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a b s t r a c t 

The weakly compressible material point method (WCMPM) suffers from volumetric-locking and numer- 

ical oscillation in modeling fluid flow and fluid-structure interaction problems. In this paper, a v-p for- 

mulation of the material point method ( vp -MPM) is proposed for weakly compressible problems based 

on a two-field variational principle. As only the velocity v and the pressure p are the independent vari- 

ables, the v - p formulation has much less extra variables than those based on the Hu-Washizu multi-field 

variational principle which takes the velocity, strain and stress as independent variables. The pressure is 

assumed independently in the control volume of each gird node. Spurious pressure oscillation reduces but 

still occurs at the interface of discontinuity due to large pressure gradient difference across the interface. 

Therefore, a slope limiter is employed to suppress the oscillation and the general interpolation functions 

are used to eliminate the cell-crossing error. In order to extend the method to the fluid-structure inter- 

action problems, the v-p formulation is incorporated into the improved coupled finite element material 

point method. Several numerical examples are presented to validate the vp -MPM. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As one of meshfree/particle methods, the material point

method (MPM) proposed by Sulsky et al. [1–3] employs a set of

Lagrange particles, which move through a predefined Eulerian

background grid, to discretize the field variables in the mate-

rial domain. At the beginning of each time step, the mass and

momentum of particles are mapped to the grid to construct the

information at the grid points. After solving the momentum equa-

tions on the background grid, the solutions are mapped from the

grid points to the particles to update their positions and velocities.

In the next time step, a new regular grid which encloses all

particles is defined. Thus, mesh distortion associated with the La-

grangian finite element method (FEM) are completely eliminated. 

Recently, the MPM has been used to study weakly compressible

flows [4–8] and incompressible flows [9–11] . Li et al. [4] first pro-

posed a weakly compressible material point method (WCMPM) by

employing the weakly compressible equation of state (EOS). How-

ever, the weakly compressible EOS used in the WCMPM leads to

significant spurious pressure oscillations and shortens the critical

time steps. To overcome these shortcomings of the WCMPM, Zhang
� Supported by the National Natural Science Foundation of China ( 11672154 ) and 
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t al. [9,10] proposed an incompressible material point method

iMPM) by employing the operator splitting technique to split the

olution of momentum equation into two steps. An intermedi-

te velocity field is first obtained from the momentum equations

ith the pressure term ignored, and then corrected by the pres-

ure term to obtain a divergence-free velocity field. Kularathna

nd Soga [11] also proposed a similar scheme in almost the same

ime. The iMPM successfully eliminates the spurious pressure os-

illations and significantly lengthens the critical time step yet its

mplementation is much more complicated than the WCMPM. For

uid flow problems with shocks, the fluid has to be considered

s compressible which can not be modeled by the iMPM. Further-

ore, it is difficult to obtain a converged solution for strong fluid-

tructure interaction (FSI) problems with extreme large deforma-

ion using an implicit formulation. To better model these kinds

f problems, WCMPM needs further improvement to eliminate the

purious pressure oscillations. 

In the WCMPM, two main factors leading to the pressure oscil-

ations are the well known cell-crossing error [12] and volumetric

ocking [7] . Throughout this paper, node refers to grid point and

ell refers to grid cell. To overcome the cell-crossing error, the gen-

ralized interpolation material point method (GIMP) was proposed

y Bardenhagen et al. [12] . Inspired by the GIMP, many improved

lgorithms arise such as the contiguous particle GIMP (cpGIMP)

13] , convected particle domain interpolation (CPDI) [14,15] , dual

omain material point (DDMP) [16] method and B-spline MPM

https://doi.org/10.1016/j.compfluid.2018.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.09.005&domain=pdf
https://doi.org/10.13039/501100001809
mailto:xzhang@tsinghua.edu.cn
https://doi.org/10.1016/j.compfluid.2018.09.005
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Fig. 1. Pressure oscillation observed in the WCMPM results. 
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17,18] , not to mention all. A common feature of these methods

s the smoothed gradient of the interpolation function. Another

ind of method to reduce the cell-crossing error is to use Gaus-

ian quadrature instead of particle quadrature. Beuth et al. applied

aussian quadrature to solve quasi-static problems in the implicit

PM [19] , but still used particle quadrature at boundaries. Sulsky

t al. [20] reconstructed the information at the nodes and Gaussian

oints using the moving least squares method (MLS) which makes

he second-order accuracy possible for large deformation problems

ith fixed boundaries aligned with the grid boundaries. 

Volumetric locking is more dominant than the cell-crossing er-

or in the WCMPM and leads to inaccurate and non-physical pre-

ictions. The concept of volumetric locking initially came up in

he finite element method (FEM) when modeling incompressible or

early incompressible problems. A fully integrated element leads

o excessive constraints placed on an element’s deformation, caus-

ng the element to behave too stiffly. The MPM also suffers from

olumetric locking because of large number of integrating points

particles) normally placed in each cell to reduce the quadrature

rror. Neither GIMP nor CPDI alleviates the pressure instability. 

Strong oscillations have been observed in the pressure distri-

ution in nearly incompressible flow problems simulated with the

CMPM, as shown in Fig. 1 (a). By carefully examining Fig. 1 (a),

e can find that the pressure field distributes in a checkerboard

attern, as shown in Fig. 1 (b). In the WCMPM, the velocity filed

s approximated by bilinear polynomials, so that the divergence of

elocity which is related to the incremental volumetric strain is

inear in each element. Thus, the zero divergence divergence con-

our ∇ · v = 0 is a line in each element. Consequently, ∇ · v will be

egative in one side of the line and positive in another side, as

hown in Fig. 1 (c), leading to the checkerboard patter in pressure

istribution. 

