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Summary
The material point method (MPM) combines Eulerian method and Lagrangian
method and thus both Lagrangian particle position and interaction between
neighboring Eulerian grid cells will affect the simulation stability. However, the
original critical time step formula in the standard MPM does not reflect the effect
of particle position and neighboring cell interaction on stability and overesti-
mates the critical time step so much that the CFL number has to be very small,
even smaller than 0.1, to obtain a stable solution at extreme particle positions.
Therefore, in many engineering applications, the standard MPM is very expen-
sive due to the small CFL number. In this article, the effect of particle position
and neighboring cell interaction on stability of the explicit MPM is studied. An
explicit critical time step formula is obtained based on the system eigenvalues in
one dimension, and is then extended to two and three dimensions. For extreme
deformation problems, the geometric stiffness matrix is taken into consideration
which modifies the sound speed of particles in the critical time step formula.
Several tests are performed to verify our formula and show a decrease in amount
of time steps used for simulation with our formula comparing with the original
formula.
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1 INTRODUCTION

Numerical methods for modeling large deformation problems could be classified into Eulerian method, Lagrangian
method and hybrid method according to how the computational domain is discretized. To combine the advantages of
both Eulerian and Lagrangian methods, Harlow1,2 proposed the particle-in-cell (PIC) method which discretizes the fluid
into Lagrangian particles and computational domain into a uniform Eulerian mesh. Sulsky et al extended the FLIP PIC
methods3,4 from fluid mechanics to solid mechanics and named this method as material point method (MPM).5,6 The
MPM has shown its success in simulating extreme deformation events over two decades, such as hypervelocity impact,7-10

penetration,11,12 fracture evolution,13,14 fluid flow,15-17 fluid-structure interaction,18-20 landslide,21,22 and so on. However,
a small CFL number is usually required by the explicit MPM for stability, sometimes even smaller than 0.1, if the critical
time step is determined by the formula similar to that used in the finite element method.23-26 More and more scholars
find that the particle distribution will heavily affect the stability of simulations.24,27-29
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There are a lot of works on the stability analysis of other particle methods30-33 and cell-crossing error in MPM or its
variants.23,25,34 However, a few studies are conducted to analytically examine the effect of particle position on MPM sta-
bility. Belytschko et al30 presented a unified stability analysis of meshless particle methods by perturbation method in
one dimension (1D) and two dimension (2D). Nevertheless, this method requires the second-order derivative of shape
function to be bounded which the standard MPM cannot satisfy. Balsara33 applied the von Neumann stability analysis
method to SPH method and Renaud et al27 also applied the von Neumann stability analysis method to discontinuous
Galerkin material point method for hyperbolic problems. However, the von Neumann stability analysis method will
be invalid in the standard MPM because of the low accuracy in material point integration. Steffen et al23 proposed an
optimal time step by estimating and balancing space and time errors in MPM. The analysis method of moving-mesh
MPM proposed is useful in decoupling different error sources, which will also be used in this article. However, in his
work the corresponding parameters in the time step formula are decided by one time-step error with uniform particle
distribution so that the effect of particle position has not been taken into consideration. Berzins35 applied the stabil-
ity analysis of Spigler and Vianello36 to MPM and derived a stable time step bound for 1D. However, numerical results
in his article show that the formula performs well in GIMP method but underestimates the critical time step in the
standard MPM.

The critical time step is determined by the maximum frequency of the discretized system, which can be calculated by
the generalized eigenvalue problem of system mass matrix and stiffness matrix. Direct calculation of generalized eigen-
value problem is too time-consuming to be used in explicit MPM simulation. Thus, we need to reduce the degrees of free-
dom and give an explicit critical time step formula for practical uses. Flanagan and Belytschko37 proposed a transforma-
tion of original eigenproblem to reduce the degrees of freedom in FEM and gave the lower and upper bound of critical time
step for the uniform strain elements by Gershgorin’s theorem. However, the transformation is only valid for the uniform
strain elements which requires only one quadrature point. This method has been applied without the transformation into
some particle methods, such as nodal integration method,31,38 but the Frobenious norm of the strain matrix has to be cal-
culated for all elements. Besides, this method gives the critical time step cell by cell. However, MPM is a hybrid method and
the interaction of neighboring grid cells should be taken into consideration due to the convection property of particles in
Eulerian step.

The aim of the present work is to propose an explicit critical time step formula for the standard explicit MPM, which
takes particle position and interaction of neighboring grid cells into consideration. The explicit critical time step formula
is first obtained based on the system eigenvalues for the MPM in 1D, and then extended to 2D and three dimension
(3D). It also shows that different MPM schemes [namely, update-stress-last (USL), update-stress-first (USF), and modified
update-stress-last (MUSL)] have significant different critical time step values. For extreme deformation problems, the
geometric stiffness matrix is taken into consideration which will modify the sound speed of a particle by its stress in the
critical time step formula.

The rest of this article is organized as follows. First, the standard explicit MPM scheme is briefly reviewed
in Section 2. Then, the reason why von Neumann stability analysis method is invalid is analyzed in detail in
Section 3. The detailed derivation of critical time step formulae for USL, USF, and MUSL schemes is presented in
Section 4. Several numerical tests are performed to verify our critical time step formulae and compare the simula-
tion performance between the original formula and ours in Section 5. Finally, conclusions and remarks are drawn
in Section 6.

2 MATERIAL POINT METHOD

The weak form equivalent to momentum equation and traction boundary condition in updated Lagrangian (UL)
formulation is given as

∫Ω
𝜌ü ⋅ 𝛿udV + ∫Ω

𝝈 ∶ 𝛿𝝐dV − ∫Ω
𝜌b ⋅ 𝛿udV − ∫Γt

t ⋅ 𝛿udA = 0, (1)

where Γt denotes the traction boundary of material domain Ω, 𝜌 is the current density, u is the displacement, 𝝈 is the
Cauchy stress in the current configuration, 𝝐 is the strain tensor, b is the body force per unit mass and t is the traction on
the boundary.
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F I G U R E 1 Standard MPM
discretization. MPM, material point
method

2.1 Standard explicit MPM

The standard MPM discretizes the material domain Ω into a set of Lagrangian particles moving through an Eulerian
background grid, as shown in Figure 1. The particles act as quadrature points in calculating the integration of weak form
equation, and material density can be approximated with

𝜌(x) =
np∑

p=1
mp𝛿(x − xp), (2)

where np is the total number of particles, mp is the mass of particle p, 𝛿 is the Dirac delta function with dimension of the
inverse of particle volume, and xp is the spatial coordinates of particle p.

The displacement field u(x) of the computational domain is interpolated from the grid nodal displacement uI by the
shape function NI(x) of each grid node I, namely

u(x) =
ng∑

I=1
NI(x)uI , (3)

where NI(x) is the linear/bilinear/trilinear shape function for standard MPM in 1D/2D/3D as that used in FEM.
Substituting Equations (2) and (3) into the weak form Equation (1) leads to the discrete momentum equation at each

grid point
ṗI = f int

I + f ext
I , ∀xI ∉ Γu (4)

in which
pI = mIu̇I (5)

is the momentum at grid point I,

mI =
np∑

p=1
mpNI(xp) (6)

is the lumped grid mass matrix,

f int
I = −

np∑
p=1

∇NIp ⋅ 𝝈p
mp

𝜌p
(7)

and

f ext
I =

np∑
p=1

mpNIpbp (8)

are the internal and external nodal forces with 𝝈p = 𝝈(xp) being the stress of particle p. In Equation (8), the traction term
was omitted for simplicity.

The leapfrog central difference integration scheme is used in the standard explicit MPM, which updates the position
at integer time steps and the velocity at integer-plus-a-half time steps as

un+1
I = un

I + Δtn+1∕2u̇n+1∕2
I , (9)

u̇n+1∕2
I = u̇n−1∕2

I + Δtnün
I , (10)
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F I G U R E 2 Flow chart of different MPM
schemes.6 MPM, material point method

where Δtn+1∕2 = tn+1 − tn and Δtn = tn+1∕2 − tn−1∕2 = 1
2
(Δtn−1∕2 + Δtn+1∕2). un+1

I and un
I denote the displacement vectors

at time tn+ 1 and tn, u̇n−1∕2
I denotes the velocity vector at time tn− 1/2.

The stress state could be updated at the beginning of each time step, or at the end of each time step. The
explicit MPM scheme with these two options is referred to as the USF scheme and the USL. In the MUSL scheme,
the grid nodal velocity obtained by mapping the updated particle momentum back to the grid nodes is used to
update the stress. Different MPM schemes employ different grid nodal velocity fields to update the stress as shown
in Figure 2.

