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Abstract
By using nonlocal discrete force functions, peridynamics (PD) can effectively deal with the problems involving discontinuities
and singularities. As a continuum-based particle method, the material point method (MPM) and its advanced version, gener-
alized interpolation material point method (GIMP), use local and nonlocal spatial discretization, respectively, to effectively
simulate large deformations and multi-phase (solid–fluid–gas) interactions via mapping and remapping between material
points and associated background nodes. However, nonlocal constitutive modeling has rarely been employed in the MPM or
GIMP for simulating failure evolution. To combine the strengths of both PD and MPM/GIMP for better simulating the failure
evolution under transient loading, an attempt is made to eliminate the limitation in the original PD due to the volume integra-
tion so that both MPM/GIMP and PD could be smoothly combined via volume modification. One-dimensional examples are
employed to demonstrate and verify the proposed volume modification peridynamics and its combination with MPM/GIMP.

Keywords Volume modification peridynamics · MPM · GIMP · Impact failure

1 Introduction

There has been an increasing interest in peridynamics (PD)
that evolved based on a nonlocal theory [1, 2] of contin-
uum mechanics in the past decades. PD replaces the spatial
derivatives of the classical continuum mechanics with the
integral equations. Due to this nonlocal feature, PD has been
widely adopted as an effective numerical approach to deal
with the discontinuities and singularities in solids [3, 4], such
as dynamic crack growth and fatigue crack growth.

Based on the description of the forcing function, PD can
be divided into two different frameworks, namely bond based
and state based [5–13]. In the bond-basedPD, only the central
forces between two particles are considered. These central
forces are obtained with the use of the spatial derivatives
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of the inter-particle potential energy that is a function of
their corresponding relative displacements. Therefore, the
bond-based forces between the two particles are opposite in
direction and equal inmagnitude, and they also automatically
satisfy the conservation of linear and angular momentum,
respectively. The bond-based PD has been commonly used
due to its simplicity. However, there is a limitation in the
bond-based PD, namely, the Poisson’s ratio is restricted to
1/4in 3-D and 2-D plane strain cases [14], and restricted to
1/3 in the 2-D plane stress case [14]. In the state-based PD,
there are twodifferent formulations that are ordinary andnon-
ordinary [6, 10–13]. The main difference between these two
types of state-based PD is the description of the force state.
Similar to the bond-based PD, only the couple of opposite
central forces between any two particles are considered in the
ordinary state-based PD. However, the couple of the oppo-
site central forces may not be equal in magnitude such that
the conservation of linear momentum cannot be satisfied. On
the other hand, the central forces of the ordinary state-based
PD are still aligned to satisfy the conservation of angular
momentum. Different from the bond-based PD and ordinary
state-based PD, the inter-particle forces in the non-ordinary
state-based PD are neither opposite in direction nor equal in
magnitude. The state-based PD approach has been widely
adopted to predict the material behaviors including elasticity
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[14, 15], plasticity [16], and fracture [17]. For the purpose of
simplicity, however, the bond-based PD will be considered
here for one-dimensional verification and demonstration.

With its unique capability in fracture mechanics, PD
has been combined with other continuum-based numerical
approaches such as the finite element method (FEM) [18,
19]. However, there are some limitations in the combined
PD/FEM procedure. First, a complicated interfacial treat-
ment is required to be implemented between the PD regions
and FEM regions. Second, FEM is not a suitable method for
large deformation problems because the need for re-meshing
[20–22]. Therefore, an attempt is made in this work to com-
bine PDwith the material point method (MPM) that has been
developed for large deformation and multi-phase interaction
problems [23, 24]. Because both the PD and MPM belong
to the particle methods, the interfacial treatment for the
PD/MPMmodel would be simpler than that for the PD/FEM
model. For better dealing with the large deformation cases,
a generalized interpolation material point method (GIMP)
[25, 26] was proposed by replacing the local mapping and
remapping operation within a single cell in the MPM with
a nonlocal one over several cells such that the cell cross-
ing issue could be eliminated at an additional computational
cost. Hence, the numerical procedure for combined PD and
GIMP will be designed, in which combining PD and MPM
is a special case.