Mast et al. [7] employed the standard trilinear interpolation

unctions with anti-locking techniques based on the Hu-Washizu

ulti-field variational principle [21] . In their algorithm, particles

re treated as sample points for the approximation whilst the

train and stress at nodes/cells are constructed with the assumed

rilinear or constant distribution. The reconstructed strain and

tress of nodes/cells are then used to smooth the particle strains

nd stresses. The algorithm is able to mitigate the accumulation of

ctitious strains and stresses, and significantly improves results for

ll field variables. 

This paper aims to provide an efficient anti-locking algorithm

or the WCMPM based on a two-field variational principle. The

ain hurdle in the applying the “standard” displacement formu-

ation to incompressible or nearly incompressible problems lies in

he determination of the mean stress or pressure which is related

o the volumetric part of the strain. Thus, it is convenient to sep-

rate the pressure from the total stress field and treat it as an in-

ependent variable. A two-field variational principle where both
he displacement u , or velocity v , and the pressure p are the in-

ependent variables [22] has much less extra variables than the

u-Washizu multi-field principle which also treat stress and strain

s the independent variables. 

In our v-p formulation, the pressure is reconstructed indepen-

ently in the control volume of each node. Spurious oscillations

ill occur at the interface of discontinuity due to large pressure

radient difference between control volumes. To suppress the os-

illations, a slope limiter is employed whilst the GIMP is adopted

o eliminate the cell-crossing error. Moreover, the v − p formula-

ion has also been incorporated into the improved coupled finite

lement material point method (ICFEMP) [5,6,8] to suppress the

purious pressure oscillation encountered in FSI problems, and the

esulted method is abbreviated as the vp -ICFEMP. 

The remaining part of this paper is organized as follows.

ection 2 reviews the WCMPM briefly. Section 3 presents the vp -

PM with the detailed implementation summarized in Section 4 .

everal numerical examples dealing with elastic wave propagation,

am break, wedge falling and water column impact on an elas-

ic obstacle are studied in Section 5 to evaluate the accuracy, effi-

iency and accuracy of the proposed vp -MPM. Finally, the conclu-

ions are summarized in Section 6 . 

. Weakly compressible material point method 

In this section, the equations governing the motion and de-

ormation of fluid are first presented in the updated Lagrangian

rame. Particles are employed to discretize the problem domain in

he weak form so that the discrete momentum equations are es-

ablished. 

.1. Governing equations 

In material domain �, the momentum equations in the updated

agrangian frame are given by 

· ∇ + ρb = ρ ˙ v (1) 

here ∇ denotes the vector differential operator, σ is the Cauchy

tress, ρ is the current density, b is the body force per unit mass, v

s the velocity, the superimposed dot denotes the time derivatives.

he boundary conditions are 

( σ · n ) | �t 
= t̄ 

v | �v = v̄ (2) 

here n is the unit outward normal to the boundary, �v and �t 

enote the prescribed displacement boundary and traction bound-

ry of the domain �, respectively. 

The weak form equivalent to the momentum equation and the

raction boundary condition can be formulated as 
 

�
ρ ˙ v δv d� + 

∫ 
�

σ : ∇δv d� −
∫ 
�

ρbδv d� −
∫ 
�t 

t̄ δv d� = 0 (3) 
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Fig. 2. The support of node I for determining the unknown coefficients a I . 

Fig. 3. The smoothed pressure for an one-dimensional case. 
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where δv denotes the test function (virtual velocity) and the dis-

placement boundary conditions must be satisfied a priori. 

2.2. The weakly compressible equation of state 

The fluid stress can be decomposed into two parts, namely, 

σ = pI + τ (4)

where p is the fluid pressure, I represents the unit tensor and τ
signifies the viscous stress, respectively. 

In the WCMPM [4] , the pressure is updated by the weakly com-

pressible equation of state (EOS) 

p = −Kε V = −Km 

T ε (5)

where K = ρ0 c 
2 is the bulk modulus with c denoting the artificial

sound speed and ρ0 denoting the reference density, εV and ε de-

note the volumetric strain and the strain in Voigt format, respec-

tively, and 

m 

T = [ 1 1 1 0 0 0 ] (6)

Morris et al. [23] estimated the artificial sound speed by 

c 2 ∼ max 

(
V 

2 
0 

δ
, 
νV 0 

L 0 δ
, 

bL 0 
δ

)
(7)

where V 0 is the flow velocity, b is the body force per unit mass, L 0 
is the characteristic length, ν is the kinematic viscosity coefficient

and 

δ = 

�ρ

ρ
(8)

represents the density fluctuation. Normally, δ ≤ 3%. 
.3. MPM Scheme 

In the MPM, the material domain is discretized by a set of par-

icles. The velocity v of a point X is interpolated from the nodal

elocity v I and its gradient ∇v is derived accordingly, i.e. 

 p = 

n g ∑ 

I=1 

N Ip v I , ∇ v p = 

n g ∑ 

I=1 

∇N Ip v I (9)

here n g is the total number of grid nodes, N Ip and ∇N Ip are the

alues of the interpolation function N I of node I and its gradient

valuated at the location of particle p , respectively. 

In the MPM, the particle quadrature is employed to integrate

he weak form. Substituting Eq. (9) into Eq. (3) and invoking the

rbitrariness of δv I lead to 

 I ̇ v I = f I I = 1 , 2 , . . . , n g (10)

here 

 I = 

n p ∑ 

p=1 

N Ip m p (11)

s the lumped nodal mass and m p is the mass of particle p , 

f I = f ext 
I + f int 

I (12)

s the nodal force, 

f int 
I = −

n p ∑ 

p=1 

m p 

ρp 
σp · ∇N Ip (13)

s the internal nodal force, 

f ext 
I = 

n p ∑ 

p=1 

m p N Ip b p (14)

s the external nodal force with the traction t̄ omitted for simplic-

ty, and b p = b(x p ) . 

