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Abstract
Purpose – The simulation of the fluid–solid interaction (FSI) problem is important for both academic
studies and engineering applications. However, the numerical approach for simulating the FSI
problems is a great challenge owing to the large discrepancy of material properties and inconsistent
description of grid motion between the fluid and solid domains. The difficulties will be further
increased if there are multiple materials in the fluid region. In these complicated applications, interface
reconstruction, multi-material advection and FSI must be all taken into account. This paper aims to
present an effective integrated work of multi-material arbitrary Lagrangian Eulerian (MMALE)
method, finite element (FE) method and the continuum analogy method to simulate the complex FSI
problems involving multi-material flow. The coupled method is used to simulate the three-dimensional
CONT test and the blast-plate interaction. The numerical results show good agreement with the
benchmark and the experiment data, which indicates that the presented method is effective for solving
the complicated FSI problems.
Design/methodology/approach – MMALE and FE methods are used to simulate fluid and solid
regions, respectively. The interfacial nodes of fluid and solid are required to be coincident in the whole
simulation so the interacted force can be easily and accurately calculated. To this end, the continuum analogy
method is used in the rezoning phase.
Findings – The coupled method is used to simulate the three-dimensional CONT test and the blast-plate
interaction. The numerical results show good agreement with the benchmark and the experiment data, which
indicates that the presented method is effective for solving the complicated FSI problems.
Originality/value – To the best of the authors’ knowledge, this is the first time that the ALE method,
moment of fluid interface reconstruction method, continuum analogy method and the FE method are
combined to solve complicated practical problems.

Keywords Fluid–solid interaction, Arbitrary Lagrangian Eulerian method, Continuum analogy,
Multi-material flow

Paper type Research paper

1. Introduction
The study about the simulation of multi-material flow with fluid–solid interaction problem
is very important in practice, such as the structural shielding, weapon design and the safety
assessment of the nuclear reactor. However, both fluid solid interaction and multi-material
flow are challenge issues in the computational mechanics.

Because the shear and tensile moduli of a fluid material are much lower than a solid
material, the fluid material is easy to experience severe deformation during the simulation.
Therefore, the Eulerian frame is always used to describe the motion in the fluid region.
However, the solid structures are usually described by the Lagrangian frame, so
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inconsistent description of grid motion makes difficulties in calculating the interaction
between the fluid and solid materials. Early numerical approaches for the FSI problem solve
the fluid and the solid governing equations alternatingly and the interface conditions are
applied asynchronously (Felippa et al., 2001; Piperno and Farhat, 2001; Piperno et al., 1995).
These partitioned methods are usually energy increasing and unstable near the fluid solid
interface (Piperno et al., 1995). To obtain the higher accuracy, the monolithic methods, which
update the fluid and solid region simultaneously, are developed, and the Arbitrary
Lagrangian Eulerian method (ALE) is most famous approach (Donea et al., 1982; Hu et al.,
2001; Liu andMa, 1982; Zhang et al., 2003). In the ALE frame, the motion of grid is defined as
an independent degree of freedom, so the best properties of Lagrangian and Eulerian frames
are preserved. In the past years, the ALE method has been widely used for its accuracy,
robustness and efficiency (Benson, 1992; Hirt et al., 1997; Kjellgren and Hyvarinen, 1998; Luo
et al., 2004; Vitali and Benson, 2006).

Usually, the ALE frame used in the fluid–solid interaction simulation is realized by
solving the governing equation on a moving coordinate system (Hu et al., 2001; Huerta and
Liu, 1988; Liu and Ma, 1982). The velocity of the nodes on the fluid–solid interface equals to
the local material velocity, so the fluid–solid interface can be innately tracked in the
Lagrangian frame. The velocity of the other nodes in the fluid region is calculated from the
rezone algorithm (Knupp et al., 2002 and Huerta and Liu, 1988) to preserve the high quality
of the grid. The rezone and advection should be performed at every step which is time
consuming especially for 3D simulation. Moreover, the traditional advection methods are
also difficult to simulate the multi-material flow because they cannot accurately calculate
the flux of each material (Kucharik and Shashkov, 2014).