2.2 Moving-mesh MPM

The moving-mesh MPM is referred to an MPM method that is fully Lagrangian, in which the mesh and particles keep
stationary in the reference configuration and displacements of both the particles and grid nodes are kept track of. The
moving-mesh MPM is actually the same as the standard FEM except that the particles instead of the Gauss points serve
as the quadrature points in the moving-mesh MPM. Much more comparisons between standard MPM and moving-mesh
MPM were presented by Steffen et al.23

The standard MPM computational cycle can be divided into two phases, a Lagrangian phase followed by an
Eulerian/convective phase. In the convective phase, the mesh is reset to its original position while the particles
are remain in their current positions. The solution on the new grid can be reconstructed from the information
carried by the particles, as shown in Figure 2. The reconstruction of the velocity field from particles to grid
nodes based on momentum mapping preserves the monotonicity. Thus, the reconstruction phase will not make
the MPM scheme unstable, but introduce errors, such as cell-crossing error, into the calculation. The stability
is determined by whether the error will be amplified or not in Lagrangian phase. Therefore, the moving-mesh
MPM method is employed in our stability analysis to filter out the error produced by the change of particle
distribution.
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F I G U R E 3 Diagram of one-dimension elements and particle
distribution [Colour figure can be viewed at wileyonlinelibrary.com]

3 VON NEUMANN STABILITY ANALYSIS

The von Neumann stability analysis is widely used to determine the critical time step value in finite difference method
(FDM), and has been applied in particle methods.27,33 However, we will show that the Von Neumann stability analysis
method is invalid in the standard MPM.

Replacing n by n− 1 in Equation (9) gives

un
I = un−1

I + Δtn−1∕2u̇n−1∕2
I . (11)

Eliminating the velocity terms in Equations (9) to (11) leads to

Δtn−1∕2un+1
I − 2Δtnun

I + Δtn+1∕2un−1
I = Δtn−1∕2ΔtnΔtn+1∕2ün

I . (12)

In stability analysis, the external force fext
I is assumed to be zero, so the acceleration ün

I in Equation (12) can be
calculated by Equations (4), (6), and (7) as

ün
I = −

fint
I

mI
= −

∑np
p=1 ∇NIp ⋅ 𝝈p

mp

𝜌p∑np
p=1 mpNIp

. (13)

Substituting Equation (13) into Equation (12) leads to

[Δtn−1∕2un+1
I − 2Δtnun

I + Δtn+1∕2un−1
I ]

np∑
p=1

mpNIp + Δtn−1∕2ΔtnΔtn+1∕2
np∑

p=1
∇NIp ⋅ 𝝈p

mp

𝜌p
= 0. (14)

Equation (14) is valid for all dimensions. Here, we take the 1D problem shown in Figure 3 as an example, in which k1
and k2 are the number of particles in the interval [xI − 1, xI] and [xI , xI + 1] individually. The stress of particle p is given by

𝜎p = E𝜀p = E
ng∑

I=1
NIp,xuI , (15)

where E is Young’s modulus, 𝜀p is the strain of particle p, and ng = 2 for linear element in 1D.
With the von Neumann stability analysis method, we assume that the computational domain x ∈ [0, L] is evenly

discretized into S segments

xI+1 − xI = xI − xI−1 = h = L
S

Δtn−1∕2 ≈ Δtn ≈ Δtn+1∕2 ≈ Δt (16)

and

un
I = Aneiksx, (17)

where An is the wave amplitude and

ks =
2𝜋
L

s, s = 1, 2, … ,
S
2

is the wave number related to the spatial discretization.

http://wileyonlinelibrary.com
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Equation (14) can be simplified by Equations (15) to (17) as

(An+1 − 2An + An−1)mI + Δt2 ⋅ An ⋅ C = 0, (18)

where

C =
k1+ k2∑

p=1

Emp

h2𝜌p
−

k1∑
p=1

Emp

h2𝜌p
⋅ e−iksh −

k1+ k2∑
p=k1+1

Emp

h2𝜌p
⋅ eiksh. (19)

Let

G = An+1

An
, 2t = C

mI
. (20)

By substituting Equation (20) into Equation (18), the amplification factor G can be obtained as

G = 1 − t ±
√
(1 − t)2 − 1. (21)

The von Neumann stability condition requires ||G||≤ 1, which requires

t ∈ R and 0 ≤ t ≤ 2, ∀ ks. (22)

In the FDM method, the coefficient C could be rewritten into integration form and simplified with the assumption of
even spatial discretization in Equation (16) as

C = ∫
xI+1

xI−1

E
h2 dx −

(
∫

xI

xI−1

E
h2 e−iksh dx + ∫

xI+1

xI

E
h2 eiksh dx

)
= E

h
(2 − 2 cos(ksh))

so that C is a real number. However, in the MPM method,
∑k1

p=1 mp∕𝜌p ≠ h and
∑k1+k2

p=k1+1 mp∕𝜌p ≠ h in Equation (19),
especially in cell-crossing case. Thus, the coefficient C will become a complex number which violates the requirement in
Equation (22). Besides, the constitutive relation in Equation (15) is given in the format of full volume update for derivation
while the rate form �̇�p = E�̇�p is used in the standard MPM method. The incremental update format of the rate form is
𝜎n

p = 𝜎n−1
p +

∑ng
I=1 NIp,x(un

I − un−1
I ), and the term of 𝜎n−1

p here will lead to a constant term in Equation (18) which will make
the amplification factor G difficult to calculate.

In conclusion, the von Neumann stability analysis method is invalid in the standard explicit MPM with central dif-
ference integration scheme because of the low accuracy in material point integration and the difficulty in handling the
term, 𝜎n−1

p .

4 CRITICAL TIME STEP DERIVATION

In this section, the explicit formula of the critical time step will be derived based on the system eigenvalues. Homogeneous
isotropic material of linear elastic constitutive relation will be applied in the mathematical derivation. The critical stable
time step for the central difference integration method, Equations (9) and (10), can be calculated as

Δtcr =
2

𝜔max
, (23)

where 𝜔max is the maximum angular frequency of the whole system.
Assuming the external force f ext

iI to be zero, the momentum equation (4) can be rewritten into vector form as follows

Mü = fint (24)

in which M is the system mass matrix with the displacements and forces of all the grid nodes being arranged into a
vector, such as u= [u11, u21, u31, … uiI … , u1N , u2N , u3N]T for N grid nodes in 3D. With linear elastic constitutive relation
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𝝈 = C ∶ 𝝐 and the integration formula Equation (7) of the internal forces, the vector f int can be calculated as

f int = Ku, (25)

where K is the system stiffness matrix. And𝜔max is the root of the maximum eigenvalue 𝜆max calculated by the generalized
eigenvalue problem

K𝝓 = 𝜆M𝝓. (26)

In the following subsections, the USL scheme, MUSL scheme, USF scheme, and sound speed modification will be
discussed, respectively.

4.1 USL scheme

In the UL form, the stress state 𝝈p of particle p is updated as

𝝈n
p = 𝝈n−1

p + C ∶ �̇�
n−1∕2
p Δtn−1∕2, (27)

where the particle strain rate �̇�p is calculated by the gradient of the velocity field constructed from grid nodes as

�̇�
n−1∕2
p = 1

2
(𝛁u̇n−1∕2

p + u̇n−1∕2
p 𝛁) =

ng∑
I=1

(𝛁Nn−1
Ip )u̇n−1∕2

I . (28)

Taking the configuration of n− 1 time step as the current configuration, we have

u̇n−1∕2
I Δtn−1∕2 = un

iI − un−1
iI = ΔuI , (29)

and

u̇n−1∕2
I = d

dt
(ΔuI), ün

I = d2

dt2 (ΔuI). (30)

Substituting Equations (27) to (29) into Equation (7), the internal force can be calculated as

f n,int
I = f n,geo

I + f n,mat
I , (31)

where

f n,geo
I = −

np∑
p=1

(𝛁Nn
Ip) ⋅ 𝝈

n−1
p V n

p (32)

f n,mat
I = −

np∑
p=1

ng∑
J=1

(𝛁Nn
Ip) ⋅ C ∶ (𝛁Nn−1

Jp ΔuJ)V n
p (33)

and the global stiffness matrices can be obtained in submatrix form by the internal nodal forces f n,geo
I and f n,mat

I ,
respectively, as

Kn,geo
IJ = −

𝜕f n,geo
I

𝜕(ΔuJ)
, Kn,mat

IJ = −
𝜕f n,mat

I

𝜕(ΔuJ)
. (34)

The geometric internal force f n,geo
I in Equation (32) is caused by geometric nonlinearity and will be elaborated in

Section 4.3. The element stiffness matrix can be given here by the material internal force f n,mat
I defined in Equation (33) as

K n,mat
e =

ne
p∑

p=1
Bn,T

e DBn−1
e Vp, (35)
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where Be is the strain matrix of grid cell e and D is the constitutive matrix.
In the UL form of the explicit MPM scheme, the displacement ΔuI is very small because of the small time step value.

That is, the difference between the configurations of time step n− 1 and n is very small. With the assumption of moving
mesh MPM that the mesh and particles keep stationary in the reference configuration, we have

Bn
e ≈ Bn−1

e . (36)

The greatest difference between MPM and FEM is that the particles instead of the Gauss points serve as the quadrature
points which makes the von Neumann stability analysis method invalid. In FEM, Irons has proved that the maximum
frequency of the whole system is always smaller than or equal to the maximum frequency of every grid cell. However, in
MPM, the cell-by-cell formula will lead to a very small critical time step estimate in some particle distributions while the
actual critical time step can be rather large, which will be revealed in details with numerical examples in Section 5. In the
standard MPM, the particles will not keep stationary in the reference configuration anymore and cell-crossing frequently
occurs in the simulation. So, we need to take the interaction between neighboring grid cells into consideration.