The remaining sections of this paper are organized as
below. The basic formulations of MPM and GIMP are sum-
marized in Sect. 2. The introduction of the bond-based PD
is given in Sect. 3, in which a volume modification PD
(VMPD) is proposed to eliminate the integration error. The
combination procedures for both PD/MPM and PD/GIMP
are described in Sect. 4. In Sect. 5, a 1-D bar is used for
demonstration and verification. First, the comparison of the
elastic stress wave propagation as obtained with the MPM,
GIMP, PD, and VMPD, respectively, is shown for transient
tensile loading. Second, the similar 1-D simulations with the
use of an elastoplasticity model are performed. Finally, a
combination of elasticity and fracture mechanics is imple-
mented into the 1-D bar model subject to an impact load to
illustrate the respective strengths of PD and GIMP.

2 MPM and GIMP

2.1 MPM

In the MPM, a continuum body is discretized into a finite
set of Np Lagrangian material points (particles) carrying
all the state variables. Therefore, the mass density and the
weak form of the conservation of linear momentum can be
expressed as follows:

ρ(x, t) �
Np∑

p�1

Mpδ
(
x − xtp

)
, (1)

(2)

∫

Ω

ρw · adΩ +
∫

Ω

ρσ s : ∇wdΩ −
∫

Ω

ρw · bdΩ

−
∫

Γσ

ρτ̄ s · wdΓ � 0.

In Eq. (1), x and Mp represent the position vector and the
mass of material point p, and δ is the Dirac delta function. In
Eq. (2), a is the acceleration, b is the specific body force,w is
the test function, σ s � σ/ρ is the specific stress, τ̄ s � τ̄ /ρ

is the specific traction on the boundary Γσ , and Ω is the
problem domain of the continuum body. Substituting Eq. (1)
for the mass density ρ into Eq. (2) results in

(3)

Np∑

p �1

Mp

[
w

(
xtp

)
· a

(
xtp

)]

�
Np∑

p�1

Mp

{
−σ s

p

(
xtp

)
: ∇w|xtp + w

(
xtp

)
· b

(
xtp

)}

+
∫

Γσ

ρw
(
xtp

)
· τ̄ sdΓ

By using the nodal basis functions, the discretized govern-
ing equation for the material point, as expressed in Eq. (3),
can be rewritten as that with respect to their corresponding
background grid nodes I, that is

mt
I a

t
I � ( f tI )

int + ( f tI )
ext, (4)

in which, mt
I is the lumped nodal mass, ( f tI )

int and ( f tI )
ext

are the internal and external load of the grid node I, as given
as follows:

mt
I �

Np∑

p�1

MpNI

(
xtp

)
, (5)

( f tI )
int � −

Np∑

p�1

Mp

ρt
p

σ t
p∇NI

(
xtp

)
, (6)

( f tI )
ext �

Np∑

p�1

MpNI

(
xtp

)
b
(
xtp

)
+

∫

Γσ

NI

(
xtp

)
τ̄dΓ. (7)

InEqs. (5)–(7), NI

(
xtp

)
and∇NI

(
xtp

)
are the nodal basis

function (or mapping function between material points and
their corresponding grid nodes in the MPM) and its corre-
sponding gradient associated with node I evaluated at the
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material point position vector xtp.The nodal basis function
NI (x) in 1-D domain takes the form of

NI (x) �

⎧
⎪⎪⎨

⎪⎪⎩

0, x − xI ≤ −L
1 + (x − xI )/L, −L < x − xI ≤ 0
1 − (x − xI )/L, 0 < x − xI ≤ L
0, L < x − xI

, (8)

where xI is the position vector of background grid node I,
andL is the background grid cell length. Since the nodal basis
function defined within a single cell is zero outside the given
cell, it represents the local mapping and remapping operation
for a particle within the given cell no matter how the particle
deforms. As a result, the cell-crossing error might occur as a
material point crosses the cell boundary.