The other way to implement the ALE method is the splitting operators approach. It
separates the ALE method into three steps, namely, the Lagrangian phase, the rezoning
phase and the remapping phase. In the Lagrangian phase, the governing equations in
Lagrangian frame are solved and neither rezone nor advection is required in this phase. It
is easy to couple the fluid and solid interaction in the Lagrangian phase because the same
grid motion description is used. The fluid grid can be severely distorted after several
Lagrangian steps, and a rezoning phase should be performed to generate a new grid with
high quality. Then, the physical variables are interpolated from the old grid to the new
grid in the remapping phase. And finally, the Lagrangian phase continues on the new
grid until the grid distortion appears again. The splitting operators approach is widely
used for the fluid simulation in recent years because of the great developments about the
Lagrangian fluid dynamics (Caramana et al., 1998; Caramana et al., 1998; Kolev and
Rieben, 2009; Loubere et al., 2013; Caramana and Loubere, 2006) and the remapping
algorithms (Garimella et al., 2007; Grandy, 1999; Kucharik et al., 2003). However, to our
knowledge, less attention is paid on the usage of splitting operators approach for fluid–
solid interaction simulation.

The other topic of this work is about the multi-material flow, which refers to the
attendance of at least two different materials in the fluid region, so the fluid-fluid interface
must be tracked. Although the fluid-fluid interface could be tracked in the same way as the
fluid–solid interface, the severe deformation of fluid-fluid interface will induces large
difficulties in the rezoning phase. In some extreme cases where the topology of the fluid-fluid
interface changes, it is almost impossible to smooth the grid successfully. To solve the
problem, the Multi-Material ALEmethod (MMALE) is developed which introduces mix cells
to allowmultiple materials attending in a single cell (Galera et al., 2011; Galera et al., 2010; Jia
et al., 2013; Luo et al., 2004; Peery and Carroll, 2000). Therefore, the fluid-fluid interface is
able to pass through the mix cell and the difficulties in the rezoning phase can be avoided in
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essence because the location of the fluid-fluid interface does not affect the rezoning phase
any more. However, the attendance of mix cells leads to other challenges such as the closure
model (Barlow et al., 2014; Shashkov, 2008; Yanilkin et al., 2013), the interface reconstruction
(Benson, 2002; Fedkiw et al., 1999; Fedkiw et al., 1999; William and Douglas, 1998) and the
multi-material remapping (Berndt et al., 2010; Kucharik and Shashkov, 2012; Kucharik and
Shashkov, 2014). In recent years, there are numerous research presented to solve these
problems and the MMALE method has been successfully implemented in simulating three
dimensional complicated multi-material flow (Chen et al., 2017; Jia et al., 2013).

The MMALE method is usually realized via splitting operators approach which is also
feasible for fluid–solid interaction, so it shows great potential for solving more complicated
problems. This paper attempts to present an integrated work of the MMALEmethod, Finite
Element (FE) method and the continuum analogy method to simulate the complex FSI
problems involving multi-material flow. In the coupled MMALE-FE method, the fluid and
solid region are simulated by MMALE and FE method, respectively and the continuum
analogy method (Yoseph et al., 2001) is used in the rezoning phase. The coupled MMALE-FE
method is then applied to simulate the three dimensional CONT test (Benuzzi, 1987) and the
blast-plate interaction (Neubergera et al., 2007). The numerical results show good agreement
with the benchmark and the experiment data, which indicates that the presented method is
effective for solving the complicated FSI problems.

It should be mentioned that other advanced numerical approaches may also be able to
simulate the FSI problem with multi-material flow. For instance, the CFEMP (Coupled Finite
Element Material Point) method (Chen et al., 2015; Lian et al., 2011; Lian et al., 2014; Lian
et al., 2012), which uses material points to represent the fluid material and the FMmethod to
simulate the solid structure. The fluid–solid interaction is calculated from the contact
between the fluid particles and the solid elements. However, the CFEMP method may suffer
from the problems about the lower accuracy in the fluid simulation and the particle leak in
the contact algorithm (Zhang et al., 2017). Immersed Finite Element Method (IFEM) (Liu
et al., 2006; Zhang et al., 2004) is another choice for simulating complicated FSI problems.
The solid grid is immersed into the fluid grid and they are overlapped, so the rezoning phase
in the ALE frame can be avoided. The interaction between fluid and solid region is obtained
from the high order interpolation of the velocity and stress field between the solid and fluid
grid. IFEM is suitable for simulating the FSI problems with large rigid movement of the
solid material, but the numerical results may be unreliable in the case involving large solid
deformation (Wang and Zhang, 2013).