The original MPM employs the trilinear C 0 interpolation func-

ions N I for computational efficiency. The discontinuity of the gra-

ient of N I leads to the cell-crossing error. The Generalized In-

erpolation Material Point (GIMP) method [12] developed by Bar-

enhagen et al. can significantly alleviate the cell crossing error

nd has been further improved by other authors [13–16] . In these

IMP-type methods, the C 0 interpolation function N I and its gradi-

nt ∇N I are replaced by a general interpolation function S I and its

radient ∇S I , respectively. 

.4. Volumetric locking in the WCMPM 

The formulation of the MPM is similar to the traditional fi-

ite element method (FEM). Thus, shortcomings of the FEM are in-

erited by the MPM. The volumetric locking is the most notable

hortcoming when the FEM is used to model nearly incompress-

ble media such as rubbers, water and metals undergoing plastic

ow. The volumetric locking results from the selection of the stan-

ard trilinear functions, which is unable to reproduce the correct

eformation modes [24] . Presently, multi-field variational princi-

les, high order interpolation and selective reduced integration are

he most common anti-locking techniques employed in the FEM

22,24,25] . The similar concepts are applicable to the MPM. On the

ther hand, Mast et al. [7] pointed out that the high order shape

unctions such as GIMP, CPDI, B-spline cannot alleviate the volu-

etric locking. Therefore, the standard linear shape functions were

mployed with anti-locking techniques based on the Hu-Washizu

ulti-field variational principle [7] . The formulation is able to mit-

gate the accumulation of fictitious strains and stresses, and signif-

cantly improves the predictions of all the field variables. 
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Fig. 4. The linear pressure field in the support of node I with and without a limiter. 

(For interpretation of the references to color in this figure, the reader is referred to 

the web version of this article.) 

Fig. 5. The propagation of a 1D elastic wave. 

Fig. 6. The pressure distribution at t = 5 ms. 
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In order to explain the volumetric locking, Eq. (10) are rewritten

n matrix form as 

 ̈u + Ku = f (15)

here u is the nodal displacement vector, f is the nodal force vec-

or, M is the mass matrix, 

 = K 

n p ∑ 

p 

B 

T (mm 

T ) B V p (16)

s the stiffness matrix, V p is the volume of particle p , B is the strain

atrix evaluated at x p . Note worthily, the rank of B 

T ( mm 

T ) B is

qual to one. 

In the weakly compressible flows, the bulk modulus K is large

nd can be viewed as the penalty parameter. For each cell, the rank

f the element stiffness matrix is equal to the number of the in-

egration points n e . The solvability of Eq. (15) requires the whole

tiffness matrix K to be singular, which is equivalent to 

 p = 

∑ 

e 

n e < n u (17)

here n u is the number of degree of freedoms (DOFs) of the sys-

em. The particle spacing is commonly set to one half of the cell
ize. Obviously, the number of particles n p is far more than the

otal DOFs of nodes, n u , and results in the volumetric locking and

he pressure instability. Furthermore, only employing high order or

moothed shape functions (GIMP, the B-spline function, etc.) with-

ut increasing the number of nodes can not mitigate the volumet-

ic locking, which agrees with the conclusion of Mast et al. [7] . 

. vp- MPM for weakly compressible problems 

In the FEM, the application of a mixed formulation can alleviate

he volumetric locking which plagues the computational analysis

f nearly incompressible media encountered in a variety of engi-

eering problems in ranging from soil mechanics to aerospace en-

ineering [22] . The identical problem also occurs in incompressible

uid flows. Many of the existing FEM strategies make use of multi-

eld variational principles such as the well-known Hu-Washizu

ulti-field variational principle [21] . 

Mast et al. [7] employed the standard trilinear shape functions

ith anti-locking techniques based on the Hu-Washizu multi-field

ariational principle with three independent fields (displacement,

tress and strain). In the nearly incompressible problems, using the

wo-field principle in which the displacement u , or velocity v , and

he pressure p are the independent variables is more convenient

22] . The main problem in the application of a “standard” dis-

lacement formulation to incompressible or nearly incompressible

roblems lies in the determination of the mean stress or pressure

hich is related to the volumetric strain. Hence, it is convenient to

eparate the pressure from the total stress field and treat it as an

ndependent variable. In the v-p formulation, only one extra vari-

ble needs to be reconstructed, while in the Hu-Washizu multi-

eld formulation, 12 extra variables have to be reconstructed. 

.1. The v - p formulation 

In the mixed formulation, we take the velocity v and the pres-

ure p as the independent variables. The weak form (3) can be

ewritten by treating p as an independent variable as 
 

�
ρ ˙ v δv d� + 

∫ 
�

τ : ∇δv d� −
∫ 
�

p∇ · δv d� −
∫ 
�

ρbδv d�

−
∫ 
�t 

t̄ δv d� = 0 (18) 

In addition, a weak form of Eq. (5) should be imposed, namely

 

�

(
ε V + 

p 

K 

)
δpd� = 0 (19) 

hich represents the constitutive law. 

.2. The pressure approximation 

The v-p formulation takes the velocity and pressure as un-

nown variables. In the v-p formulation of MPM, the velocity field

s constructed by the nodal interpolation, which is the same as the

tandard MPM. To approximate the pressure field, the trial function

nd test function are chosen to be linear functions, i.e. 

p(x , t) = q 

T (x ) a (t) (20)

p(x , t) = δa 

T (t) q (x ) (21)

here q = (1 , x, y, z) T is the linear polynomial basis and a =
(a 0 , a 1 , a 2 , a 3 ) 

T is the coefficient vector to be determined. The lo-

al linear pressure approximation (20) resembles the variable re-

onstruction used in the finite volume method (FVM) to con-

truct variable fields in each element. The undetermined co-

fficient vector a can be determined by particles (nodes in
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Fig. 7. The log E − log h curve with different cell sizes. 