2.2 GIMP

In theGIMP, the discretizedgoverning equations are the same
as those in the MPM, but the mapping and remapping opera-
tions become nonlocal over several cells. In order to avoid the
cell crossing issue in the MPM, the local basis function, NI(
xtp

)
, is replaced by a nonlocal one, N̄I

(
xtp

)
, as expressed

in Eq. (9). Hence, the main difference between theMPM and

GIMP is that the nodal basis function, N̄I

(
xtp

)
, covers not

only the given grid cell but also its neighboring cells due to
the particle deformation, namely

N̄I (x
t
p) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣∣∣xtp − xI

∣∣∣ ≥ L + l p
(L+l p+xtp−xI )2

4Llp
, −L − l p < xtp − xI ≤ −L + l p

1 +
xtp−xI

L , −L + l p < xtp − xI ≤ −l p

1 − (xtp−xI )2+l2p
2Llp

, −l p < xtp − xI ≤ l p

1 − xtp−xI
L , l p < xtp − xI ≤ L − l p

(L+l p−xtp+xI )
2

4Llp
, L − l p < xtp − xI ≤ L + l p

(9)

where 2l p represents the particle size and other variables are
the same as those in Eq. (8). The detailed discussion about
the difference between the MPM and GIMP is given in Ref.
[25].

3 Peridynamics

3.1 Discrete governing equation of PD

InPD, anonlocal extensionof continuummechanics, namely,
amaterial point x interacts directlywith all the adjacentmate-
rial points x′ within a finite distance δ (cutoff radius). For any

x ∈ B, B � {x′|∥∥x′ − x
∥∥ < δ}, the equation of motion for

PD can be written as

ρ(x)ü(x, t) �
∫

B

f
(
x, x′, u, u′)dVx ′ + b(x, t), t ≥ 0,

(10)

where u(x, t) and u′(x, t) are the displacement fields for
particle x and x′, b(x, t) is the loading force density, and
ρ(x) is the mass density. Additionally, the vector function
f
(
x, x′, u, u′) is the force density (force per unit volume)

per unit reference volume exerted on a particle y � x + u
(x, t) by another particle y′ � x′+u′(x, t). Furthermore, the
forcing function is determined by the gradient of a pairwise
micropotential function w

(
x, x′, u, u′), and the relationship

between the pairwisemicropotential function and the forcing
function is expressed as follows:

f
(
x, x′, u, u′) � ∇u−u′w

(
x, x′, u, u′). (11)

Integrating the equation of motion for PD in a configura-
tion Ω results in

(12)

∫

Ω

ρ (x) ü (x, t) dVx �
∫

Ω

∫

B/Ω

f
(
x, x′, u, u′) dVx ′dVx

+
∫

Ω

b (x, t) dVx .

Equation (12) is rewritten in a discretized form,

mx ü(x, t) �
∑

x′∈B

(
f
(
x, x′, u, u′)Vx ′Vx

)
+ b(x, t)Vx (13)

where mx � ρ(x)Vx .

3.2 Isotropic elastic PD

Since the forcing function considered here employs the bond-
basedPDapproach, the harmonic oscillation potential energy
is suitable for describing the inter-particle potential energy.
Therefore, the micropotential per unit volume squared and
force per unit volume squared are given by

w
(
x, x′, u, u′) � k

2

(
∥∥x′ + u′ − x − u

∥∥ − ∥∥x′ − x
∥∥)2∥∥x′ − x

∥∥ ,

(14)

f
(
x, x′, u, u′)

� k

∥∥x′ + u′ − x − u
∥∥ − ∥∥x′ − x

∥∥
∥∥x′ − x

∥∥
x′ + u′ − x − u∥∥x′ + u′ − x − u

∥∥ ,

(15)
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where k/
∥∥x′ − x

∥∥ is the stiffness per unit volume squared
[5, 27]. Additionally,

∥∥x′ − x
∥∥ is the equilibrium distance

between particles x and x′

3.3 Isotropic elastoplastic PD

An elastoplastic model is used here to investigate the elasto-
plastic behaviors by using PD [28–30]. Similar to the general
elastoplastic deformation theory, the bond strain between two
PD particles, i and j, can be decomposed into two compo-
nents, elastic and plastic components, as follows:

sdi j � sei j + s pi j , (16)

sdi j �
∥∥x j + u j − xi − ui

∥∥ − ∥∥x j − xi
∥∥

∥∥x j − xi
∥∥ , (17)

where sei j and s pi j are the elastic and plastic components of

the total bond strain, sdi j , respectively. As a result, the cor-
responding force density per unit volume squared can be
written as

f
(
x, x′, u, u′) �

{
kesei j + k ps pi j

} x′ + u′ − x − u
‖x′ + u′ − x − u‖ , (18)

in which, ke and k p are the force constant per unit volume
squared for elastic and plastic deformations, respectively.
Taking a one-dimensional PD bar for example, ke � 2Ee

Aδ2

and k p � 2E p

Aδ2
, where A is the cross-sectional area, Ee and

E p are the Young’s modulus and plastic tangential modulus,
and δ is the cutoff radius, respectively [31, 32].

