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a b s t r a c t 

The improved coupled finite element material point (ICFEMP) method is an effective way to deal with 

fluid-structure interaction problems. However, the FEM-MPM contact algorithm employed in ICFEMP suf- 

fers from the contact penetration problem which limits its application in engineering. In this paper, the 

reason leading to the penetration phenomenon is revealed. The singularity of the normal vector of two 

adjacent surfaces makes the contact position not well-defined around at the joint line, so that particles 

near the joint line may penetrate the contact surface. An improved local search method is proposed in 

this paper to eliminate the penetration. In addition, an iterative process for imposing contact forces is 

proposed as well to overcome the difficulty that contact conditions can hardly be satisfied simultane- 

ously for all contact pairs caused by the interaction among them. Numerical results illustrate that the 

proposed contact algorithm thoroughly eliminates the penetration phenomenon even in complex engi- 

neering problem such as the airbag simulation. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The material point method (MPM) [1,2] has received increasing 

ttention in recent decades. As a meshless method, the MPM dis- 

retizes a material domain as a set of Lagrangian particles moving 

hrough an Eulerian background grid. As a result, the MPM com- 

ines the benefits of both the Lagrangian method and the Eulerian 

ethod. The Eulerian background grid eliminates the mesh distor- 

ion problem and the Lagrangian particles trace the free surface 

f the material domain automatically. The original version of MPM 

uffers the cell crossing error [3] , so different variants have been 

roposed [3–9] to improve its accuracy. The MPM has been widely 

sed to solve complex problems such as flyer impact [10–15] , dy- 

amic fracture [8,16–21] , armor piercing [15,22,23] , and especially, 

he fluid-structure interaction (FSI) problem [24,25] . 

Depending on the solver employed to simulate the fluid and 

tructure regions, there are two main approaches for the FSI simu- 

ation [26] : the monolithic approach and the partitioned approach. 

he monolithic approach simulates the fluid and structure regions 

ith a single solver. Because the momentum equations of the 
� Supported by the National Natural Science Foundation of China ( 11672154 ). 
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uid and structure regions are solved on a common background 

rid, the MPM ensures the velocity continuity and avoid the pen- 

tration naturally. In order to release the bodies which are mov- 

ng apart, York et al. [24,27] proposed a simple contact algorithm 

hich allows bodies to move in their own velocity fields and the 

lgorithm has been successfully used to simulate the airbag im- 

act. The multi-velocity fields method gets further developed in 

ealing with FSI problems. Bardenhagen et al. [28,29] introduced 

he multi-velocity fields in the nodes where contact occurs, thus 

ermitting the slip and separation of different bodies. The multi- 

elocity fields contact algorithm was improved by Huang et al. 

13] which modifies the normal vectors on the contact interface 

n order to solve the momentum non-conservation problem caused 

y the non-collinear contact vectors of two contact bodies [28,29] . 

he multi-mesh method has also been introduced by Hu and Chen 

30] to deal with solid contact problems and Ma et al. [12] pro- 

osed to employ the local multi-mesh in the contact region in or- 

er to lessen the computation burden. Homel [31] and Moutsanidis 

32] proposed to enrich the shape function so that the distinct ve- 

ocity fields are simulated by a single discontinuous velocity field. 

ui et al. proposed an alternating finite difference material point 

AFDMP) method [33] to model the high explosive explosion and 

ts interaction with structures nearby. The MPM is employed to 

imulate the initiatory detonation and the eventual fluid structure 

nteraction, while the finite difference method (FDM) is employed 

o simulate the dispersion of the detonation products into the sur- 

ounding air. 

https://doi.org/10.1016/j.compfluid.2020.104749
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104749&domain=pdf
https://doi.org/10.13039/501100001809
mailto:xzhang@tsinghua.edu.cn
https://doi.org/10.1016/j.compfluid.2020.104749
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The partitioned approach simulates the fluid and structure re- 

ion with different solvers and introduces special methods to cou- 

le them together. The MPM can be employed to solve the struc- 

ure part. Guilkey et al. [34] introduced a sub-grid model to close 

he governing equations and couples the finite-volume method 

FVM) region and the MPM region. The coupled finite difference 

aterial point (CFDMP) method proposed by Cui et al. [35] couples 

he FDM fluid and MPM structure regions with a bridging region 

here the FDM and the MPM exchange information. The immersed 

oundary (IB) has also been introduced into the MPM to deal with 

omplex boundary. Gilmanov and Acharya [36] proposed a com- 

ined hybrid immersed boundary method (HIBM) and MPM ap- 

roach to solve the FSI problem. The MPM solid structure provides 

 boundary condition for the volume of fluid (VOF) region and the 

OF region impose pressure load to the MPM structure. However, 

he finite element method (FEM) is more suitable to simulate the 

olid structure in most circumstances because of its high efficiency 

nd accuracy. Coupling the FEM solid structure and the MPM fluid 

s a good way to solve the FSI problem. Lian et al. [22] proposed

 hybrid finite element material point (HFEMP) method to model 

he steel reinforced concrete structure where the rebar elements 

nd the concrete particles interact by mapping forces on the back- 

round nodes. Hamad et al. [37] extended the HFEMP to model 

 thin-walled structure in combination with a solid material. The 

FEMP is essentially a IB method which can also be applied in FSI 

imulation. 