Fig. 8. The schematic of dam break. 
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Fig. 9. Dam break configurations obtained 
he FVM) in a chosen stencil, which will be discussed in

ore detail below. The second-order approximation can be

chieved by employing q = (1 , x, y, z, x 2 , xy, y 2 , yz, z 2 , xz) T , and a =
(a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 ) 

T . 

Substituting Eqs. (20) and (21) into Eq. (19) and invoking the

rbitrariness of δa results in 

 

�
qq 

T d�a = 

∫ 
�

q ̂

 p d� (22)

here 

ˆ p = −Kε V (23)

s the intermediate pressure. 

Eq. (22) provides a way to obtain the smoothed pressure at

ample point x . In the standard MPM, the pressure information is

tored in the particles. Thus, a straightforward idea is to smooth

he pressure by evaluating Eq. (22) at each particle, where the co-

fficient vector a is defined at the particles. For example, to deter-

ine the coefficient vector a s of particles s , Eq. (22) can be rewrit-

en as 
 

�s 

qq 

T d�a s = 

∫ 
�s 

q ̂

 p d� (24)

here �s is the local approximation domain of particle s . By em-

loying the particle quadrature in Eq. (24) , the coefficient vector a s 

an be obtained as 

 s = H 

−1 
s 

n s ∑ 

p=1 

q p ̂  p p V sp (25)

here 

 s = 

n s ∑ 

p=1 

q p q 

T 
p V sp (26)
by the (a) WCGIMP and (b) vp -GIMP. 
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Fig. 10. Time evolution of the water front. 

Fig. 11. Time evolution of the pressure at location P 1 . 

Fig. 12. The section of wedge [36] . 
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u  
s a 4 × 4 matrix, n s represents the number of particles in the lo-

al approximation domain �s of particle s , V sp = W s (x p ) V p is the

ontrol volume of particle s contributed by particle p with V p de-

oting the volume of particle p . The function W s ( x ) is a partition of

nity, i.e. 
∑ 

s 
W s (x ) = 1 , which defines the local approximation do-

ain of particle s , i.e. �s = { x : W s (x ) � = 0 , 
∑ 

s 
W s (x ) = 1 } . Note that

he local approximation domains of particles overlap each other,

.e. 
⋃ 

�s � = �, but the partition of unity makes 
∑ 

s 
V sp = V p . Any

ontinuous function satisfying the partition of unity condition can

e used to define the local approximation domain of a particle. In
his study, the grid nodal shape function N I ( x ) is used to define the

ocal approximation domain of node I , which will be discussed in

ore detail below. 

The above strategy is very similar to the moving least square

MLS) technique. However, it increases the computational cost sig-

ificantly because the inversion of a 4 × 4 matrix is required at ev-

ry particle. Besides, it requires the neighbor particles searching,

hich is also very expensive. To maintain the computational effi-

iency of the WCMPM, Eq. (22) can be evaluated only at the node

r cell centroid. The former and the latter are termed as the node-

ased approach and the cell-based approach, respectively [7] . Once

he pressure values at nodes or cell centroids are obtained, those

t the particles are interpolated from the nodes in the node-based

pproach, or is directly set to be the value of the cell centroid of

he cell containing the particle in the cell-based approach. The cell-

ased approach uses the particles in the same cell as the sample

oints to approximate the cell pressure. Though the cell-based ap-

roach can mitigate the volumetric locking, it is ineffective for re-

ucing the pressure oscillation because the assumed pressure dis-

ribution is not continuous across the cell boundary. On the con-

rary, the node-based approach secures a continuous pressure and,

hus, is employed in this article. 

In the node-based approach, the pressure distribution is as-

umed to be linear in the support domain of each node. The sup-

ort domain of node I is defined as �I = { x | N I (x ) > 0 with N I ( x )

enoting the shape function of node I , as shown in Fig. 2 [7] . The

rial and test functions are chosen to be Eq. (20) and Eq. (21) ,

espectively. The polynomial coefficients in a I = (a 0 , a 1 , a 2 , a 3 ) 
T of

ode I is determined using the particles within the support of node

 . 

Mast et al. evaluated Eq. (22) by particle quadrature in the sup-

ort of node I defined by the interpolation function N I � = 0. Thus,

 I = H 

−1 
I 

n p ∑ 

p 

N Ip V p q Ip ̂  p p (27)

here 

 I = 

n p ∑ 

p 

N Ip V p q Ip q 

T 
Ip = 

n p ∑ 

p 

N Ip V p 

⎡ ⎢ ⎣ 

1 x p y p z p 
x p x 2 p x p y p x p z p 
y p x p y p y 2 p y p z p 
z p x p z p y p z p z 2 p 

⎤ ⎥ ⎦ 

(28)

The node-based approach is efficient because Eq. (27) is only

valuated at nodes and the neighbor particles searching is no more

eeded. After solving the coefficient vector a I from Eq. (27) , the

ressure of particles can be obtained by interpolating the nodal

alues to the particles, i.e. 

p p = 

∑ 

I 

N Ip q 

T 
p a I (29)

It should be noted that the smoothed pressure in Eq. (29) is

ot linear. Take the one-dimensional case shown in Fig. 3 as an

xample. The pressure fields of node 1 (x 1 = 1) , node 2 (x 2 = 2)

nd node 3 (x 3 = 3) are chosen as p 1 (x ) = (x − 1) + 1 , p 2 (x ) =
(x − 2) + 2 and p 3 (x ) = 3 , respectively. The smoothed pressure

 obtained from Eq. (29) is plotted in Fig. 3 , which is piecewise

uadratic and continuous at nodes. 