3.4 Fracture model of PD

In addition to the elastic and elastoplastic models, a frac-
ture model [27, 33] is also adopted here to demonstrate the
fracture (or discontinuity) feature. In the fracture model with
PD, a critical bond strain scri and a history-dependent scalar
function θ are required, and their relationship is given by

θ �
{
1, smax < scri
0, smax > scri

, (19)

where smax � (‖x ′
+ u′ − x − u‖−‖x ′ − x‖)/‖x ′ − x‖

is the maximum bond strain between two PD particles. Fur-
thermore, the history-dependent scalar function θ is used to
multiply with the inter-particle force density per unit volume
squared, f

(
x, x′, u, u′), namely

f
(
x, x′, u, u′)

� θk
‖x′ + u′ − x − u‖−‖x′ − x‖

‖x′ − x‖
x′ + u′ − x − u

‖x′ + u′ − x − u‖ ,

(20)

which means that the inter-particle force will be zero when
the bond strain is larger than the user-defined critical strain.

3.5 Volumemodification PD

The cutoff radius plays an important role in the integration
process in PD. However, the original definition of the cutoff
radius would lead to some numerical errors. Figure 1 shows
a PD model with two different cutoff radii, δ. In original PD
integration definition, although the cutoff radii for these two
models are different, the required particles for calculating the
internal force of particle 3 are the same, which are particles
2 and 4. It is because the mass centers of particles 2 and 4 are
within the cutoff radius, while those of particles 1 and 5 are
not. In themodel of Fig. 1b, however, a numerical error exists
because the cutoff radius has covered the volume boundary
of particles 1 and 5. In order to eliminate this numerical error,
the cutoff radius is modified from δ to δ + le/2. As shown
in Fig. 1, the variable le is the length covered by one PD
particle. With this modified definition, thus, particles 1 and 5
are still not counted in model 1(a), but these two particles are
counted in model 1(b). This modification method is called
volume modification of PD (VMPD).

4 Combination algorithm

4.1 Combination algorithmwith unified background
grids

Preprocessor:

1. Discretize a continuum body into PD particles andMPM
particles in the respective region, as shown in Fig. 2a.
Each particle carries the required properties such as mass
and material properties.

2. Define unified background grids, and identify the grid
cells inwhich specific PD andMPMparticles are located.

3. Implement the boundary and initial data, as well as the
control parameters for the simulation.

Central Processor in Each Time Step:

1. Map the variables including the mass, momentum, and
internal force from all the PD andMPM particles to their
corresponding background grid nodes as follows:

mt
I �

NP∑

p�1

MPNI

(
xtp

)
, (21)

(mv)tI �
NP∑

p�1

(Mv)tpNI

(
xtp

)
, (22)
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Fig. 1 The PD models with
different cut-off radii

Fig. 2 a PD/MPM (or
PD/GIMP) model with a unified
background grid. b PD/MPM
(or PD/GIMP) model without a
unified background grid

( f tI )
int �

Np1∑

p�1

f tpNI

(
xtp

)
−

Np1+Np2∑

p�Np1+1

σ t
p
mp

ρt
p

∇NI

(
xtp

)
,

(23)

where mt
I is the mass at node I at time t , MP is the mass

of particle p, NI is the mapping function associated with
node I ,xtp is the position vector of the particle p at time
t , (mv)tI is the nodal momentum at node I and time t ,
(Mv)tp is the particle momentum at the same time step,
f tp is the internal force of PD particles (MPM particle
within the PD cutoff radiusmay also have this part), σ t

p is
the stress tensor of theMPM particles, and Np1, Np2 are,
respectively, the total number of PD and MPM particles
that are located in the same background cell [34].