As shown in Figure 3, we assume that the standard MPM has uniform mesh discretization in the 1D computational
domain, that is, xI + 1 − xI = xI − xI − 1 = h. Given that the sectional area is A, the Young’s modulus is E, and the particles
are numbered from 1 to k1 + k2, the stiffness matrix of the two-cell pair can be calculated as

Kn,mat =
⎡⎢⎢⎢⎣

Kn
1 −Kn

1 0
−Kn

1 Kn
1 + Kn

2 −Kn
2

0 −Kn
2 Kn

2

⎤⎥⎥⎥⎦ (37)

in which

Kn
1 =

AE
∑k1

p=1 ln
p

h2 , Kn
2 =

AE
∑k1+k2

p=k1+1 ln
p

h2 , (38)

where lp is the length represented by material particle p.
The lumped mass matrix is always used in the standard explicit MPM for the computational efficiency, that is

Mn =
⎡⎢⎢⎢⎣
Mn

I−1 0 0
0 Mn

I 0
0 0 Mn

I+1

⎤⎥⎥⎥⎦ , (39)

where

Mn
I−1 =

k1∑
p=1

mpNn
(I−1) p, Mn

I =
k1+k2∑
p=1

mpNn
I p, Mn

I+1 =
k1+k2∑

p=k1+1
mpNn

(I+1) p. (40)

By solving the generalized eigenvalue problem Kn,mat𝝓 = 𝜆Mn𝝓, the maximum eigenvalue can be obtained as

𝜆max = 1
2

⎧⎪⎨⎪⎩Kn
1 C1 + Kn

2 C2 +

√
(Kn

1 C1 − Kn
2 C2)2 + 4

Kn
1 Kn

2

Mn
I Mn

I

⎫⎪⎬⎪⎭ , (41)

where

C1 = 1
Mn

I−1
+ 1

Mn
I
, C2 = 1

Mn
I
+ 1

Mn
I+1

.

The coefficients MI − 1,MI , and MI + 1 of the lumped mass matrix have already been calculated in the reconstruction
step of the standard MPM. However, the coefficients of K1 and K2 need to be calculated additionally, which is
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time-consuming and difficult to be extended to 2D and 3D. In order to simplify the result, we introduce the
inequalities

(
k1+k2

min
p=1

𝜌n
p

)
Kn

1 ≤
AE

∑k1
p=1

(
min k1

p=1𝜌
n
p

)
ln
p

h2 ≤ E
∑k1

p=1 mp

h2 = Em1

h2 ,

(
k1+k2

min
p=1

𝜌n
p

)
Kn

2 ≤
AE

∑k1+k2
p=k1+1

(
min k1+k2

p=k1+1𝜌
n
p

)
ln
p

h2 ≤ E
∑k1+k2

p=k1+1 mp

h2 = Em2

h2 , (42)

where

m1 =
k1∑

p=1
mp, m2 =

k1+k2∑
p=k1+1

mp

are the total mass of all particles located in the interval [xI − 1,xI] and [xI ,xI + 1], respectively. Substituting Equation (42)
into Equation (41) gives

𝜆max ≤ E
2h2min k1+k2

p=1 𝜌n
p

{
m1C1 + m2C2 +

√
[m1C1 − m2C2]2 + 4 m1m2

Mn
I Mn

I

}
. (43)

By substituting Equation (43) into Equation (23), the critical time step can be calculated as

ΔtUSL
cr = 2√

𝜆max
≥ 𝛼USLΔtori

cr , (44)

where

Δtori
cr = h√

E∕
(

min k1+k2
p=1 𝜌n

p

) (45)

is the original critical time step used in the standard MPM method, and

8
𝛼2

USL
= m1C1 + m2C2 +

√
[m1C1 − m2C2]2 + 4 m1m2

Mn
I Mn

I
, (46)

where 𝛼USL is a coefficient factor depending only on particle mass and grid node mass, and can be efficiently calculated.

4.2 MUSL and USF scheme

The MUSL scheme maps the updated particle momentum back to the grid nodes in order to update the particle stress
at the end of every time step, while the USF scheme maps the particle momentum at the beginning of every time step.
Therefore, the MUSL and USF schemes are quite similar, and the difference between these two schemes is that the MUSL
scheme employs the shape function Nn

Ip at time step n to map the particle momentum, while the USF scheme employs
the shape function Nn+1

Ip at time step n+ 1. With the assumption of moving mesh MPM that the mesh and particles keep
stationary in the reference configuration, the shape function NIp remains the same at different time step. That is, there is
no difference between the MUSL and USF scheme in the moving mesh MPM.

The nodal force and stress update formula in MUSL scheme is the same as that in USL scheme, Equations (7) and
(27), and the main difference is the remapping of velocity field. Thus, the calculation of particle strain is different

�̇�
n+1∕2
p =

ng∑
I=1

𝛁Nn
Ipu̇

n+1∕2
I (47)
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in which

u̇
n+1∕2
I =

∑np
p=1 mpu̇n+1∕2

p Nn
Ip∑np

p=1 mpNn
Ip

, (48)

where the velocity u̇n+1∕2
p of particle p is the result at the end of time step n+ 1/2.

With the assumption of moving mesh MPM as mentioned above, the shape function NIp remains the same at different
time step. At the beginning of every time step, the reconstruction of the velocity field takes the form of

u̇n+1∕2
I,begin =

∑np
p=1 mpu̇n+1∕2

p Nn+1
Ip∑np

p=1 mpNn+1
Ip

. (49)

Comparing Equation (49) with Equation (48) gives

u̇
n+1∕2
I = u̇n+1∕2

I,begin. (50)

Thus, the MUSL scheme and USF scheme will have identical critical time step under the assumption of moving mesh
MPM. However, in the standard MPM, USF scheme introduces numerical energy into simulation system which leads
to significant increase in total system energy, while MUSL scheme shows good performance in energy conservation.
Therefore, the MUSL scheme will be more stable than USF scheme which, however, cannot be reflected in the critical
time step formula given with the assumption of moving mesh MPM.

During the time step n, the velocity u̇n+1∕2
p of particle p is calculated by the momentum equation as

u̇n+1∕2
p = u̇n−1∕2

p + Δtnap, (51)

where

ap =
ng∑

I=1

f n,int
I Nn

Ip

mn
I

is the acceleration of particle p. Substituting Equation (51) into Equation (48) results in

u̇
n+1∕2
I = u̇

n−1∕2
I + Δtn fn,eq

I

mn
I
, (52)

where

fn,eq
I =

np∑
p=1

mpNn
Ipap (53)

is the equivalent nodal force, which can be rewritten in vector form as

f n,eq = Nn,∗∗Nn,∗Tf n,int (54)

in which the equivalent nodal force and the original nodal force are arranged into a vector, such as for N grid nodes
in 3D f=[f 11, f 21, f 31, … f iI … , f 1N , f 2N , f 3N ]T, and N* and N** are the generalized shape function matrices defined by
submatrix as

N∗
Ip = diag

(NIp

mI
, d

)
, N∗∗

Ip = diag(mpNIp, d), I = 1, 2, … ,N and p = 1, 2, … ,np, (55)

where diag( ⋅, ⋅ ) means diagonal matrix and d is the space dimension. For example, d= 3 in 3D problems and

diag(mpNIp, d) =
⎡⎢⎢⎢⎣
mpNIp 0 0

0 mpNIp 0
0 0 mpNIp

⎤⎥⎥⎥⎦ . (56)
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Still, the geometric internal force f n,geo
I in Equation (32) will be discussed later. Substituting the original material

internal force equation f n,mat = Kn,matΔun into Equation (54) leads to the equivalent system stiffness matrix

Kn,mat,eq = Nn,∗∗Nn,∗TKn,mat. (57)

and then the maximum frequency of the whole system can be obtained by solving the generalized eigenvalue problem
Kn,mat,eq𝝓 = 𝜆Mn𝝓.

From the Equations (31) and (53), we can find that with linear shape function the internal nodal force f n,int
I of grid

node I in USL scheme is supported by the two cells joined at node I while f n,eq
I of grid node I in MUSL scheme is supported

by the neighboring four cells. We should use the neighboring four cells in 1D to calculate the critical time step, but
unfortunately it cannot give an explicit formula because of the high order in equation |Kn,mat,eq − 𝜆Mn| = 0. Thus, the
two-cell pair is still used as shown in Figure 3, and it will be shown that the difference between the result of two-cell pair
formula and that of the whole system eigenvalue is not too large in Section 5.