The remaining part of the paper is organized as follows. In Section 2 and 3, the basic idea
of the MMALE and FE method are briefly reviewed. Section 4 introduces the algorithm for
the fluid–solid coupling including the consistent of interacted force, the time integration and
the rezoning. Two numerical examples are presented in Section 5, which contains a
benchmark test in nuclear reactor safety evaluation and an air blast-circular plate
interaction with experiment data. Finally, the conclusions are summarized in Section 6.

2. TheMMALEmethod for fluid region
In this section, we will briefly review the major process of multi-material ALE method,
namely, the Lagrangian phase, the surface reconstruction phase and the multi-material
remapping phase. The rezoning phase will be introduced in the next section because it is
related to the fluid–solid interaction scheme.

2.1 Lagrangian phase
The fluid region is described in Lagrangian frame and the governing equations are:

Coupled
MMALE-FE

method



dr
dt

¼ �rr � v (1)

r
dv
dt

¼ �rP (2)

r
de
dt

¼ �Pr � v (3)

The staggered grid, where the position and velocity are stored at the nodes while the
density, specific internal energy and pressure are stored at the cell center, is used to
discretize the fluid region. In the past two decades, many efforts have been taken for the
sake of an accurate, stable and robust formulation to simulate the behavior of fluid materials
in Lagrangian frame and the compatible discretization (Caramana et al., 1998; Caramana
et al., 2000) should be the most important one. A brief introduction of the compatible
discretization is presented in the following.

Figure 1 shows four cells, namely, z1, z2, z3 and z4, in the fluid region. Each cell is divided
into four corner volumes denoted as Xn

m, where m is cell where the corner volume locates
and n is the node that the corner volume connects to. The controlling volume of a node is
defined as the sum of the connected corner volumes. For instance, the controlling volume of
node p1 in Figure 1 is:

Xp1 ¼
X
i

Xp1
zi (4)

Integrating equation (2) on Xp1 and applying the Gauss’s theory, the discretization of the
momentum equation is:

Mp1 dv
p1

dt
¼ �

þ
@Xp1

Pdl ¼ �
X
i

Pzi

ð
S
p1
zi

dl ¼
X
i

f p1zi (5)

whereMp1 is the nodal mass which equals to the mass of the controlling volume, and Sb
zi is

the subset of @Xb that inside the cell zi. f
p1
zi is named as the corner force of zi.

Substituting equation (5) into equation (3) and applying the energy conversation law of
the system, the discretization of the energy equation is:

Figure 1.
The illustration of
staggered grid and
compatible
discretization in
Lagrangian phase
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Mz1
dez1
dt

¼ �
X
j

f pjz1 (6)

whereMz1 is the cell mass which equals to the sum of the corner masses inside cell z1.
It should be emphasized that the discretization of the momentum and energy equations

are compatible because the energy conservation of the system can be rigorously preserved,
so equation (5) and equation (6) are named as the “compatible discretization.”

The predictor-corrector scheme (52) is used for the time integration, namely:

Mp1 v
p1;nþ1 � vp1 ;n

Dt
¼

X
i

f p1;nþ1=2
zi (7)

Mz1

enþ1
z1 � enz1

Dt
¼ �

X
j

f pj;nþ1=2
z1 � vpj;nþ1=2

c (8)

In practice, the grid is firstly updated to the nþ 1/2 step to estimate pressure and corner
force at the middle step, and then all physical quantities are updated to the full time step. It
should be mentioned here that the predictor-corrector scheme should also be used in the
solid region to guarantee the coincidence of the nodes at the fluid–solid interface during the
Lagrangian step and it will be specifically discussed in Section 4.2.

The artificial viscosity is applied to provide the entropy production and introduce
dissipation for shock discontinuity (Caramana et al., 1998; Kolev and Rieben, 2009), and the
hourglass viscosity is also used to eliminate hourglass motion and spurious vorticity
(Caramana and Shashkov, 1998). For the mixed cells in the MMALE, the Tipton pressure
relaxation model (Shashkov, 2008) is used to determine the pressure in mixed cells. Finally,
the material centroid should also be updated in Lagrangian phase for the fluid-fluid interface
reconstruction andwe use the constant parametric coordinate method (Kucharik et al., 2010).

2.2 Interface reconstruction phase
The fluid-fluid interface should be reconstructed to distinguish different fluid materials. The
frequency of performing the interface reconstruction phase depends on the closure model. If
the closure model requires the information of the interface location (Barlow et al., 2014), the
interface must be reconstructed at every time step. However, the Tipton pressure relaxation
model used in this paper does not need the interface location information, so the interface
reconstruction phase only performs before the remapping phase when the grid is severely
distorted.