2. Apply the essential and natural boundary conditions to
the grid nodes and compute the nodal forces,

f tI � ( f tI )
int + ( f tI )

ext, (24)

in which ( f tI )
ext represents the external force at node I.

3. Integrate the momentum at each node,

(mv)t+	t
I � (mv)tI + f tI	t, (25)

where 	t is the integration time step.

4. Update the velocity vector and position vector of each
PD and MPM particle for the time step t + 	t via the
remapping process from the background grid node to its
associated particles.

vt+	t
p � vtp + 	t

Nn∑

I�1

f tI
mt

I
NI

(
xtp

)
, (26)

xt+	t
p � xtp + 	t

Nn∑

I�1

(mv)t+	t
I

mt
I

NI

(
xtp

)
. (27)

With the above information, update the inter-particle
force vector of each PD particle, f t+	t

p , by using the PD
micropotential function. For calculating the force vec-
tor of a specific PD particle, the adjacent MPM particles
must be counted in the calculating process if they are
within the corresponding PD cut-off radius.

5. Map the updatedmomentumof eachMPMor PDparticle
back to its corresponding background nodes to evaluate
the updated nodal velocity, namely

(mv)t+	t
I �

NP∑

p�1

(Mv)t+	t
p NI

(
xtp

)
, (28)

vt+	t
I � (mv)t+	t

I

mt
I

. (29)
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Fig. 3 A 1-D bar with two different types of load

6. Find the current gradient of the velocity vector for each
MPM particle,

Lt+	t
p �

Nn∑

I�1

vt+	t
I ∇NI

(
xtp

)
. (30)

Then, calculate the strain increment of each MPM parti-
cle,

	εtp � 1

2
(Lt+	t

p +
(
Lt+	t
p )T

)
	t . (31)

7. Update the current stress tensor of each MPM particle
via the constitutive model and Eq. (31),

σ t+	t
p � σ t

p + D : 	εtp (32)

where D is the tangent stiffness tensor obtained from the
material model.

8. Go back to Step 1 in the central processor until the ter-
minal time is reached for output.

If the MPM part in the above algorithm is replaced by the

GIMP, the mapping and remapping function NI

(
xtp

)
will be

changed to N̄I

(
xtp

)
, as expressed in Eq. (9).

4.2 Combination algorithmwithout unified
background grids

In order to investigate whether the background grid nodes
would affect the simulation accuracy, another combination
algorithm without the unified background grid nodes is also
designed. As shown in Fig. 2b, the MPM or GIMP particles
are still located within a set of background grid cells, but
these cells do not cover the PD particles. Therefore, all the
variables associated with the PD particles are not required
to be mapped to the background grid nodes unless they are
within the interfacial cell adjacent to the MPM particles. In
the interfacial cell, the variables associated with the PD par-
ticles will be mapped to and remapped from the grid node

shared by the adjacent MPM particles. In other words, the
grid node shared by both MPM and PD particles will feel the
force calculated by the MPM constitutive model and the PD
discrete forcing function, respectively. If an MPM particle is
within the cut-off radius of a PD particle, the MPM particle
will be treated as a PD particle with the corresponding forc-
ing function, which is similar to the concurrent multiscale
procedure that involves both molecular dynamics and MPM
[34].

5 Numerical demonstration

In this section, a 1-D bar with two different types of load, as
shown in Fig. 3, are used to compare the simulation results
with different numerical approaches. These two types of load
include a unit tensile force and an impact load, respectively.
For the model in Fig. 3a, the results with the use of MPM,
GIMP, PD, and VMPD are compared in Sect. 5.1. With the
same model, the combination solution algorithms detailed
in Sect. 4 are demonstrated in Sect. 5.2. In Sect. 5.3, the
constitutive model of this bar is changed from the elastic
one to elastoplastic one to verify the nonlinear behaviors
as obtained with the proposed procedure. Finally, the fixed
boundary condition in Fig. 3a for the barmodel is replaced by
the free boundary condition, and a flyer with a given velocity
is used tomimic the impact loading type, as shown in Fig. 3b.
Additionally, the fracture model is implemented in the tar-
get to investigate the fracture behavior via the combination
solution algorithm.

