criterion.Each rivet is meshed by one beam element, which has a diameter of 5 mm, tensile strength of 3000
N, and shear strength of 4800 N. All the nodes on the top and bottom edges of the spar and the back edges
of ribs are fixed.
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Figure 12: Wing leading edge structure

The bird is of 1.82 kg, and has a diameter of 114 mm, as shown in Fig.6(a). It is discretized by 29333
evenly distributed particles with a spacing of 4 mm. The bird impacts at the center of the structure with an
initial velocity of 120 m/s along the y-direction. The total simulation time is 4 ms.

Fig.13 shows the structure’s deformations and von Mises stress distributions at different times, Fig.14
shows the configuration of the bird at the final moment, and Fig.15 shows the cut shape of the structure in
the end. Fig.16 shows the time history of the y-coordinate and the equivalent plastic strain of the impact
center. In this example, the Lagrangian coupling scheme in MPM is used, which does not allow penetration
to occur. However, the calculation of contact force by SPH is based on the penalty method, which allows
slight penetration throughout the impact. Thus, the y-displacement at the impact center by MPM is slightly
larger than that by LS-DYNA. In addition, the difference of contact algorithms between the ribs and the
skin will also affect the final results. All the results obtained by MPM3D agree with those of LS-DYNA
reasonable, which gives strong evidences to the validation and practicality of our approach.

Table 2 shows that the computational cost of our approach is slightly higher than that of LS-DYNA.
Due to the intensive source code optimization, LS-DYNA costs much less than our approach does during
the shell element calculation and contact calculation. On the other hand, our MPM bird costs much less
than the LS-DYNA SPH bird does, as shown in Subsection 6.1. After a careful source code optimization in
shell element and contact calculation, our code should be much more efficient than LS-DYNA in bird strike
simulation.

Table 2: Comparsion of computational cost
4tmax/10−7s 4tmin/10−7s Steps CPU time/s

DYNA 4.08 4.08 9807 1634
MPM3D 4.08 4.08 9801 1747

7. Conclusions

In this paper, a coupled shell-material point method is proposed for the bird strike simulation. The bird is
simulated by the MPM with the cubic polynomial EOS. The shell element is highly efficient and accurate for
problems with mild deformation, so it is employed to model the aircraft structure. The interaction between
MPM particles and shell elements is dealt with by the particle-to-surface contact algorithm. Besides, when
the structure undergoes large deformation or fails, the shell element will be eroded under a certain criterion.

As a benchmark test, a bird impact on a rigid plate is simulated, and the results show that the MPM is
suitable to model the fluid-like bird. Then the example of a bird impact on an aluminum plate validates our
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Figure 13: Deformations and von Mises stress distributions of the structure at different times
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Figure 14: Configuration of the bird at the final moment. The blue particles are of SPH brid, and the red particles are of our
MPM bird
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Figure 15: Cut shape of the structure at the final moment
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coupling scheme. Finally, a wing leading edge bird strike simulation is presented, and the results agree with
LS-DYNA reasonably.
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