PLIC (Piecewise Linear Interface Calculation) method is usually used in the MMALE
method for the interface reconstruction which constructs a plane in the mix cell to represent
the fluid-fluid interface. In this paper, the moment of fluid (MoF) method (Ahn and
Shashkov, 2007; Chen and Zhang, 2016; Chen and Zhang, 2017) is used and it is an advanced
interface reconstruction algorithm with higher accuracy compared with the traditional
PLIC-VoF method (Kucharik et al., 2010). Moreover, it does not need any information from
the neighbor cells which allows it to be implemented as a cell-by-cell black-box routine and
be parallelized innately.

The optimal linear interface calculated by the MoF method should fulfill two
requirements: 1. the truncation volume from the interface must precisely equal to the given
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reference material volume and 2. The discrepancy between the given reference material
centroid and the truncation centroid should be minimized by the optimal interface.
Therefore, the mathematic expression of the MoF method can be described as: calculating a
particular plane n* xþ d* = 0 to minimize the objective function:

f n; dð Þ ¼ kx n; dð Þ � xrefk2 (9)

subject to the volume condition:

v n; dð Þ ¼ vref (10)

where x(n, d) and v(n, d) are the centroid and volume below the truncation polyhedron by
the approximate interface, and xref and vref are the given reference material centroid and
volume in the mixed cell, respectively.

2.3 Multi-material remapping phase
After the interface reconstruction process, the old grid is decomposed into non-overlapping
polyhedrons and each polyhedron only contains one material. We call them as the material
polyhedrons (MPs). Before remapping, the density r , specific internal energy e and pressure
p are stored at the centroid of the MPs while the velocity is stored at nodes of the old grid.
The purpose of the remapping phase is to determine the physical variables, including the
material density, internal energy, velocity, volume fraction and material centroid, in the new
grid generated from the rezoning phase.

The intersection based remapping (Chen et al., 2017; Grandy, 1999; Jia et al., 2013) must be
used to interpolate the volume fraction and the material centroid to avoid unphysical
phenomena such as negative mass and pseudo fragmentation (Kucharik and Shashkov, 2014).
In the intersection based method, every cell in the new grid intersects with the MPs in the old
grid, and then accumulates the mass, internal energy, volume and moment of the intersecting
portion. Taking the interpolation of the volume fraction and the material centroid as an
example, the volume andmoment of kthmaterial in jth cell of the new grid equals to:

Vk Cj
� � ¼ X

i

V Cj \ Pi
k

� �
i 2 ijCj \ Pi

k 6¼ 1
n o

(11)

Mk Cj
� � ¼ X

i

M Cj \ Pi
k

� �
i 2 ijCj \ Pi

k 6¼ 1
n o

(12)

where Cj is the jth cell of the new grid, and Pi
k is the MP for the kth material in the ith cell of

the old grid.
Subsequently, the volume faction and centroid of the kth material in Cj is:

vk Cj
� � ¼ Vk Cj

� �
V Cj
� � (13)

xk Cj
� � ¼ Mk Cj

� �
Vk Cj

� � (14)
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where V (Cj) is the volume of Cj. Other physical variables such as density, specific internal
energy and velocity can be interpolated in the similar way.
The above algorithm is used to remapping the cell-centered variables, such as the density,
specific internal energy and the volume fraction. To remap the velocity, the controlling
volume of the nodes in the new and old grid, namely, Xj

old and X
i
new, are intersected and the

momentum carried by the intersection portion is:

p Xi
new \ Xj

old

� �
¼ vjoldm Xi

new \ Xj
old

� �
(15)

wherem Xi
new \ Xj

old

� �
is the mass of the intersection portion which can be calculated when

remapping the density, and vjold is the velocity of the node j in the old grid. The mass and
momentum ofXi

new can be calculated from the sum of the intersection portions, namely:

m Xi
new

� �
¼

X
j

m Xi
new \ Xj

old

� �

p Xi
new

� �
¼

X
j

p Xi
new \ Xj

old

� �

and finally, the node velocity in the new grid is:

vjnew ¼
p Xi

new

� �
m Xi

new

� � (16)

The advantages of the intersection based remapping is obvious. Firstly, the volume
fraction and material centroid in the new cells are directly calculated from the
configurations of different materials form the old grid, rather than calculating
the material flux. So it avoids the drawbacks of the flux based remapping such as
negative mass and unphysical material fragments in essence. Secondly, different from
the flux based remapping where the new and old grid must be close to each other to
calculate the appropriate flux region, the topology of the old and new grid can even be
different in the intersection based remapping. This property significantly increase the
flexibility in the rezoning phase.