5.1 Comparison of MPM, GIMP, PD, andVMPD results
for elastic responses

Figure 3a shows an elastic bar, which is fixed at left end and
subjected to a unit tensile step force at the right end. The
related material and geometrical properties are also shown
in Fig. 3. In order to study the difference between each sim-
ulation method, this tensile simulation is conducted by using
MPM, GIMP, PD, and VMPD, respectively.

For all the simulation methods, the total number of the
particles, Np, and time step, 	t , are set as 200 and 5× 10−6

s, respectively. For MPM and GIMP models, this 1-D bar is
within 200 grid cells. It means that each cell has one MPM
or GIMP particle. For PD and VMPD models, the cut-off
radius, δ, is set as 3le, where le is defined in Sect. 3.5. The
stress wave propagation along the bar at different time steps
with different models are shown in Fig. 4. It can be seen
that the results with PD model show the lower stress value
and higher wave velocity than those with other three models.
However, the results with VMPD are consistent with those
via MPM and GIMP models. The difference between PD
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Fig. 4 The stress wave profiles along the bar at different time steps: a t � 0.5Lbar/C , b t � 0.75Lbar/C , c t � 1.25Lbar/C ,d t � 1.5Lbar/C , with
C � √

E/ρ being the sound speed of the bar

Fig. 5 The stress wave profiles along the bar at t � 1.25Lbar/C by using a PD and b VMPD with different cut-off radii, with C � √
E/ρ being

the sound speed of the bar

and VMPD is mainly caused by the integration domain (or
integration volume) issue as discussed in Sect. 3.5.

In order to further demonstrate the influence of the inte-
gration volume on the PD and VMPD algorithms, several
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resultswith different cut-off radii by using the PDandVMPD
algorithms are compared in Fig. 5. It can be found that the
cut-off radius largely affects the simulation accuracy with
the PD algorithm. However, this issue is not obvious with
the VMPD algorithm. Except for the case with the largest
cut-off radius, δ � 10le, the stress wave propagation curves
with the other cut-off radii in the VMPD algorithm are close
to each other. It means that the varied cutoff radius could
not affect the simulation accuracy in the proposed VMPD
algorithm if the cutoff radius is within a suitable range. In
other words, the volume modification in the VMPD algo-
rithm plays an important role in enhancing the accuracy of
the PD algorithm.

5.2 Comparison of the combination algorithms

The 1-D bar model in Sect. 5.1 is also used to verify the
combination algorithms. The right half part of the bar, which
is between 0.5 and 1 in the longitudinal axis, consists of
100 MPM or GIMP particles. Similarly, the left half part

of the bar, between 0 and 0.5, includes 100 VMPD parti-
cles. In addition to the geometrical setting, the cutoff radius
for the PD particle is 3 le, and the related material prop-
erties and integration time step are the same as those in
Sect. 5.1. In order to investigate whether the background grid
would affect the simulation results, this simulations with the
combination algorithm are, respectively, performed with and
without the unified background grid. Therefore, there are
totally four different simulations that are PM, PG, PMG, and
PGG, respectively. The PM and PG represent that the simula-
tions combine VMPD andMPM (or GIMP) particles without
the unified background grid, as shown inFig. 2b. Itmeans that
all the variables ofMPMorGIMP particles are required to be
mapped to the background grids but those of VMPDparticles
are not. For the simulations with the PMG and PGG, the last
character, G, denotes that the unified background grids cover
all the VMPD and MPM (or GIMP) particles, as shown in
Fig. 2a.

Figure 6 shows the stress wave propagations along the bar
at different time steps associated with different algorithms.

Fig. 6 The stress wave profiles along the bar by using different combination solution schemes at different time steps: a t � 0.5Lbar/C , b t �
0.75Lbar/C , c t � 1.25Lbar/C , and d t � 1.5Lbar/C
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Fig. 7 The strain distribution along the bar at different time steps via a MPM and b VMPD

Fig. 8 The model for the PD bonds

It can be noted that there is no huge difference between the
results with these four algorithms. Taking a further look at
these four simulation results, however, those with the PMG
and PGG show an oscillation feature (or numerical noises)
near the interface, x� 0.5. Hence, the background grids in
the VMPD domain would lead to some numerical noises.