Finally, the volume of particles is updated according to the

eakly compressible EOS as 

 p = V 0 

(
1 + ε iip 

)
= V 0 (1 − p p 

K 

) (30)

.3. Slope limiter 

The pressure is reconstructed independently in the control vol-

me of each node in a way similar to the reconstruction step in



176 Z.-P. Chen et al. / Computers and Fluids 176 (2018) 170–181 

Fig. 13. The time history of the vertical velocity. 

Fig. 14. Comparisons of pressure results at t = 0 . 00435 s. 

Fig. 15. Comparisons of pressure results at t = 0 . 0158 s. 
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he finite volume method (FVM). In addition to the checkerboard

attern spatial oscillation caused by the volumetric locking, large

ressure gradient difference between control volumes will also re-

ult in spurious oscillation in pressure near the interface of dis-

ontinuity. Thus, a slope limiter, also known as gradient limiter, to

imit the gradients of the reconstructed function [26–28] can be

mployed to suppress the spurious oscillation. A limiter first com-

utes the trial gradient, and then reduces it by a scalar φ ∈ [0, 1],

hich is applied to variables reconstruction. One of the most fa-

ous slope limiter was introduced by Barth and Jespersen [29] . 

A slope limiter can be readily implemented in the vp -MPM. The

oefficients a 1 , a 2 and a 3 corresponding to the pressure gradient

etermined from Eq. (27) are multiplied by the limiter φ ∈ (0, 1) to

efine the adjusted pressure field for node I , i.e. 

˜ p (x ) = 

˜ p 0 + φa 1 (x − x̄ ) + φa 2 (y − ȳ ) + φa 3 (z − z̄ ) (31)

here 

x̄ = 

( 

n p ∑ 

p=1 

x p V p 

) 

/ 

( 

n p ∑ 

p=1 

V p 

) 

¯
 = 

( 

n p ∑ 

p=1 

y p V p 

) 

/ 

( 

n p ∑ 

p=1 

V p 

) 

z̄ = 

( 

n p ∑ 

p=1 

z p V p 

) 

/ 

( 

n p ∑ 

p=1 

V p 

) 

re the coordinates of the centroid of the particles that influence

ode I , 

˜ p 0 = a 0 + a 1 ̄x + a 2 ̄y + a 3 ̄z 

s the pressure at the centroid ( ̄x , ̄y , ̄z ) . For clarity, the nodal sub-

cript I is omitted in above equations. As the limiter φ varies

rom 0 to 1, the hyperplane ˜ p (x , φ) will rotate around the centroid

( ̄x , ̄y , ̄z ) . If φ = 1 (not limited), Eq. (31) is equal to the original re-

onstructed pressure. We do not use the origin (0,0,0) as the rota-

ion center, because if particle p is far away from the origin, even

 small difference of φ will induce a large change in pressure at x p 
nd fail the slope limiter. The slope limiter φ can be determined

y 

p min = min 

p∈ �I 

{ p p } � ̃

 p (x ) � max 
p∈ �I 

{ p p } = p max (32)

here �I signifies the stencil used in the reconstruction. A popular

imiter, Barth limiter [29] defined as 

I = min 

p∈ �I 

(φIp ) , φIp = min (1 , r Ip ) (33)

s employed here, where 

 Ip = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

f max − f I 
∇ f · (x p − x c ) 

∇ f · x p > 0 

f min − f I 
∇ f · (x p − x c ) 

∇ f · x p < 0 

1 ∇ f · x p = 0 

(34)

The stencil �I is chosen to be the set consists of all particles

overed by the control volume of node I , i.e. 

I = { p | N Ip > 0 } (35)

Once the slope limiter is obtained, the adjusted pressure field

ill be used to smooth particles’ pressure. Fig. 4 plots the linear

ressure field in the support of node I with and without a lim-

ter in one dimension. The red line shows the pressure field with-

ut a slope limiter. When applying a slope limiter, the gradient of

ressure is restricted, leading to a reduction in the amplitude of

ressure oscillation, as illustrated by the green line. The pressure

scillation is suppressed after employing a slope limiter. 
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Fig. 16. Comparisons of pressure results at t = 0 . 0202 s. 
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. Numerical implementation 

The detailed implementation of the v p -MPM in a time step can

e summarized as follows. 

1. At the beginning of the time step t n , establish the background

grid that encloses all particles and initialize the nodal mass by

Eq. (11) and the nodal momentum by 

p 

n −1 / 2 
I 

= 

n p ∑ 

p=1 

N Ip m p v n −1 / 2 
p (36) 
Fig. 17. Pressure contour: (a) ICFE
respectively. 

2. Calculate the intermediate pressure ˆ p of particles by Eq. (23) ,

which is the same as the standard WCMPM. 

3. Determine the nodal pressure coefficient vector a I by

Eq. (27) with the slope limiter Eq. (32) , and store the polyno-

mial coefficients. 

4. Smooth the pressure of particles by Eq. (29) and update the vol-

ume of particles by Eq. (30) . 

5. Calculate the nodal force using Eq. (12) , and integrate the mo-

mentum equation (10) to update the nodal momentum p 

n +1 / 2 
I 

. 

6. Update the particle velocity v n +1 
p and position x n +1 

p by 

v n +1 / 2 
p = v n −1 / 2 

p + �t n 
N g ∑ 

I 

N 

n 
Ip f 

n 
I /m 

n 
I (37)

x n +1 
p = x n p + �t n +1 / 2 

N g ∑ 

I=1 

N 

n 
Ip p 

n +1 / 2 
I 

/m 

n 
I (38)

here �t n +1 / 2 = t n +1 − t n , �t n = t n +1 / 2 − t n −1 / 2 = 

1 
2 (�t n −1 / 2 +

t n +1 / 2 ) . 