The key technique of the intersection based remapping is an accurate, efficient and
robust calculation of the intersection portion of any two arbitrary polyhedrons. This issue
has been well settled by the “Clipping and Capping”method (Chen et al., 2017).

3. Finite element method for solid region
In this paper, the solid region is described in Lagrangian frame and governed by the
conservative low as:

_r ¼ �rr � v (17)

r €x ¼ r � rþ r f ext (18)
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r _e ¼ _e : r (19)

The finite element (FE) method is used to solve equation (17) to equation (19) and the 8-node
hexahedral element and the Belytschko–Lin–Tsay (BLT) shell element (Belytschko et al.,
1983; Belytschko et al., 1991) are employed to discretize the solid region.

For the 8-node hexahedral element, the degree of freedom (DoF) at each node is x = (x, y, z)
and the shape functions of the element are:

Ni ¼ 1
8

1þ �1ð Þij
� �

1þ �1ð Þ iþ1
2½ �
h

� �
1þ �1ð Þ iþ3

2½ �
z

� �
(20)

Deriving from the weak form of equation (18), the momentum equation can be rewritten as:

Mi €xi ¼ f inti þ f exti (21)

where mi is the mass of node i, and f inti f exti are the internal and external force applied on
node i, respectively.

For the BLT shell element, the DoF at each node is (x, h) = (x, y, z, u x, u y, u z) and the
shape functions of the element are:

Ni ¼ 1
8

1þ �1ð Þij
� �

1þ �1ð Þ iþ1
2½ �
h

� �
(22)

The velocity along the thickness is assumed as:

v ẑð Þ ¼ vm � ẑe3 � _h (23)

where vmi ¼ _x is the velocity at the neutral plane, and e3 is the normal of the shell element,
and ẑ is the coordinate alone the shell thickness. Deriving from the weak form of equation
(18), the momentum equation can be rewritten as:

MT
i €x i ¼ �f inti þ f exti (24)

iR
M
€h i ¼ �mint

i þmext
i (25)

where MT
i ; M

R
i are the mass and rotational inertia of node i, and f inti ; mint

i are the internal
force and moment applied on node i, and f exti ; mext

i are the external force and moment
applied on node i.

The time integration of the FE method should be consistent with the MMALE method,
and it will be specifically introduced in Section 4.2.

4. Fluid–solid interaction model and the continuum analogy method
In this section, we will introduce the coupling strategy of the MMALE method in the fluid
domain and the FE method in the solid domain by the co-node approach. Co-node means the
nodes at the interface of the fluid and solid regions are always coincident during the whole
simulation and it implies the non-slipping boundary condition at the fluid–solid interface.
The superiority of the co-node approach is the interacted force of the fluid and solid material
can be accurately calculated, as shown in Section 4.1. Moreover, the time integration scheme
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of the fluid and solid region must be the same to insure the co-node requirement in
Lagrangian step, and this issue is discussed in Section 4.2. Finally, the coincidence of the
interfacial nodes should be preserved after the remapping phase, which implies that the grid
in the fluid region can just be smoothed with the interfacial nodes fixed. To this end, the
continuum analogy method is used in Section 4.3.

4.1 Interacted force consistency
Figure 2(a) shows the interface of the fluid and solid region. C1 and C2 are occupied by
the fluid material while C3 and C4 are occupied by the solid material. S1 and S2 are the
fluid–solid interface of these four cells and they share a common node A. To calculate
the interacted force at node A, the fluid and solid region are analyzed individually as
shown in Figure 2(b). In the fluid region, the nodal mass and force of AFluid, namely,
mFluid and fFluid, are contributed from C1 and C2, and they can be directly calculated
from the configuration, density and stress of the two cells. Similarly in the solid region,
the nodal mass and force from C3 and C4 arem

Solid and fSolid, respectively. Besides fFluid

and fSolid, the interacted force between the fluid and solid region is also applied on
AFluid and ASolid, namely, the finteracted alone the dashed line with opposite directions in
Figure 2.