There is also mush research on the contact algorithm between 

nite elements and material points. Lian et al. [15] proposed a 

oupled finite element material point method (CFEMP) which in- 

roduces a contact algorithm to couple finite elements and ma- 

erial points. However, the contact algorithm in the CFEMP re- 

uires consistent meshing between FEM domain and MPM domain, 

hich may result in over-meshing in FEM domain and significantly 

ncreases the computational burden. To overcome the difficulty, 

heon and Kim [38] employed distributed interaction nodes on the 

ontact faces of finite elements. Chen et al. [39] proposed an im- 

roved particle-to-element contact algorithm to eliminate the con- 

istent meshing, in which the particles contact directly to the sur- 

ace of finite elements. The ICFEMP method has been successfully 

sed in complex problems. Wu et al. [40] applied the ICFEMP to 

imulate the bird impact problem. Chen et al. [39] studied the 

hick plate penetration and the hypothetical core disruptive acci- 

ent (HCDA) of a fast reactor. 

However, the ICFEMP method still suffers from several difficul- 

ies. Firstly, the contact penetration phenomenon take place oc- 

asionally especially when the contact surfaces are severely de- 

ormed. Secondly, the contact forces are imposed on each contact 

air. The contact conditions can hardly be satisfied simultaneously 

ecause of the interaction among contact pairs. In this paper, we 

eveal that the penetration phenomenon is caused by the singu- 

arity on the joint line of surfaces which leads to nonunique con- 

act vectors in the local search method. Therefor, an improved local 

earch method is proposed to eliminate the singularity. An iterative 

rocess of imposing contact forces to find a set of contact forces 

hich make the contact conditions satisfied for every contact pair 

imultaneously. 

This paper is structured as follows. Section 2 gives a brief re- 

iew of the ICFEMP, including the formulation of the MPM, the 

EM and the particle-to-surface contact algorithm. Section 3 anal- 

ses the special case which causes the contact penetration and in- 

roduces an improved local search method. In Section 4 contact 

onditions based on the velocity and the displacement are com- 

ared and an iterative process for imposing contact forces is de- 

eloped. Section 5 presents several numerical examples to verify 

he proposed method. 
2 
. Improved coupled finite element material point method 

A brief review of the improved coupled finite element material 

oint method (ICFEMP) is presented in this section. In the ICFEMP, 

he MPM is usually used to simulate objects with large deforma- 

ion, while the FEM is usually used to simulate structures with rel- 

tively small deformation. The contact algorithm is employed to 

ouple the finite element objects and the material point objects. 

The weak form equivalent to the momentum equation and trac- 

ion boundary condition in the updated Lagrangian frame is given 

s 
 

�
ρü · δu d V + 

∫ 
�

σ : ∇ ( δu ) d V −
∫ 
�

b · δu d V −
∫ 
�t 

t̄ · δu d A = 0 

(1) 

here ρ is the density, u is the displacement, and δu denotes the 

irtual displacement, a superimposed dot denotes the time deriva- 

ive; σ is the stress, b is the specific body force, �t denotes the 

rescribed traction boundary of the problem domain �, and t̄ de- 

otes the prescribed traction on �t . 

.1. The material point method 

The MPM discretizes an object by a set of particles which 

oves on an Eulerian background grid. The particle is essentially 

n idealization of a small mass of material which only has position 

nd mass and does not take up space [2] . So the density filed is

pproximated by 

( x ) = 

n p ∑ 

p=1 

m p δ( x − x p ) (2) 

here n p is the total number of particles, m p is the mass of par-

icle p , x p is the coordinates of the particle p and δ is the Dirac

elta function. 

The updated Lagrangian frame is employed in this paper. In 

ach time step, material points are fixed on a regular background 

rid and move and deform along with it. The displacement u p of 

article p is interpolated from the grid nodes, namely 

 p = 

n g ∑ 

I=1 

N Ip u I (3) 

here n g is the total number of background grid nodes. u I is the 

isplacement of node I . N Ip = N I ( x p ) is the shape function associ-

ted with node I evaluated at the site of particle p . Consequently, 

he velocity ˙ u p and the virtual displacement δu p can be obtained 

y 

˙ u p = 

n p ∑ 

I=1 

N Ip ̇ u I 

u p = 

n p ∑ 

I=1 

N Ip δu I (4) 

ubstituting Eqs. (2) –(4) into Eq. (1) gives the nodal momentum 

quation 

 I ̈u I = f 
int 
I + f 

ext 
I (5) 

here m I is the lumped mass of node I , 

f 
int 
I = −

n p ∑ 

p=1 

(∇N Ip 

)
· σ p 

m p 

ρp 
(6) 

s the grid nodal internal force, σp is the stress tensor of particle 

 , 

f 
ext 
I = 

n p ∑ 

p=1 

m p 

ρp 
N Ip b p (7) 
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s the grid nodal external force in which the traction term is omit- 

ed for simplicity. 