The material stiffness matrix Kn,mat and lumped mass matrix Mn of the two-cell pair is defined the same as
Equations (37) and (39) in USL scheme, and the generalized shape function matrix N* and N** in 1D problem are defined
by linear shape function as

N∗T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(I−1) 1

MI−1

NI 1
MI

0

⋮ ⋮ ⋮
N(I−1) p

MI−1

NI p

MI
0

⋮ ⋮ ⋮
N(I−1) k1

MI−1

NI k1
MI

0

0 NI (k1+1)

MI

N(I+1) (k1+1)

MI+1

⋮ ⋮ ⋮

0 NI p

MI

N(I+1) p

MI+1

⋮ ⋮ ⋮

0
NI (k1+k2)

MI

N(I+1) (k1+k2)

MI+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,N∗∗T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1N(I−1) 1 m1NI 1 0
⋮ ⋮ ⋮

mpN(I−1) p mpNI p 0
⋮ ⋮ ⋮

mk1 N(I−1) k1 mk1 NI k1 0
0 mk1+1NI (k1+1) mk1+1N(I+1) (k1+1)

⋮ ⋮ ⋮

0 mpNI p mpN(I+1) p

⋮ ⋮ ⋮

0 mk1+k2 NI (k1+k2) mk1+k2 N(I+1) (k1+k2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

Solving the generalized eigenvalue problem Kn,mat,eq𝝓 = 𝜆Mn𝝓 and utilizing the inequalities in Equation (42), the
explicit critical time step formula for MUSL scheme can be obtained as

ΔtMUSL
cr = 2√

𝜆max
≥ 𝛼MUSLΔtori

cr (59)

in which Δtori
cr is the same as that in USL scheme, and

8
𝛼2

MUSL
= A + B +

√√√√√(A − B)2 + 4m1m2

Mn
I Mn

I

( k1∑
p=1

Nn
IpCp

I−1 +
k1+k2∑

p=k1+1
Nn

IpCp
I+1 −

k1+k2∑
p=1

Nn
IpCp

I

)2

, (60)

where

Cp
I−1 =

mpNn
(I−1)p

Mn
I−1

, Cp
I =

mpNn
Ip

Mn
I

, Cp
I+1 =

mpNn
(I+1)p

Mn
I+1

,

A = m1

Mn
I−1

( k1∑
p=1

Nn
(I−1)pCp

I−1 −
k1∑

p=1
Nn

(I−1)pCp
I

)
+ m1

Mn
I

(k1+k2∑
p=1

Nn
IpCp

I −
k1∑

p=1
Nn

IpCp
I−1

)
,

B = m2

Mn
I

(k1+k2∑
p=1

Nn
IpCp

I −
k1+k2∑

p=k1+1
Nn

IpCp
I+1

)
+ m2

Mn
I+1

( k1+k2∑
p=k1+1

Nn
(I+1)pCp

I+1 −
k1+k2∑

p=k1+1
Nn

(I+1)pCp
I

)
. (61)
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It shows from Equations (60) and (61) that the coefficient in MUSL scheme not only depends on mass but also relates
to the shape function, which will be much more time-consuming than that in USL scheme. But we will illustrate in the
numerical tests that the critical time step in MUSL scheme is much larger than that in USL scheme, even over 10 times
in some extreme particle positions.

4.3 Sound speed modification

In this part, the effect of the geometric internal force f n,geo
I in Equation (32) is taken into account. The treatments of both

USL scheme and MUSL scheme are the same, so only the USL scheme is discussed here. As known, the standard MPM
shows its power in dealing with extreme deformation problems, and consequently the effect of geometric nonlinearity on
simulation stability should be taken into consideration. That is, the stress term at the end of last time step, that is, 𝜎n−1

p in
Section 3 which is difficult to handle by the von Neumann stability analysis method, needs to be reflected in our critical
time step formula.

As shown in Equation (31), the grid nodal internal force consists of two parts: one is related to the constitutive relation
of a certain material and the other is related to the interaction between the current stress state 𝝈p and the geometric
deformation. The first part has been studied thoroughly in Sections 4.1 and 4.2, and the second part will be discussed here
by its tangential derivative which leads to the geometric stiffness matrix. Belytschko et al39 gave the derivation from the
geometric internal force to the geometric stiffness matrix. We will give a brief description to the derivation first and then
use the geometric stiffness matrix to modify our critical time step formulae.

The definition of the geometric internal force f n,geo
I in integral form is

f n,geo
I = −∫V

𝛁Nn
I ⋅ 𝝈n−1 dV (62)

in which𝝈n−1 is viewed as a constant for the calculation of current time step n in UL form. With the assumption of moving
mesh MPM that the mesh and particles keep stationary in the reference configuration, we have

𝛁Nn
I ≈ 𝛁Nn−1

I . (63)

In order to calculate the derivative to time, the geometric internal force needs to be rewritten in total Lagrangian form as

fn,geo
I ≈ −∫V

𝛁Nn−1
I ⋅ 𝝈n−1 dV = −∫V0

𝜵XNn−1
I ⋅ Sn−1 ⋅ Fn−1,T dV0, (64)

where V 0 is the initial volume,𝜵X =
[

𝜕

𝜕X1
,

𝜕

𝜕X2
,

𝜕

𝜕X3

]
, S is the second Piola-Krichhoff stress tensor and F = 𝜕x

𝜕X
= I + 𝜕u

𝜕X
is the

deformation gradient. Then with the velocity defined at integer-plus-a-half time steps in leapfrog scheme, the derivative
of the geometric internal force to time can be calculated as

ḟn,geo
I ≈ −∫V0

𝜵XNn−1
I ⋅ Sn−1 ⋅ Ḟn−1∕2,T dV0 = −∫V0

𝜵XNn−1
I ⋅ Sn−1 ⋅

(
𝜕u̇n−1∕2

𝜕X

)T

dV0. (65)

Substitute Equation (3) into Equation (65) and rewrite the above derivative back into UL form as

ḟn,geo
I ≈ −∫V

𝛁Nn−1
I ⋅ 𝝈n−1 ⋅ (𝛁Nn−1

J u̇n−1∕2
J )T dV ≈ −∫V

𝛁Nn
I ⋅ 𝝈n−1 ⋅ 𝛁Nn,T

J u̇n−1∕2,T
J dV . (66)

Finally the geometric stiffness matrix can be obtained by substituting Equation (30) into its tangential derivative definition
in submatrix form as

Kn,geo
IJ = −

𝜕f n,geo
I

𝜕(ΔuJ)
= −

𝜕ḟ n,geo
I

𝜕(d(ΔuJ)∕dt)
= −

𝜕ḟ n,geo
I

𝜕u̇n−1∕2
J

≈ diag(1, d) ⋅ ∫V
GnT

I 𝝈n−1Gn
J dV , (67)
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where Gn
I =

[
𝜕Nn

I
𝜕x1

,
𝜕Nn

I
𝜕x2

,
𝜕Nn

I
𝜕x3

]T
and 𝝈 is the Cauchy stress tensor.

In the 1D problem shown in Figure 3, we have

d = 1, Gn
I−1 =

{
− 1

l
, x ∈ [xI−1, xI]

0, x ∈ [xI , xI+1]
, Gn

I =

{
1
l
, x ∈ [xI−1, xI]

− 1
l
, x ∈ [xI , xI+1]

, Gn
I+1 =

{
0, x ∈ [xI−1, xI]
1
l
, x ∈ [xI , xI+1]

(68)

Substituting Equation (68) into Equation (67) gives the geometric stiffness matrix for the two-cell pair as

Kn,geo =
⎡⎢⎢⎢⎣

Kn,geo
1 −Kn,geo

1 0
−Kn,geo

1 Kn,geo
1 + Kn,geo

2 −Kn,geo
2

0 −Kn,geo
2 Kn,geo

2

⎤⎥⎥⎥⎦ , (69)

where

Kn,geo
1 =

A
∑k1

p=1 𝜎
n−1
p ln

p

h2 , Kn,geo
2 =

A
∑k1+k2

p=k1+1 𝜎
n−1
p ln

p

h2 (70)

and 𝜎n−1
p is the Cauchy stress of particle p at time step n− 1 in 1D.

Comparing Equations (37) and (69) shows that the material stiffness matrix Kn,mat and the geometric stiffness matrix
Kn,geo have the same form. The internal nodal force is calculated by the addition of these two part as

f n,int = f n,geo + f n,mat = −(Kn,geo + Kn,mat)Δu. (71)

With the same treatment as in Section 4.1, the final explicit critical time step formula for USL scheme can be obtained
as

ΔtUSL
cr = 𝛼USLΔtmod

cr , (72)

where

Δtmod
cr = h√

max k1+k2
p=1 (E + 𝜎n−1

p )∕𝜌n
p

(73)

is the modified critical time step formula by replacing the Young’s modulus E with E + 𝜎n−1
p to modify the sound speed

of every particle p, and the coefficient 𝛼USL is of the same definition as in Equation (46).

5 NUMERICAL EXAMPLES AND DISCUSSION

In this section, three 1D numerical tests are first designed to verify the 1D formulae of USL scheme, MUSL scheme and
USF scheme. Then the formulae will be extended to 2D and 3D formulae based on the orthogonality of MPM background
mesh, and the results given by extended formulae and directly solving system eigenvalue problem will be compared
through a 2D test. Finally, the simulations of 1D string vibration and 2D cantilever vibration are performed to validate
our critical time step formulae and compare the simulation performance between the original critical time step formula
and ours.