If the GIMP is used with the v − p formulation, the interpolation

unction N I should be replaced by the GIMP interpolation function

 I in all above equations except in Eqs. (27) –(29) . 

. Numerical examples 

.1. Elastic wave propagation 

The first example is an elastic wave propagation for validat-

ng the accuracy of the vp -MPM. Fig. 5 shows two 1D water

olumns each of length 0.5 m separated by a flap. The initial

ressures of the left and right columns are p 1 = 10 0 0Pa and p 2 
 100Pa, respectively. The weakly compressible EOS with density

= 10 0 0 kg/m 

3 and artificial sound speed c = 50 m/s is assumed
MP; (b) vp -ICFEMP; (c) SPH. 
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Fig. 18. A water column impact on an elastic obstacle. 

Fig. 19. Time history of the horizontal displacement at the upper left corner of the 

obstacle. 
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for both columns. As soon as the flap is taken away, elastic wave

will propagate through the water columns. For t < 10 ms, the ana-

lytical solution is 

p(x, t) = 

{ 

10 0 0 x < 0 . 5 − ct 
100 x > 0 . 5 + ct 
550 otherwise 

The cell size of 1 mm and the particle spacing of 0.5 mm are

employed to discretize the water columns. The dimensionless con-

stants of artificial bulk viscosity c 0 = 1 . 5 and c 1 = 0 . 06 are chosen.

The pressure distribution obtained by different numerical methods

at t = 5 ms are compared with the analytical solution in Fig. 6 .

Despite the artificial bulk viscosity, the numerical oscillations oc-

cur near the two shock fronts in the MPM. In the vp -MPM with-

out the slope limiter, the numerical oscillation is smoothed sig-

nificantly except in the region near the shock front. The limiting

technique further suppresses the oscillation in the region near the

shock front. 

To examine the mesh convergence of the linear vp -MPM, cell

sizes of 1, 2 and 4 mm are investigated. The particle spacing is

kept at half of the cell size. To quantify the errors, the following

pressure error norm is employed 

E = 

∫ 
�

| ̃  p (x ) − p(x ) | d� = 

∑ 

p 

| ̃  p (x p ) − p(x p ) | V p (39)

where ˜ p (x ) represents the pressure obtained by the numerical

method and p ( x ) signifies the analytical pressure evaluated at posi-
ion x . Fig. 7 plots the logarithm of the error E versus the logarithm

f the cell size h . 

The MPM can be considered as a Lagrangian FEM with particle

uadrature, so the optimal displacement/velocity convergence rate

s 2 and the optimal pressure convergence rate is 1. Because the

article quadrature is not optimal, the pressure rate of the MPM

s less than 1. Fig. 7 shows that the observed convergence rate of

he standard MPM is 0.84 whilst that of vp -MPM is 0.65. Although

he convergence rate of vp -MPM is lower than that of the standard

PM due to the artificial dissipation induced by the slope limiter,

he vp -MPM predicts a much smoother pressure field and is much

ore accurate than the standard MPM. 

.2. Dam break 

The 2D dam break problem studied experimentally by Zhou

t al. [30] and Lobovsky et al. [31] is simulated in this subsec-

ion. A schematic drawing of the problem is shown in Fig. 8 . Be-

ore the test, water with a depth h 0 = 600 mm was stored in the

eservoir area on the left side of the flap. At t = 0, the flap was

ifted quickly and the water crashes into the flow area due to the

ravity. The initial tank has a length l 0 = 1200 mm. P 1 denotes

he location of a pressure sensor. The density ρ , viscosity μ and

ravity g are 10 0 0 kg/m 

3 , 1.01 × 10 −3 Pa · s and 9.8 m/s 2 , respec-

ively. In order to keep the surface of water smoothed, it is as-

umed that the water can sustain a tension of 6kPa before sepa-

ation. The water domain is discretized by 28,800 particles with

article spacing 5 mm and background grid cell size 20 mm. The

rtificial sound speed c = 50 m/s is used in this example. The free-

lip boundary condition is imposed on all solid walls. To eliminate

he cell-crossing error, the v − p formulation is incorporated into

IMP ( vp -GIMP). For comparison, this example is also simulated

y vp -MPM with/without a slope limiter, WCGIMP and WCMPM. 

The following non-dimensional parameters are defined to quan-

ify the results 

 = t 

√ 

h 0 g 

l 2 
0 

, L (T ) = 

l(T ) 

l 0 
, P (T ) = 

p(T ) 

ρgh 0 

here l is the location of the wave front and p is the pressure. 

A sequence of snapshots predicted by the WCGIMP and vp -

IMP are compared in Fig. 9 . Although the free surface profiles

btained by both methods are very similar at the beginning, non-

hysical fluid configuration evolves gradually in the WCGIMP. The

ree surface seems to be unstable as water flows. Moreover, there

s a significant difference in the pressure distributions predicted

y the two methods. At the beginning, hydrostatic pressure ob-

ained by both methods is close to linear along the vertical direc-

ion. However, the pressure obtained by the WCGIMP soon shows

igh frequency oscillations as the water flows. Although the GIMP

an eliminate the cell-crossing error, it can not reduce the numer-

cal oscillation or mitigate the volumetric locking in the weakly

ompressible problems. In comparison, the pressure distribution

btained by the v − p GIMP is always stable and the free surface

rofiles are reasonable during the whole process. 