Therefore, the accelerations ofAFluid andASolid are:

aFluid ¼ f Fluid þ f interacted

mFluid (26)

aSolid ¼ f Solid � f interacted

mSolid (27)

Because the non-slipping boundary condition is applied on the fluid–solid interface, aFluid

should be equal to aSolid and finteracted is solved as:

f interacted ¼ f SolidmFluid � f FluidmSolid

mSolid þmFluid (28)

Finally, substitute equation (28) into equation (26) or equation (27) to calculate the
acceleration of theA as:

Figure 2.
The interacted force

between the fluid and
the solid region
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aA ¼ aFluid ¼ aSolid ¼ f Solid þ f Fluid

mSolid þmFluid (29)

4.2 Time integration consistency
The interacted force in equation (28) results in the same acceleration on the fluid–solid
interfacial nodes. However, to guarantee the coincidence after a time step, a same time
integration scheme must be used for both fluid and solid region. As described in Section 2.1,
the compatible discretization is the most important formula for a conservative simulation
and it is incorporated with the predictor-corrector time integration scheme. Therefore, the
solid region should also use the predictor-corrector scheme to perform time integration.
Figure 3 shows the details of the predictor-corrector scheme in the coupled MMALE-FE
method and it can preserve the coincidence of the fluid–solid interfacial nodes during the
Lagrangian phase.

Figure 3.
The time integration
scheme in the coupled
MMALE-FEmethod
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4.3 Rezone consistence and the continuum analogy method
4.3.1 The rezone consistence requirement. The interacted force in equation (28) incorporating
with the uniform time integration scheme in Figure 3 preserves the coincidence of the fluid–
solid interfacial nodes in the Lagrangian phase. But for the whole simulation, special
consideration must be taken in the rezoning phase. A new grid with higher quality is generated
if the old grid is distorted severely. In the FSI simulation, the deformation of the solid region is
relatively moderate, so the remapping phase is only performed on the fluid region. Therefore,
the nodes in the solid region, including the fluid–solid interfacial nodes, will not bemoved in the
rezoning phase. It implies that the interfacial nodes must be fixed and only the internal nodes in
the fluid region are allowed to move when generating a new grid in the rezoning phase. This is
the rezone consistence requirement and Figure 4 shows an example about the interaction
between a soft shell and a shock wave. The red line in Figure 4 represents the shell and other
cells represent the fluid region. The shell is deformed owing to the interaction and the grid in
the fluid region is severely distorted as shown in Figure 4(a). It can be seen that the nodes on
the shell are also the nodes of the fluid region, so they are coincident before the rezoning phase.
Figure 4(b) shows one of the new generated grids that fulfills the rezone consistence
requirement. The nodes on the red line are not moved, so the fluid–solid interfacial nodes are
also coincident in the new grid. Finally, after the remapping phase described in Section 2.3, the
Lagrangian phase is performed on the new grid and the coincidence of the interfacial nodes can
be preserved in the whole simulation.

4.3.2 The continuum analogy method. Because the geometric configuration of the fluid–
solid interface is arbitrary, the pseudo structure method seems to be the best way to perform
the consistent rezone (Blom, 2000; Yoseph et al., 2001). This method regards the grid as a
pseudo structure with pseudo material properties and then solves the equilibrium equation to
calculate the coordinates of the new grid. The pseudo material properties of each cell can be
different for a better rezone quality. The consistent rezone can be easily achieved by specifying
the nodes’ displacement on the fluid–solid interface. Spring analogy (Blom, 2000) and the
continuum analogy (Yoseph et al., 2001) are two approaches in the pseudo structure method,
which regard the grid as a spring system and continuum system, respectively. The continuum
analogy is used in this work due its better performance in deformation and grid quality.