5.1 Verification tests for 1D formula

As shown in Figure 4, 1D computational domain is discretized into N cells and there is one particle per cell. The
parent coordinate 𝜉 of the particles in hollow dot equals zero, which means that they are set at the cell center. The parent
coordinate 𝜉r of the particle in red circle varies from −1 to 1, which represents different particle positions. And the
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F I G U R E 4 Diagram of verification tests for one-dimension formula [Colour figure can be viewed at wileyonlinelibrary.com]

parent coordinate 𝜉b of the particle in blue square is chosen from three values, namely, −0.99, 0.0, and 0.99, which
is designed to demonstrate the effect of neighboring cell interaction on the critical time step together with the parti-
cle in red circle. The two particles in red circle and in blue square are set at different locations, namely, at the free
boundary (Test 1), in the interior domain (Test 2), and at the fixed boundary (Test 3), to verify our formulae in different
conditions.

The critical time step will be calculated by directly solving the system eigenvalue problem or by the formulae given
in Section 4. In order to verify the coefficients in our formulae, the ratio of the critical time step calculated by different
methods, Δtcal

cr , to that given by the original formula, Δtori
cr , is introduced here

R =
Δtcal

cr

Δtori
cr

. (74)

Thus, the ratio will be not relevant to Young’s modulus, material density and spatial discretization precision anymore
and be only relevant to particle positions. For critical time step formula, the ratio equals to its coefficient and is easy to
calculate. However, for the critical time step of the whole system, we need to solve the generalized eigenvalue problem
first, and then the ratio can be obtained by dividing the critical time step with that given by original formula. Thus, we
need to give a specific value as Young’s modulus E = 10 000 Pa, material density 𝜌 = 1.0 kg∕m3, sectional area A= 1.0
m2, spatial discretization precision l= 1 m, and the mass of every particle mp = 1.0 kg to solve the generalized eigenvalue
problem.

5.1.1 USL scheme

In order to illustrate the effect of neighboring cell interaction on the critical time step, 1-cell formula is introduced here
to 1D USL scheme by reducing the generalized eigenvalue problem to just one cell [xI−1, xI]

Δt1c,USL
cr ≥ Δtmod

cr
2√

m1
MI−1

+ m1
MI

. (75)

Figures 5,6, and 7 plot the ratio R in USL scheme to the parent coordinate 𝜉r of the particle in red circle given by
directly solving the system eigenvalue problem of the 20-cell system, the 2-cell formula and the 1-cell formula. The two
particles in red circle and in blue square are set at the free boundary (Test 1) in Figure 5, in the interior domain (Test 2)
in Figure 6 and at the fixed boundary (Test 3) in Figure 7.

In Figure 5A-C, the nodal masses MI − 1, MI , and MI + 1 used in the formula are partly reconstructed by the particles
only located in the interval [xI−1, xI+1], while in Figure 5D-F they are fully reconstructed by all the particles in the sup-
ported area, that is, interval [xI−2, xI+2] for linear shape function. The mass of an interior grid node, which is actually
large, will be calculated very small when using partly reconstructed nodal masses in some extreme particle distributions,
and thus the critical time step value will be severely underestimated. For example, the 2-cell formula gives a very small
critical time step value compared with the exact one when the parent coordinate of the particle in blue square equals
−0.99 as shown in Figure 5A. When using fully reconstructed nodal masses, the effect of interaction between neighboring
2-cell pairs on the critical time step is taken into consideration and thus the 2-cell formula with fully reconstructed nodal

http://wileyonlinelibrary.com
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(A) (B) (C)

(D) (E) (F)

F I G U R E 5 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 1 in USL scheme. The parent coordinate of particle in
blue square is 𝜉b = −0.99 in (A) and (D), 𝜉b = 0.0 in (B) and (E), and 𝜉b = 0.99 in (C) and (F). Partly reconstructed nodal masses are used in
(A) to (C), while fully reconstructed nodal masses are used in (D) to (F). USL, update-stress-last [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

F I G U R E 6 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 2 in USL scheme. The parent coordinate of particle in
blue square is 𝜉b = −0.99 in (A), 𝜉b = 0.0 in (B), and 𝜉b = 0.99 in (C). USL, update-stress-last [Colour figure can be viewed at
wileyonlinelibrary.com]

masses gives a good estimate for the system critical time step in any particle position of Test 1 as shown in Figure 5D-F.
Therefore, the fully reconstructed nodal masses MI − 1, MI , and MI + 1 are used in the 2-cell formula for USL scheme. And
thus, we just give the results of our formula with fully reconstructed nodal masses in Figures 6 and 7.

The effect of neighboring cell interaction on the critical time step is revealed here by comparing the results of 2-cell
formula and 1-cell formula. As shown in Equation (43) of the maximum system eigenvalue in USL scheme, the neigh-
boring cell interaction is reflected in the term of 4Kn

1 Kn
2 ∕(M

n
I )

2. When just applying the fully reconstructed nodal masses
to 1-cell formula, the contribution of the neighboring cell to nodal masses is reflected in the 1-cell formula while the
contribution to the element stiffness not, and thus 1-cell formula with fully reconstructed nodal masses overestimates
the system critical time step too much to be used in real simulation as shown in Figures 5D-F, 6, and 7. The results
of 2-cell formula with fully reconstructed nodal masses and 1-cell formula with partly reconstructed nodal masses are

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B) (C)

F I G U R E 7 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 3 in USL scheme. The parent coordinate of particle in
blue square is 𝜉b = −0.99 in (A), 𝜉b = 0.0 in (B), and 𝜉b = 0.99 in (C). USL, update-stress-last [Colour figure can be viewed at
wileyonlinelibrary.com]

compared with illustrate the difference between FEM and MPM. In Figure 5B, 1-cell formula gives a much smaller
critical time step than the exact one at some particle positions. For example, Δt1c,USL

cr ∕Δtori
cr = 0.14 while Δtexact

cr ∕Δtori
cr =

0.88 and Δt2c,USL
cr ∕Δtori

cr = 0.91 when the parent coordinate of the particle in red circle 𝜉r = −0.99. In FEM, the density in
one cell is uniform and the total mass of the cell is distributed equally to the cell nodes. However, in MPM, the density
field has the characteristic of Dirac’s function as shown in Equation (2), which leads to a very small nodal mass in the
1-cell formula in extreme particle distributions, such as MI = 0.005 kg in 1-cell formula while MI = 0.505 kg in 2-cell for-
mula when 𝜉r = −0.99. Thus, the cell-by-cell critical time step proposed by Irons can give a good estimate in FEM but a
poor estimate in MPM.

In conclusion, the critical time step will be very small when there exists a very small nodal mass in USL scheme. And,
this situation will occur when the material body boundary moves across the cell boundary or fracture happens in the
interior of computational domain.

5.1.2 MUSL and USF scheme

In USL scheme, 1-cell formula is introduced by reducing the generalized eigenvalue problem to just one cell. However,
there is no 1-cell formula for MUSL scheme because of the rank deficiency in the generalized shape function matrices,
Equation (55). Let us take the uniform particle distribution, for example. Supposing that there is only one particle per
cell and all the particles are set at the cell center and of the same mass mp, we can obtain that the nodal masses MI − 1
and MI are equal to the mass of particle mp and the shape function N(I − 1) p and NIp are both equal to 0.5. Then with the
degradation of generalized shape function matrices to one cell [xI−1, xI] and one particle p in it

N∗ =
⎡⎢⎢⎣

N(I−1) p

MI−1
NI p

MI

⎤⎥⎥⎦ , N∗∗ =

[
mpN(I−1) p

mpNI p

]
, (76)

the stiffness matrix can be calculated as

Keq = N∗∗ ⋅ N∗T ⋅

[
K1 −K1

−K1 K1

]
=

[
0 0
0 0

]
. (77)

So, the maximum eigenvalue of Keq𝝓 = 𝜆M𝝓 of the 1-cell system with uniform particle distribution equals zero which
will give an infinite estimate for the critical time step.

Figure 8 plots the ratio R in MUSL scheme to the parent coordinate 𝜉r of particle in red circle given by directly solving
the eigenvalue problem of 3-cell system, 5-cell system, 10-cell system and 20-cell system, and the 2-cell formula. Figures 9
and 10 plot the ratio R in MUSL scheme to the parent coordinate 𝜉r of particle in red circle given by directly solving the
eigenvalue problem of 20-cell system and the 2-cell formula. The two particles in red circle and in blue square are set at

http://wileyonlinelibrary.com
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(A) (B) (C)

(D) (E) (F)

F I G U R E 8 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 1 in MUSL scheme. The parent coordinate of particle
in blue square is 𝜉b = −0.99 in (A) and (D), 𝜉b = 0.0 in (B) and (E), and 𝜉b = 0.99 in (C) and (F). Partly reconstructed nodal masses are used in
(A) to (C), while fully reconstructed nodal masses are used in (D) to (F) [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

F I G U R E 9 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 2 in MUSL scheme. The parent coordinate of particle
in blue square is 𝜉b = −0.99 in (A), 𝜉b = 0.0 in (B), and 𝜉b = 0.99 in (C). MUSL, modified update-stress-last [Colour figure can be viewed at
wileyonlinelibrary.com]

the free boundary (Test 1) in Figure 8, in the interior domain (Test 2) in Figure 9 and at the fixed boundary (Test 3) in
Figure 10.