The non-dimensional displacements of the wave front ob-

ained by the WCMPM, WCGIMP and vp -GIMP are compared in

ig. 10 with the experimental data of Lobovsky [31] . Meanwhile,

he numerical results obtained by the SPH [32] and iMPM [9] are

lso plotted in Fig. 10 for reference. At the beginning, the exper-

mental wave front is a slightly faster than the predicted wave

ronts. After a while, the predicted wave fronts catch up and fi-

ally exceed the experimental one. The difference between experi-

ental and predicted wave fronts may be due to several factors in

he experiment, such as the flap removal speed and development

f turbulence near the water front which causes the delay of the
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Fig. 20. The deformation of the obstacle and the free surface profile obtained by (a) the ICFEMP and (b) the vp -ICFEMP at different times. 
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ownstream motion [9] . The predictions of vp -GIMP are the closest

o the experimental results. 

The pressures at the sensor location P 1 predicted by the vp -

IMP with/without a limiter, WCMPM, WCGIMP, SPH and iMPM

re compared with the experimental data reported by Zhou et al.

30] in Fig. 11 . The results obtained by the vp -GIMP and GIMP

gree with the experiment data reasonably. On the other hand, the

CMPM shows severe numerical oscillation because of the cell-

rossing error. Due to the weakly compressible EOS, the pressure

scillation still exists in the vp -GIMP, GIMP and SPH. The delay of
he second pressure peak at T � 3 in the numerical methods might

e due to the air in the cavity which has not been taken into ac-

ount in the simulations. Comparing the pressure history obtained

y the vp -GIMP with and without a limiter shows that the limiter

s able to suppress the pressure oscillation near the first pressure

eak which corresponds to the shock front. 

Note that the time oscillation in pressure may be induced by

everal facts, including the partial oscillation in pressure, the ex-

licit time integration, and the weak compressible EOS. However,

he proposed vp -MPM only eliminates the checkerboard pattern
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Table 1 

The vertical velocity at t = 0 . 02 s. 

Cell size Experiment ICFEMP vp -ICFEMP 

2.5 mm 5.05 m/s 4.89 m/s 4.91 m/s 

5 mm – 4.90 m/s 4.92 m/s 

10 mm – 4.91 m/s 4.94 m/s 
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spatial oscillation in pressure induced by the volumetric locking.

Thus, the time evolution of the pressure obtained with vp -MPM in

Fig. 11 still shows oscillations. 

In this example, the vp -MPM and vp -GIMP cost about 80% and

25% higher than the WCMPM and WCGIMP, respectively, due to

the extra smoothing procedure in the v − p formulation. Although

the generalized interpolation is employed to integrate the nodal

force in the vp -GIMP, the standard C 0 interpolation is still used to

smooth the particle pressure which is considerably more efficient

than the generalized interpolation employed in the vp -MPM. Thus,

the extra cost by the vp -GIMP is lower than that of the vp -MPM.

However, the total cost by the vp -GIMP is about two times of the

vp -MPM. 

5.3. Free falling of the wedge 

It is a great challenge to simulate the free surface and moving

solid bodies together. A wedge falling into water is simulated to

investigate the capacity of vp -ICFEMP method for predicting flow

phenomena. The velocity variation of the wedge depends on the

interaction between the wedge and the surrounding fluid. This

problem has been studied by using different methods, such as the

level set immersed boundary method (IBM) [33] and the incom-

pressible SPH (ISPH) method [34] . Zhao et al. also conducted an

experiment [35] , in which the wedge has a breadth of 500 mm,

V-shaped section with a 30 ° dead-rise angle, as shown in Fig. 12 .

The total weight is 241 kg. The tank has a width of 2 m and depth

of 1 m. It is fitted with piezoresistive pressure cells of diameter

4 mm (P1–P5 in Fig. 12 ). The vertical motion is the only degree

of freedom allowed to the wedge in this experiment. The vertical

velocity was obtained using an optical sensor. All the numerical

methods employed a two dimensional model for this problem. 

The problem is assumed to be plane strain in the simulation.

The wedge is modeled as rigid body, while the water is modeled

by the null material with incompressible EOS. The artificial sound

speed is chosen as 50 m/s to increase time step size and avoid

the oscillation of pressure [37] . The water is assumed to be un-

able to sustain tension. The acceleration of gravity is taken to be

g = 9 . 81 m / s 2 . The initial velocity of the wedge falling into water

is v 0 = −6 . 15 m/s. The average finite element sizes of the wedge

is set to 10 mm. The sizes of the background grid cell are set

to 5 mm, while the particle space is 2.5 mm. The whole model

consists of 320,0 0 0 particles for water, and 390 elements for the

wedge. 

Fig. 13 plots the time history of the falling velocity of the wedge

obtained by different methods. Both the IBM and ISPH assume the

fluid as incompressible, while the ICFEMP and vp -ICFEMP assume

the fluid as weakly compressible. Before t = 0 . 017 s , the predic-

tions given by ICFEMP, vp -ICFEMP and IBM agree well with experi-

ment data. However, the velocity is over-predicted after that which

might be caused by the artificial compressibility of the weak com-

pressible EOS. The results obtained by the ISPH fit the experiment

data well in the whole falling process. 

In order to investigate the mesh convergence of the vp -ICFEMP

method, this problem is studied with the background cell size of

2.5 mm, 5 mm and 10 mm, respectively. The vertical velocities of

the wedge at t = 0 . 02 s obtained with different cell sizes are listed

in table 1 . The results obtained by the vp -ICFEMP are a little larger

than those obtained by the ICFEMP. As the cell size decreases, the

vertical velocity become smaller. The converged vertical velocity

obtained by the vp -ICFEMP is about 0.1 m/s smaller than that of

the experiment. 

The following non-dimensional parameters are defined to eval-

uate the results 

P ∗ = 

P − P 0 
0 . 5 ρV 

2 (t) 
, Z ∗ = 

Z 

Z W 
here P represents the local fluid pressure, P 0 = 0 denotes the air

ressure, ρ = 10 0 0 kg / m 

3 is the density of water, V ( t ) is the verti-

al velocity of the wedge obtained by Zhao’s experiment, Z is the

ertical coordinate on the wedge surface, and Z W 

is the absolute

alue of the vertical displacement. Besides, Z K and Z D represent

he vertical coordinate of the keel and the draft of the body, re-

pectively. 