The equilibrium equation of the continuum system can be established by the FE method
as:

Kd ¼ K II K IB

KBI KBB

" #
d I

dB

" #
¼ 0

0

" #
(30)

Figure 4.
The consistent rezone

example

The fluid-solid interface
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Notes: The red line is the solid region, and it is not
moved during the rezoning phase
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where K is the stiffness matrix of this pseudo structure, dI is the displacement of interior
nodes to be solved and dB is the given displacement at the fluid–solid interface.
Equation (30) can be rewritten as linear equations:

K IId I ¼ �K IBdB (31)

and the solution dI is used to determine the nodes of the new grid.
It should be mentioned that if the displacement of the interfacial nodes is large, the

solution of equation (31) may lead to illegal cells. For the same example in Figure 4,
Figure 5(a) is the new grid generated by solving equation (31) with a uniform pseudo
material property. Because the displacement of the fluid–solid interface is large in this
example, some illegal cells appear near the interface. To overcome this problem, we use
a consolidation process in the rezoning phase. The target displacement of the fluid–
solid interface dI is applied gradually in N steps to the equilibrium equation. In each
step, only dI/N is applied on the RHS of equation (31) to obtain a temporary grid Gtemp.
Gtemp is used to calculate KII and KIB in the next step, so it just like the temporary grid
is consolidated after each step. The consolidation process strengths the stiffness of the
cell so the illegal cells can be avoided. Figure 5(b) is the result with N= 3 and no illegal
cell occurs with the consolidation process. In practice, two or three times of
consolidation process is adequate to eliminate the illegal cells.

5. Numerical examples
5.1 CONT benchmark
The LMFBR (liquid metal fast-breeder reactor) is an advanced nuclear reactor that is able to
produce more fissile product than it takes in. Therefore, it exhibits remarkable fuel economy
compared to traditional light water reactors. When evaluating the safety of a LMFBR, the
core disruptive accidents (CDA) is the greatest threat to the reactor. In a CDA, the core of the
nuclear reactor melts partially because of some unexpected accidents. And then the chemical
interaction between molten fuel and liquid sodium will create a high-pressure gas bubble.
The expansion of this bubble impacts the reactor vessel and the internal components, thus
leading to great threat to the safety of the reactor (Robbea et al., 2003). Although the
probability of the occurrence of CDA is extremely low, the consequences of such accidents,
especially the analysis about the primary containment, is required to evaluate the residual
risks to the public (Benuzzi, 1987).

It is impossible to study CDA experimentally, so the analysis mainly rely on the
numerical simulation. However, CDA is an extremely complicated phenomenon which
involves strong impact, multi-material flow and fluid–solid interaction. So to increase
confidence of the code capabilities, a benchmark calculation exercise named as CONT was

Figure 5.
(a) The illegal cells
appeared because of
the large fluid–solid
interface deformation
and (b) the
elimination of the
illegal cells by using
consolidation process

The fluid-solid interface

(a) (b)
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sponsored by the containment loading and response group. In this project, a two
dimensional full-size LMFBR undergoing a postulated CDA is defined and the model is
submitted to seven codes to perform the simulation. The results of these codes is published
by Benuzzi (Benuzzi, 1987), so this problem can be used to verify the validity of our coupled
MMALE-FEmethod.

Figure 6 is the postulated CDA defined in CONT. The realistic problem is simplified as a
two dimensional model because the seven codes in the project are only able to perform the
2D simulation. Moreover, none of the seven code can do the full coupled simulation between
different materials and they use some approximate model to simplify the fluid–solid
interaction and the multi-material flow. For the details of the codes, the reader can refer to
the origin paper (Benuzzi, 1987).

To demonstrate the advantages of the proposed coupled MMALE-FE method, a 3D
model of the CONT test is created as shown in Figure 7 with the same material properties.
The fluid region is discretized into 5.4� 105 hexahedral elements and the inner and outer
vessels are discretized into 1.0� 104 shell elements. Different variables, such as the outer
vessel deformation, cover gas pressure and impact velocity, are calculated and compared
with the results from the seven codes in the project.

Figure 8 shows the deformation of the outer vessel at the terminate time (a) and the time
curve of the pressure at the center of the cover gas (b). The black lines are the results from
the project and they are similar to each other. The result from the MMALE-FE method is
marked in red line and it matches well with the other results.

Some other variables are quantitatively compared in Table I, and the results from this
work are also in the reasonable range according to the reference.