It has been mentioned in Section 4 that the equivalent internal force, fn,eq
I , of grid node I in MUSL scheme is supported

by the neighboring four cells with linear shape function. Therefore, the results of directly solving 3-cell, 5-cell, and 10-cell
system eigenvalue problems differ from each other as shown in Figure 8. However, there will be no difference in system
critical time step when the cell amount is large enough, such as the results of 10-cell system and 20-cell system. And
as shown in Figure 8A-C, the 2-cell formula gives a good estimate for the exact curve, although the effect of enlarged
supported area is not reflected in our formula. As a result, it is reasonable to use the 2-cell formula for critical time step
calculation in real simulation.

Comparing the results of USL scheme and MUSL scheme, we can find that the ratios in MUSL scheme are all larger
than 1.0 at any particle distribution while those in USL scheme are all smaller than 1.0 and even approach to zero at

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B) (C)

F I G U R E 10 The ratio R to the parent coordinate 𝜉r of particle in red circle for Test 3 in MUSL scheme. The parent coordinate of
particle in blue square is 𝜉b = −0.99 in (A), 𝜉b = 0.0 in (B), and 𝜉b = 0.99 in (C). MUSL, modified update-stress-last [Colour figure can be
viewed at wileyonlinelibrary.com]

some extreme particle distributions. In USL scheme, some diagonal elements of the lumped system mass matrix will be
an infinitesimal number at those extreme distributions while the system stiffness matrix remains well defined, because
the derivative of linear shape function has the characteristic of Heaviside function in the standard MPM. It consequently
leads to an infinitesimal critical time step in USL scheme. However, in MUSL and USF scheme, the velocity field of grid
nodes is remapped from particles before updating the particle stress, which introduces the generalized shape function
matrices as defined in Equation (55) to smooth the system stiffness matrix by Equation (57). Thus, in those extreme
particle distributions the system critical time step in MUSL scheme can remain a quite large number, even larger than
the value given by the original formula.

The nodal masses MI − 1, MI , and MI + 1 in Figure 8A-C are partly reconstructed by the particles only located
in the interval [xI−1, xI+1], while in 8D-F they are fully reconstructed by all the particles in the supported area,
that is, interval [xI−2, xI+2] for linear shape function. The linear shape function NIp is close to zero when the
particle p is near the corresponding cell boundary apart from the cell node I, and the system stiffness matrix
is smoothed by the shape function. Therefore, the effect of neighboring cell interaction on the critical time step
is eliminated and there is no need to use fully reconstructed nodal masses. As shown in Figure 8, the 2-cell
formula with partly reconstructed nodal masses gives a better estimate to the system critical time step than
that with fully reconstructed nodal masses. However, the estimation performance of the 2-cell formula in MUSL
scheme is worse than that in USL scheme, because the effect of enlarged supported area is not reflected in our
formula.

The 2-cell formula gives a good fit to the exact curve of system critical time step when the particle in red cir-
cle is located at the free boundary as shown in Figure 8, while it deviates from the exact curve a lot when the
particle in red circle is located in the interior domain or at the fixed boundary as shown in Figures 9 and 10.
However, those particle distributions of large deviation rarely appear in the physical simulations. For example, the
particle distribution of 𝜉r = −0.99 and 𝜉b = −0.99 in test 2 represents an isolated particle (the particle in blue square)
apart from the other particles. That is, there exists two fracture interface very close to each other, just at a dis-
tance of one particle length, which is rare in practical simulation. The 2-cell formula still has a better performance
than the original formula in those particle distributions, although a smaller CFL number is needed to guaran-
tee the stability in simulation. Therefore, it is reasonable to use the 2-cell formula in MUSL scheme for physical
simulations.

5.2 Extension to 2D and 3D

The extensions to 2D and 3D in USL scheme, MUSL scheme and USF scheme of the explicit MPM are the same, and thus
the extension to 2D in USL scheme is taken here, for example. The background mesh of the standard MPM is structural
and orthogonal mesh. An apparent way is to utilize the mesh orthogonality and decouple the calculation of critical time
step into x-direction and y-direction. After obtaining the critical time step Δtx

cr and Δty
cr, respectively, the system critical

time step is set to be the smaller one.

http://wileyonlinelibrary.com
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F I G U R E 11 Diagram of two-dimension test for the extended formula in USL
scheme. USL, update-stress-last [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

F I G U R E 12 The ratio R to parent coordinates (𝜉, 𝜂) of red particle in USL scheme. USL, update-stress-last [Colour figure can be viewed
at wileyonlinelibrary.com]

Given that two neighboring cells in x-direction are numbered C and C + 1 and there are k1 particles in cell C and k2
particles in cell C + 1, the formula of Δtx

cr is given by replacing the nodal masses in Equation (46) with the decoupling
nodal masses of cell C and C + 1 in x-direction as

Mx
I−1 =

k1∑
p=1

mp(1 − 𝜉p), Mx
I =

k1∑
p=1

mp(1 + 𝜉p) +
k1+k2∑

p=k1+1
mp(1 − 𝜉p), Mx

I+1 =
k1+k2∑

p=k1+1
mp(1 + 𝜉p) (78)

Δty
cr can be obtained in the same way with the nodal masses calculated by the other parent coordinate 𝜂p.
The 2D test for the extension formula is designed as shown in Figure 11, in which there are 20 cells in each direction

and only one particle per cell. The parent coordinates 𝜉r and 𝜂r of the red particle range in [−1, 1]which represents different
particle positions, and all the blue particles are set to the center of corresponding cell. Figure 12 plots ratio contours to
the parent coordinates 𝜉r and 𝜂r of the red particle given by solving the 400-cell system eigenvalue problem in Figure 12A
and extended 1D 2-cell formula in Figure 12B. Figure 12C plots the ratio, R, to the parent coordinate 𝜉r of the red particle
with respect to fixed 𝜂r = 0.99.

As shown in Figure 12, the isohypse remains horizontal or vertical in (B) because of the extension based on mesh
orthogonality while the isohypse is oblique in (A). Further comparing the contours of (A) and (B), we can find that the
system critical time step is much larger when the red particle is located at the right-top corner with 𝜉r and 𝜂r close to
1. It is because that the corresponding diagonal elements of system stiffness matrix and lumped mass matrix will both
approach to zero at the same order with the bilinear shape function when the red particle approaches to the right-top cell
node. Therefore, there exists an abnormal increase in critical time step when 𝜂r remains 0.99 and 𝜉r ranges from −1 to 1 as

http://wileyonlinelibrary.com
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F I G U R E 13 Diagram of one-dimension string vibration tests [Colour figure can be viewed at wileyonlinelibrary.com]

shown in subfigure (C). However, the extended 2-cell formula cannot capture this abnormal increase and give a very small
critical time step compared with the exact one. Fortunately, not all boundary cells have only one particle at its cell corner
and those particles at corner will also move away from the abnormal area in the following steps in simulation. So, we can
set aside this abnormal increase phenomenon and just use the orthogonal extended formula for physical simulations.

For 3D extension, the critical time step value in z-direction, Δtz
cr, can be obtained in the same way with the nodal

masses calculated by another parent coordinate 𝜁p. After obtaining the critical time step Δtx
cr, Δty

cr, and Δtz
cr, respectively,

the system critical time step is set to be the smallest one.

5.3 1D string vibration

The tests in previous two subsections 5.1 and 5.2 are all based on moving mesh MPM assumption to verify the 2-cell for-
mula. However, each step of the standard MPM consists of a Lagrangian step and a following Eulerian step. Although
the Eulerian step contains only the discard of the old deformed mesh and reconstruction of physical variables to the new
mesh which will not cause instability, the interaction between Lagrangian step and Eulerian step will affect the stabil-
ity characteristic. For example, Kn

e =
∑ne

p
p=1 Bn,T

e DBn−1
e Vp is the element stiffness matrix formula in USL scheme. There

will be a big difference between Bn
e and Bn−1

e when the cell crossing occurs during the time step n− 1. This instabil-
ity factor is excluded by the assumption of moving mesh MPM, so we need to validate the applicability of our critical
time step formula with some standard MPM simulations. The following tests are all simulated by our laboratory code,
MPM3D.

1D string vibration problem has an analytical solution in small deformation which means that the density can be
considered as a constant. If the initial velocity condition and boundary conditions are prescribed by

u̇ = U 𝜋

2L

√
E
𝜌

sin
(
𝜋

2L
x + 𝜋

2

)
,

𝜕u
𝜕x

||||x=0
= 0, u|x=L = 0, (79)

the analytical displacement solution is

u = U sin
(
𝜋

2L
x + 𝜋

2

)
sin 𝜋

2L

√
E
𝜌

t, (80)

where U is the amplitude of vibration, E is Young’s modulus, 𝜌 is material density and L is total length. In order to satisfy
the small deformation assumption, the amplitude U should be set to a small number.