The pressure results obtained by different numerical methods

re compared with Zhao’s analytical and experimental data at

hree given instants, and the time starts when the wedge touches

he free surface. Figs. 14 , 15 and 16 show instants at t = 0 . 00435 s,

 = 0 . 0158 s and t = 0 . 0202 s, respectively. The background grid

ize of 5 mm is used. The red circles on the figures represent the

xperiment data. 

At t = 0 . 00435 s, the analytical results fit the experiment re-

ults very well. The pressure results given by the SPH agree with

he analytical solution, however the peak at P2 is lower. The results

iven by the vp -ICFEMP also agree with the analytical solution rea-

onably except that at the keel, which is a bit lower. Compared

ith the vp -ICFEMP, the pressure obtained by the ICFEMP method

xhibits obvious oscillations, as shown in Fig. 14 . 

At t = 0 . 0158 s, the experiment data shows that the lowest

alue appears at P3, while the highest value appears at P5, which

s different from the analytical and SPH results. Unlike the ana-

ytical and SPH, the pressure results obtained by the vp -ICFEMP is

lose to the experiment, however the peak value is a bit lower.

he ICFEMP agree with the experiment data reasonably, though the

ressure oscillation exists. 

At t = 0 . 0202 s, the pressure results of the experiment are ob-

iously lower than any other methods. ICFEMP shows the closest

esult to the experiment despite its oscillation. The analytical so-

ution and vp -ICFEMP perform similarly, while SPH performs the

orst result. 

From all the three pressure distribution in Fig. 14 ∼ 16 . ICFEMP

ts the experiment best without regard to its oscillation. vp -

CFEMP efficiently suppresses its oscillation and performs very

ell. SPH show some defects in t = 0 . 0158 s and t = 0 . 0158 s com-

aring with the other two formulations. 

The pressure contours at different moments are plotted in

ig. 17 . The pressure contours and the surface profiles given by the

p -ICFEMP and ICFEMP method agree well with those given by the

PH. However, the pressure results obtained by the ICFEMP show

bvious numerical oscillation. 

.4. Water impact on an elastic obstacle 

The third example is a FSI problem studied by different numer-

cal methods including the PFEM [38] , CFEMP [5] and ICFEMP [8] . As

hown in Fig. 18 , a water column will collapse through an elas-

ic obstacle to the right wall due to the gravity. In the figure, L

 146 mm, b = 12 mm and the distance from the obstacle to the

ater column is L . 

The water column will collapse freely under the gravity acceler-

tion of g = 9 . 8 m/s 2 and the air effect will be ignored. The flexible

bstacle with Young’s modulus E = 1MPa, density ρ = 2500 kg/m 

3 

nd Poisson’s ratio ν = 0 is simulated by the FEM. The water col-

mn is simulated by the vp -GIMP with weakly compressible EOS

 ρ = 10 0 0 kg/m 

3 , c = 50 m/s). To keep the surface of water smooth,
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t is assumed that the water can sustain a tension of 6kPa before

eparation. Both the grid cell size and the finite element size are

aken to be 4 mm whilst the particle spacing is 1 mm. The whole

odel consists of 42,720 particles for the water and 60 elements

or the obstacle. The generalized interpolation is also employed in

his example. 

The time history of the horizontal deflection at the upper left

orner of the obstacle predicted by the vp -ICFEMP are compared

ith other available results in Fig. 19 . The present method agrees

ith the CFEMP, ICFEMP and PFEM reasonably well. The first peak

alue occurring at around 0.22 s predicted by the vp -ICFEMP is a

ittle lower than other methods due to the dissipation introduced

y the v − p formulation and the slope limiter. 

The deformation of the obstacle and the free surface profile

t five different time instants obtained by the ICFEMP and vp -

CFEMP are shown in Fig. 20 . The results of the ICFEMP show non-

hysical surface profiles whereas the pressure distributions suffer

rom high frequency numerical oscillations. The particles near the

eft side seem to be dragged by the left wall, which are mainly

esulted from the volumetric locking. By employing the v − p for-

ulation, the surface profile and the pressure distribution become

uch more reasonable. The FSI simulation costs 169 min for the

CFEMP and 224 min for the vp -ICFEMP. The extra 33% computing

ime is consumed in the smoothing procedure, which is acceptable

n view of the significant improvement in the prediction. 

. Conclusion 

In weakly compressible problems, the Hu-Washizu multi-

eld variational principle with independently assumed displace-

ent/velocity, strain and stress was employed to mitigate the

olumetric-locking. Compared with the standard MPM, 12 extra

odal/particle variables are required to be constructed which sig-

ificantly increase the computational cost. Using a two-field varia-

ional principle in which the velocity v and the pressure p are the

ndependent variables is more convenient [22] for nearly incom-

ressible problems. The v-p formulation requires less calculation

han the Hu-Washizu multi-field formulation because only one ex-

ra variable (pressure) needs to be constructed. Employing a slope

imiter in the present vp -MPM can successfully suppress the spu-

ious pressure oscillation which occurs at the interface of disconti-

uity due to large pressure gradient difference between the control

olumes of grid nodes. Furthermore, the generalized interpolation

s employed to alleviate the cell-crossing error. Numerical studies

how that the vp -MPM and vp -GIMP greatly improve the predicted

ressure distribution and the fluid surface profile. Compared with

he GIMP, only about 30% extra cost is required by the vp -GIMP for

he smoothing procedure. The wedge falling and water impact sim-

lation show the applicability of the vp -ICFEMP to fluid–structure

nteraction problems. 
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