5.2 Blast-plate interaction
This numerical example is about the interaction between an air blast and a circular plate.
This problem has been studied experimentally by Neuberger (Neubergera et al., 2007) with
the devices shown in Figure 9(a). They conducted series of experiments with different plate

Figure 6.
The geometric model
(a) and the material
properties (b) in the
CONT benchmark
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and explosive sizes and recorded the maximal vertical displacement of the plate of each
experiment. In this section, we simulate one of their experiments and simplify it as shown in
Figure 9(b) according to the symmetry of this problem. In this example, the diameter of the
circular plate is D=0.5 m with thickness t=0.01 m. The distance between the explosive

Figure 7.
The 3Dmodel of the
CONT benchmark

(a) (b)

Notes: (a) is the fluid region including three
different materials; (b) is the solid region
including the outer and inner vessel

Figure 8.
The comparison of
the outer vessel
deformation (a) and
the time curve of the
cover gas pressure (b)
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Table I.
The quantitative
comparison of the
results with the
reference

Variables CONT project MMALE-FE

Energy release 0.345-0.377 GJ 0.358 GJ
Impact velocity 11.3-14.8m/s 14.0 m/s
Peak pressure of the cover gas 1.9-2.6 Mpa 2.3 MPa
Strain energy of vessels 0.173-0.219 GJ 0.176 GJ
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center and the plate is R=0.1 m and the radius of the explosive is r = 0.041 m, namely,
0.486 kg.

The fluid and solid grid is shown in Figure 10 and both of them are discretized into
hexahedral elements. Because the explosive is very close to the plate, a refined mesh should
be used near the explosive to avoid the severely numerical dissipation. On the other hand,
we use a coarse mesh in the far-field to save the calculation time. The number of fluid
elements is 3.3� 105 and the number of solid elements is 2.16� 104. The terminal time is
t=0.5 ms and the maximal vertical displacement of the plate has been reached before this
time.

The JWL equation of state is used to describe the explosive products (Liu et al., 2003) as
shown in equation (32):

p ¼ A 1� v

R1V

� �
e�R1V þ B 1� v

R2V

� �
e�R2V þ vre (32)

where A=3.7� 105MPa, B=3.23� 103MPa, R1 = 4.15, R2 = 0.95 and v = 0.3. V ¼ r 0
r is

the relative volume. The initial density and the specific internal energy is r 0 = 1,630 kg/m3

and e0 = 4.3MJ/kg, respectively.
The circular plate is made of RHA steel which is governed by the Johnson–Cook

constitutive model (Neubergera et al., 2007) in equation (33):

s y ¼ Aþ B« pnð Þ 1þ C ln _«ð Þ (33)

Figure 9.
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where A=950 MPa, B = 560 MPa, n=0.26 and C=0.014. The Young’s modulus and
Poisson’s ratio of the RHA steel are 210GPa and 0.28, respectively.

The Johnson–Cook model is incorporated with the Mie–Gruneisen equation of state
(Meyers, 1994), namely:

p ¼ pH 1� gm

2

� �
þ g re (34)

where m ¼ r
r 0
� 1 and g = 1.67. pH is calculated from:

pH ¼ r 0C
2
0 m þ 2S � 1ð Þm 2 þ S � 1ð Þ 3S � 1ð Þm 3
� 	

r 0C
2
0m

m > 0

m < 0

(

where r 0 = 7,850 kg/m3, C0 = 4,610m/s and S=1.49.
The pressure contour of the fluid in the first 0.1 ms is shown in Figure 11. In this

period, the blast wave arrives at the plate and they begin to interact with each other.
The explosive wave impacts at the plate around t= 0.016 ms and it then propagates
alone the radial direction of the plate. Meanwhile, the plate begins to deform
gradually.

Figure 12 is the deformation and the equivalent stress of the plate form t=0.2ms to
t=0.5ms. It shows that the deformation and the magnitude of the equivalent stress increase
gradually during the interaction.

Finally, Figure 13 is the curve of the maximal displacement of the plate. The peak
displacement is about 24mm around t=0.46ms. On the other hand, the experiment result of

Figure 11.
The interaction
between the blast
wave and the plate
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the maximal displacement is 26mm. Our numerical result is close to the experimental data
which demonstrates the validity of theMMALE-FEmethod.

6. Conclusions
The simulation of the fluid solid interaction problem with multi-material flow is an
important issue in engineering practice. However, it is also a great challenge in
computational mechanics because of difficulties in calculating the interaction and
capturing the material interface. In this paper, we present the coupled MMALE-FE
method that integrate the multi-material ALE and the FE method to simulate these
problems. The coincidence assumption is used on the fluid–solid interfacial nodes and it
leads to the accurate calculation of the interacted force. The consistence of the time
integration scheme and the rezoning phase are also discussed to guarantee the
coincidence requirement in the whole simulation. The CONT test and the blast-plate
interaction are simulated by the coupled MMALE-FE method. The numerical results fit
well with the benchmark and the experimental data which verify the validity of this
method.
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