As shown in Figure 13, we set Young’s modulus E = 210 GPa, material density 𝜌 = 7.8 × 103 kg∕m3, sectional area
A= 100 mm2 and total length L= 20 mm for simulation. And, the computational domain is discretized into 20 uniform
cells of length l= 1 mm. The critical time step value will be very small when there exists a very small nodal mass in USL
scheme. This situation occurs when the body boundary moves across the cell boundary or fracture happens in the interior
of computational domain. Thus, we design two kinds of particle distribution for these two situations, respectively. The
tests of 1 particle-per-cell and 2-particle-per-cell in boundary moving situation are used to validate our critical time step
formula for different material point discretization precisions. The explicit MPM schemes tested here are moving-mesh
MPM, USL scheme, and MUSL scheme.

http://wileyonlinelibrary.com
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(A) (B) (C)

F I G U R E 14 Time history of L2 norm of displacement error in moving-mesh MPM. MPM, material point method [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B) (C)

F I G U R E 15 Time history of critical time step value in 1 vibration cycle (0.016 ms) in moving-mesh MPM. MPM, material point
method [Colour figure can be viewed at wileyonlinelibrary.com]

5.3.1 Moving-mesh MPM

Instability leads to an abrupt increase in error curve at the very beginning of computation while cumulative error leads
to low accuracy gradually. Thus, the physical simulation time is chosen to be 0.1 ms which contains about six vibration
cycles with the material parameters given. There are two purposes of the moving mesh MPM tests here. One is to verify
the correctness of the critical time step calculated by 2-cell formula, while the other is to see the effect of sound speed
modification by the stress state of particles. In order to identify the stability characteristic, we introduce the L2 norm of
displacement error as

enorm = ∫Ω
(u − u∗) ⋅ (u − u∗) dV =

∑
p
(up − u∗

p) ⋅ (up − u∗
p)Vp, (81)

where u* is the exact displacement solution and u∗
p = u∗(xp). The time step size used in each step is determined by

te = tcal
cr ⋅ CFL (82)

to compare the performance of original formula and 2-cell formula, where tcal
cr is the critical time step given by different

critical time step formulae. Figure 14 plots the time histories of the error norm enorm for small deformation with U = 2.0,
while Figure 15 plots the time histories of the time step size te for large deformation with U = 815 to see the effect of sound
speed modification. The CFL number used in simulation of each formula is listed in Table 1 together with the amount of
total steps used for simulation of physical time 0.1 ms.

As shown in Figure 14, USL scheme with 2-cell formula is stable when CFL number equals 0.999 and unstable when
CFL number equals 1.001 for all three tests in small deformation, which means that 2-cell formula gives the exact system

http://wileyonlinelibrary.com
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T A B L E 1 CFL number and amount of total time steps of different time step formulae for string vibration tests in moving-mesh MPM

Test
Critical time
step formula

CFL number
used (<1.0)

Total steps
for physical simulation time 0.1 ms

Boundary moving (1ppc, 𝜉r = 0.99) Original 0.141 3794

2-cell formula 0.999 3681

Boundary moving (2ppc, 𝜉r = 0.99) Original 0.141 3791

2-cell formula 0.999 3680

Numerical fracture (𝜉r = −0.8, 𝜉b = 0.99) Original 0.400(L)/0.449(S) 1337(L)/1156(S)

2-cell formula 0.903(L)/0.999(S) 1278(L)/1154(S)

Note: (L) means large deformation and (S) means small deformation.
Abbreviation: MPM, material point method.

critical time step value. USL scheme with the original formula is stable when CFL number equals 0.141 and unstable
when CFL number equals 0.143, because the original formula does not reflect the effect of particle positions on stability
and overestimates the system critical time step too much in extreme particle positions. In conclusion, the 2-cell formula
gives a much more accurate estimation for the system critical time step than the original formula.

As shown in Figure 15, the time step size of the original formula is almost the same as that of 2-cell formula in the
elongation stage of the string while much smaller than that of 2-cell formula in the compression stage of the string. As
mentioned above, the moving mesh MPM is almost the same as FEM except that the material points instead of Gauss
points serve as quadrature points. Therefore, the system critical time step given by the original formula is that of smallest
element. In the elongation stage of the string, the smallest element is at the fixed boundary which will almost keep the
original length because of the small velocity near fixed boundary. In the compression stage, the smallest element is at
the free boundary which deforms a lot. Thus, the time step value given by the original formula keeps constant at the
elongation stage and decreases a lot in the compression stage. In Section 4.3, the effect of geometric nonlinearity on
simulation stability has been taken into consideration and reflected in the 2-cell formula by sound speed modification.
The critical time step keeps constant at both the elongation and compression stage due to the sound speed modification.
Therefore, the amount of total time steps used for simulation will be smaller with the 2-cell formula than that with the
original formula as shown in Table 1.

However, the effect of other nonlinearities on simulation stability has not been considered in our formula, so the CFL
number needs to be set smaller than 1.0 in those situations. For example, because the density field has the characteristic
of Dirac’s function in MPM, the particle distribution in the numerical fracture test represents a nonuniform density field
which has drastic changes in the interior of material body due to the extreme particle position as shown in Figure 13.
Therefore, the CFL number of 2-cell formula in the numerical fracture test of large deformation is 0.903 as shown in
Table 1, which is smaller than 1.0 but acceptable.

5.3.2 USL scheme

The moving mesh MPM tests have verified the correctness of the critical time step given by 2-cell formula, and this part
is to see the difference between the system critical time step based on the moving mesh MPM assumption and the actual
critical time step used in the standard MPM. The effect of particle position on stability will also be illustrated here. From
the results of 1 ppc and 2 ppc boundary moving tests in moving mesh MPM, we find that there is no difference in the
CFL number. Thus, we choose the 1 ppc boundary moving tests here with and without cell crossing. The initial velocity
condition of small deformation with U = 2.0 is used here.

Figure 16 plots the time histories of the error norm enorm and Figure 17 plots the time histories of the time step size te
in USL scheme. The CFL number used in simulation of each formula is listed in Table 2 together with the amount of total
steps used for simulation of physical time 0.1 ms. The initial parent coordinate, 𝜉r0, of the particle in red circle is designed
to control whether cell crossing occurs or not.

The main difference between the moving mesh MPM and the standard MPM is whether there exists the Eulerian step
in each time step cycle or not. Therefore, the difference between the system critical time step based on the moving mesh
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F I G U R E 16 Time history of L2 norm of
displacement error in USL scheme. USL,
update-stress-last [Colour figure can be viewed
at wileyonlinelibrary.com]

(A) (B)

F I G U R E 17 Time history of the critical
time step value in 1 vibration cycle (0.016 ms)
in USL scheme. USL, update-stress-last
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

T A B L E 2 CFL number and amount of total time steps of different time step formulae for string vibration tests in USL scheme

Test
Critical time
step formula

CFL number
used (<1.0)

Total steps
for physical simulation time 0.1 ms

Boundary moving, no cell crossing (𝜉r0 = 0.99) Original 0.016 32 439

2-cell formula 0.708 8287

Boundary moving, cell crossing (𝜉r0 = 0.9999) Original 0.006 86 503

2-cell formula 0.706 4843

Abbreviation: USL, update-stress-last.

MPM assumption and the actual critical time step used in the standard MPM is due to the interaction of Lagrangian step
and the following Eulerian step. As shown in Figure 16 and Table 2, the CFL numbers of the 2-cell formula are both about
0.7 whether there exists cell crossing or not. Comparing with the CFL number of 0.999 in moving mesh MPM tests, we
can find that the interaction of Lagrangian step and the following Eulerian step will arouse the simulation instability and
thus lead to the decrease in the CFL number. Therefore, the CFL number needs to be set about 0.7 for physical simulation
by the standard MPM when using the 2-cell formula, which is acceptable.

As shown in Figure 17, the time step size of the original formula almost keeps constant because the length of back-
ground cell will not change in the standard MPM and the particle density can be viewed as constant in small deformation
problem. The CFL number of the original formula should be set to a very small number, such as 0.016 for no cell crossing
and 0.006 for cell crossing in boundary moving tests, so that the time step size given by the original formula can be smaller
than or equal to the system critical time step in every step during simulation. However, the ratio of the critical time step of
the whole system to that given by the original formula in USL scheme can be infinitely close to zero as shown in Figure 5.
That is, the CFL number of the original formula will be infinitely close to zero in some extreme particle distributions,
which cannot be acceptable.

The 2-cell formula has a better performance than the original formula due to the much more accurate critical time
step given by the 2-cell formula as shown in Figure 17. Table 2 also shows that the total number of time steps used for
simulation with the 2-cell formula is about 1/4 of that with the original formula in no cell crossing test, and about 1/17
in cell crossing test.

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 18 Time history of L2

norm of displacement error in MUSL
scheme. MUSL, modified
update-stress-last [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 19 Time history of
critical time step value in 1 vibration
cycle (0.016 ms) in MUSL scheme.
MUSL, modified update-stress-last
[Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 3 CFL number and amount of total time steps of different time step formulae for string vibration tests in MUSL scheme

Test
Critical time
step formula

CFL number
used (<1.0)

Total steps
for physical simulation time 0.1 ms

Boundary moving, no cell crossing (𝜉r0 = 0.99) Original 0.999 520

2-cell formula 0.999 274

Boundary moving, cell crossing (𝜉r0 = 0.9999) Original 0.999 520

2-cell formula 0.973 302

Abbreviation: MUSL, modified update-stress-last.