5.3 Demonstration with an elastoplastic model

In this section, the load in Fig. 3a is changed from the ten-
sile load to compressive load, and an elastoplastic model is
implemented in the PD algorithm to verify the accuracy of
the nonlinear PD simulation. For the elastoplastic model, the
yield strain and hardening modulus were set as 5 × 10−5

and 5000, respectively. The simulation with this elastoplas-
tic model andMPMalgorithm is conducted as a reference for
comparison. The strain distribution along the bar at different
time steps with the PD and MPM are shown in Fig. 7. It can
be observed that the results by using PD are in line with those
by using MPM. In other words, PD can effectively predict
the nonlinear mechanical behaviors of the material.

5.4 Illustration with a fracture model under impact

To take advantage of the MPM strength in simulating impact
and the PD strength in simulating fracture, a fracturemodel is
used here to predict the impact response, in which the critical
bond strain in Eq. (19), scri, and the cut-off radius are set as
7.9×10−3 and 3 le., respectively. As shown in Fig. 3b, a 1-D
bar target is impacted by a flyer, and the bar target includes
a left half part of PD particles and a right half part of GIMP
particles without a unified background grid. The number of
the PD andGIMPparticles are both 100. The PG algorithm in
Sect. 5.2 is utilized to solve this combination problem. Here,
a broken parameter, χbreak(x) � nbreak

n , is defined as the dam-
age condition of the bar target, where nbreak is the number
of the broken bonds for particle x and n is the total number
of the bonds associated with particle x.In other words, nbreak
represents the number of bonds that are connected to particle
x with zero of the scalar-valued function (θ ) in Eq. (19). For
instance, as shown in Fig. 8, there are eight connection bonds
for the red PD particle with position x, and two of them are
broken (their bond strains are larger than 7.9×10−3). There-
fore, the broken number at position of x, χbreak(x), should
become 2/8. The stress wave distribution and broken param-
eter χbreak(x) along the bar at different time steps are shown
in Figs. 9 and 10, respectively. When the flyer impacts the
bar target, the time is set as zero. At t � 0.9Lbar/C , the com-
pressive stress wavefront would reach the position x� 0.1,
and the length of wave impulse is about 0.4Lbar, which is
roughly from 0.1 to 0.5 Lbar . At t � 1.2Lbar/C , the stress is
about zero along the whole bar target because the compres-
sive and tensile stress waves are canceled with each other.
The tensile stress wave then starts to occur near x� 0.2 after
the time of 1.2Lbar/C . As demonstrated in Fig. 9c, hence, the
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Fig. 9 The stress profiles along the bar target at different time steps

Fig. 10 The distribution of the
broken parameter, χ(x), at
different time steps

tensile failure might occur at x� 0.2, which could break the
PD particle bonds. The fracture behavior is also displayed
in Fig. 10, in which the initial broken bonds occur near x�
0.2. When t > 1.28Lbar/C , the tensile stress becomes large
enough to break the bonds.

6 Concluding remarks

An attempt has been made to combine MPM with PD in a
single computational domain in which the nonlocal forcing
function in PD could be combined with the local constitu-

tive model in MPM to simulate the evolution of failure under
transient loadings. One-dimensional verification and demon-
stration have been performed with reasonable outcomes. The
major findings from this work are summarized as follows:

1. A numerical error inherent in the PD algorithm is iden-
tified, and a volume modification PD could be employed
to reduce the integration error.

2. The simulation results with both combination schemes
including PM, PG, PMG, and PGG are consistent. How-
ever, a minor oscillation of the stress wave profile occurs
near the interface between the PD and MPM (or GIMP)
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regions if the unified background grids cover all the sim-
ulation domain.

3. In the impact simulation, the PM scheme can effectively
describe the fracturing process, while the MPM scheme
can handle the impact problem without the need for mas-
ter/slave nodal treatment at the contact surface.

4. During the fracturing process, the bar target starts to
break when the generated tensile wave becomes large
enough, and the broken region would initiate at the given
position. Thus, the proposed procedure has the potential
of effectively dealing with the tensile spalling.

The future efforts are required to develop the proposed
procedure for general applications, and to perform verifica-
tion and validation for three-dimensional cases.
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