5.3.3 MUSL scheme

The stability characteristic of USL scheme and MUSL scheme will be compared in this part. We use the same initial
velocity condition of U = 2.0 for 1 ppc boundary moving problem as in USL scheme. Figure 18 plots the time histories of
the error norm enorm and Figure 19 plots the time histories of the time step size te in MUSL scheme. The CFL number used
in simulation of each formula is listed in Table 2 together with the amount of total steps used for simulation of physical
time 0.1 ms. The critical time step given by original formula or 2-cell formula is supposed to be the maximum time step
size used for simulations, and any time step size larger than that should lead to instability. Therefore, the CFL numbers
used in performance comparison (listed in Table 3) are required to be smaller than 1.0, although the CFL number of
original formula or 2-cell formula may be larger than 1.0 as shown in Figure 18. The initial parent coordinate, 𝜉r0, of the
particle in red circle is designed to control whether cell crossing occurs or not.

As shown in Figure 18, CFL number of 2-cell formula is around 1.0 in MUSL scheme. We have already pointed out the
reason why CFL number of 2-cell formula is about 0.7 in USL scheme. However, in MUSL scheme, the remapping step
before updating the particle stress will smooth the stiffness matrix, and the smooth weight takes the form of generalized
shape function matrices. Although there will still exist a big difference between Bn

e and Bn−1
e when the cell crossing occurs

during the time step n− 1, the linear shape function NIp is close to zero when the particle p is near the corresponding cell
boundary apart from the cell node I. Consequently, the effect of interaction between Lagrangian step and the following
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F I G U R E 20 Diagram of two-dimension cantilever
beam vibration test

Eulerian step will be eliminated by the generalized shape function smoothing. Therefore, CFL number of 2-cell formula
can be about 1.0 in MUSL scheme.

Because of the stiffness matrix smoothing, MUSL scheme is much more stable than USL scheme, and the CFL number
of the original formula in MUSL scheme could be set to 0.999 while even smaller than 0.1 in USL scheme. Therefore, the
benefit in computational efficiency gained from larger critical time step given by the 2-cell formula in MUSL scheme will
not be as significant as that in USL scheme. As shown in Table 3, the total number of time steps used for simulation with
the 2-cell formula is about 55% of that with the original formula for both no cell crossing test and cell crossing test.

5.4 2D cantilever beam vibration

The performance of our critical time step formulae in 1D has been evaluated in the previous tests. And in this section, the
2D cantilever beam vibration test as shown in Figure 20 is presented to evaluate the performance of the extended formula
based on mesh orthogonality.

The 2D cantilever beam vibration test has an analytical solution when it satisfies the assumption of Euler-Bernoulli
beam, which requires the Poisson’s ratio to be zero. If the initial velocity condition and boundary conditions are prescribed
by

v0(x) = 𝜔C
[

sin(𝛽x) − sinh(𝛽x) − sin(𝛽L) + sinh(𝛽L)
cosh(𝛽L) + cos(𝛽L)

(cos(𝛽x) − cosh(𝛽x))
]
, (83)

𝜕w
𝜕x

||||x=0
= 0, w|x=0 = 0, EJ 𝜕

2w
𝜕x2

||||x=L
= 0, EJ 𝜕

3w
𝜕x3

||||x=L
= 0, (84)

the analytical displacement solution is

w = C
[

sin(𝛽x) − sinh(𝛽x) − sin(𝛽L) + sinh(𝛽L)
cosh(𝛽L) + cos(𝛽L)

(cos(𝛽x) − cosh(𝛽x))
]

sin(𝜔t), (85)

where C is the amplitude, E is Young’s modulus, 𝜌 is material density, L is total length and J is the moment of inertia. The
coefficients 𝛽, 𝜔 and L satisfy the following relationship

𝛽4 = 𝜌A𝜔2

EJ
, cosh(𝛽L) cos(𝛽L) + 1 = 0. (86)

In order to activate the first mode in cantilever beam vibration, we set 𝛽 to satisfy the condition 𝛽L =
1.875104068711961 which is the minimum solution of Equation (86). Besides, the amplitude C is set to satisfy the con-
dition 𝜔C = 0.1 mm∕s in our test. The background mesh is 12 mm× 2 mm× 0.1 mm, and the discretization precision is
0.1 mm. The boundary condition at x = 0 mm is set fixed, and those at z= 0 mm and z= 0.1 mm are set symmetric while
others are free boundaries. Because the Poisson’s ratio is zero, the symmetric boundaries at z−direction are also valid
for the plane stress problem of cantilever beam vibration. The 10 mm× 1 mm× 0.1 mm cantilever beam is uniformly
discretized into 8000 material particles which each represents a cubic volume of 0.05 mm× 0.05 mm× 0.05 mm. Given
Young’s modulus E = 10 MPa and material density 𝜌 = 1.0 × 10−3 g∕mm3 as show in Figure 20, the period of cantilever
beam vibration can be calculated as 6.19 ms. Thus, the end time of this physical simulation test is set to be 7.0 ms. In the
previous 1D tests, CPU time cost for the whole 0.1 ms simulation is very small, and thus CFL number could be tested to
the precision of 0.001. However, it is very time-consuming to give a precise CFL number in 2D cantilever beam vibration
test, and thus we will use a recommended CFL number according to the CFL number given in the previous 1D tests. The
results of recommended CFL number and amount of total time steps used for the whole simulation are listed in Table 4.
And pressure contours of different MPM schemes with different critical time step formulae at different simulation time
are given in Figures 21 and 22.
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MPM scheme
Critical time
step formula

Recommended CFL
number (<1.0)

Total steps
for physical simulation time 7 ms

USL Original 0.005 Unstable

2-cell formula 0.7 111 029

MUSL Original 0.99 7017

2-cell formula 0.85 6172

Abbreviations: MPM, material point method; MUSL, modified update-stress-last; USL, update-stress-last.

T A B L E 4 Recommended
CFL number and amount of
total time steps used for physical
simulation time 7 ms in
cantilever vibration test

(A) (B)

F I G U R E 21 Pressure contour at
physical simulation time 1.38 ms in
USL scheme. USL, update-stress-last >

(A) (B)

(E) (F)(D)

F I G U R E 22 Pressure contour at physical simulation time 3.12 ms

Table 4 and Figure 21 show that USL scheme with the original formula is unstable even when CFL number is set to a
very small number, such as 0.005. USL scheme with our formulae can be stable at an acceptable CFL number, such as 0.7
for 2-cell formula. The deflection of the whole cantilever beam varies monotonically from zero at x = 0 mm to maximum
value at x = 10 mm. Therefore, the upper boundary at y= 0.5 mm or lower boundary at y=−0.5 mm of the cantilever
beam will intersect the background grid cell boundary when cell crossing occurs, which gives rise to extreme particle
distributions. And these extreme particle distributions will lead to a very small critical time step. For example, the smallest
time step size in the cantilever beam simulation of USL scheme with 2-cell formula is 4.94× 10−8 ms and the critical time
step given by the original formula equals 9.98× 10−4 ms, which means that we need to set CFL number smaller than
4.95× 10−5 to make USL scheme with the original formula stable and the CPU time cost for the whole simulation will be
prohibitive.

As shown in Table 4, the MUSL scheme is much more stable than the USL scheme and the total number of time steps
used in MUSL scheme is about 1/18 of that used in USL scheme. However, the pressure oscillation in MUSL scheme is
much more severe than that in USL scheme, even though we decrease the CFL number to 0.1 in MUSL scheme. From
the previous discussion on the generalized shape function matrices, we have known that they will smooth the stiffness
matrix and improve the stability in MUSL scheme. However, they also enlarge the supported area used to calculate the
grid nodal force and thus lead to severe numerical oscillation in pressure as shown in Figure 22.

6 CONCLUSIONS

A novel precise critical time step formula is derived for the explicit MPM based on system eigenvalue problem with the
assumption of moving-mesh MPM in 1D, and extended to 2D and 3D formulae based on orthogonality of structural
Eulerian mesh. The formula has been verified in the standard explicit MPM method with different scheme. The MPM
method combines Lagrangian method and Eulerian method, and thus both Lagrangian particle position and interaction
between neighboring Eulerian grid cells will affect the stability of MPM method. Besides, the geometric stiffness matrix
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is taken into consideration for extreme deformation problem which will modify the sound speed of particle by its stress
in the critical time step formula. Several numerical tests have been performed to verify our critical time step formulae
and compare the simulation performance between the original formula and ours. USL scheme with the original formula
is difficult to be stable even with a very small CFL number, and that with 2-cell formula could be easily stable with an
acceptable CFL number, such as 0.7. 2-cell formula could also give a larger stable time step size than the original formula
in MUSL scheme. Therefore, the amounts of total time steps in both USL scheme and MUSL scheme with our formulae
are smaller than that with the original formula. MUSL scheme is much more stable than USL scheme because of the
enlarged supported area used for grid nodal force calculation. However, MUSL scheme suffers lower precision in pressure
than USL scheme.

As mentioned above the effect of interaction between Lagrangian step and following Eulerian step in each time step
cycle cannot be included with the assumption of moving-mesh MPM. And this is the reason why we need to set CFL
number around 0.7 for stability in USL scheme. In MUSL scheme, the 2-cell pair is used to derive the critical time step
formula and thus the effect of the enlarged supported area used for grid nodal force calculation on stability is not reflected
in our formula. There is a need to address these effects to give a more accurate critical time step in future work.
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