.2. The finite element scheme 

The FEM is usually used to simulate structures with relatively 

mall deformation in the CFEMP. The object is discretized by ele- 

ents and the displacements of a point with the initial coordinates 

 at time t can be approximated as 

 ( X , t) = 

n e ∑ 

K=1 

N K (ξ , η, ζ ) u K (t) (8) 

here u is the displacements, n e is the total number of nodes, sub- 

cript K indicates the variables associated with node K . Substitut- 

ng Eq. (8) into the weak form Eq. (1) gives the nodal momentum 

quation 

 K ̈u K = f 
ext 
K + f 

int 
K (9) 

here 

 K = 

∫ 
�

ρN K d V (10) 

s the lumped mass of node K , 

f 
ext 
K = 

∫ 
�

N K b d V + 

∫ 
�t 

N K ̄t d A (11) 

s the nodal external force and 

f 
int 
K = −

∫ 
�

( ∇N K ) · σd V (12) 

s the nodal internal force. 

The Gauss quadrature is usually employed in the FEM to calcu- 

ate the integral in Eqs. (10) –(12) which is one of the main differ-

nce from the MPM. 

.3. The particle-to-surface contact method 

The contact algorithm is employed to couple a finite element 

bject and a material point object. In the contact algorithm pro- 

osed by Lian et al. [15] , the contact search process relies on the

ackground grid. In each time step, the nodes of FE objects are re- 

arded as particles with mass, momentum and nodal forces which 

an be mapped to the background grid nodes. The contact occurs if 

nd only if the momentum of a node is contributed by both the FE 

odes and the MP particles. This kind of contact algorithm requires 

hat the size of finite element match that of the MPM background 

rid, namely L FEM 

/ L MPM 

≈ 1 where L FEM 

and L MPM 

denote the char- 

cteristic length of the finite element and MPM background grid 

ell, respectively. Chen et al. proposed a particle-to-surface con- 

act method to overcome the length requirement and improve the 

ontact accuracy [39] . The contact algorithm is divided into three 

teps: global search, local search and imposing the contact forces. 

The global search is an optional step which searches out the 

otential contact pairs. A contact pair consists of a finite element 

ace and a material point that are possible to contact each other. 

he potential contact pairs will be further tested by a local search 

rocess to determine whether the contact occurs, which is a time 

onsuming process. Hence, a well-designed global search algorithm 

s supposed to reduce the number of potential contact pairs as 

uch as possible. The global search algorithm is essentially a space 

earch algorithm which is used to find particles neighboring a fi- 

ite element face. Many techniques work well to accelerate the 

lobal search process such as bucket search [41] , position code 

42] , and the linear octree [43] . 

The local search process detects the exact contact position on 

he finite element face for each potential pair and thus calculates 
3 
he gap between the face and particle. Consequently, it determines 

here the contact occurs according to the contact position and 

he contact gap. Without loss of generality, the finite element face 

s assumed to be a quadrangle with four nodes x I , I = 1 . . . 4 . The

arametric equation of the face is given by 

 (ξ , η) = 

4 ∑ 

I=1 

N I (ξ , η) x I (13) 

here ξ , η are the natural coordinates ranging from −1 to 1, N I is 

he bilinear shape function 

 I (ξ , η) = 

1 

4 

(1 + ξξI )(1 + ηηI ) (14) 

The coordinates of the particle in the contact pair is denoted 

y x p . The contact position x c is supposed to be the foot of the

erpendicular of the particle on to the element face. The tangent 

ectors of the face can be calculated by 

 

ξ (ξ , η) = 

∂ x (ξ , η) 

∂ξ
= 

4 ∑ 

I=1 

∂N I (ξ , η) 

∂ξ
x I 

 

η(ξ , η) = 

∂ x (ξ , η) 

∂η
= 

4 ∑ 

I=1 

∂N I (ξ , η) 

∂η
x I (15) 

here t ξ and t η are the tangent vector along the direction that ξ
nd η increase respectively. As a result, the contact position x c and 

ts natural coordinates ξ c and ηc are supposed to satisfy 

 

ξ (ξ c , ηc ) · ( x c − x p ) = 0 

 

η(ξ c , ηc ) · ( x c − x p ) = 0 

(16) 

Eq. (16) can be solved by the Newton–Raphson iterative 

ethod. Thus the contact normal n 

c and the contact gap g c can 

e calculated as 

 

c = 

t ξ × t η

| t ξ × t η| (17) 

 

c = ( x p − x c ) · n 

c (18) 

Two principles must be satisfied if the contact situation occurs 

n a contact pair. The first principle is that the contact position 

ust locate within the element quadrangle face, namely 

ξ c , ηc ) ∈ [ −1 , 1] × [ −1 , 1] (19) 

The second principle is that the particle must have penetrated 

nto the element. Assume that the element has a thickness d and 

he radius of the particle is r , then contact gap has to satisfy 

 

c < 

d 

2 

+ r (20) 

The next step is to impose contact forces on each validated 

ontact pair. The contact force F c n 

c between the particle x p and 

he contact position x c should be distributed to the finite element 

odes and the background grid nodes of the cell where the particle 

ocates in, as shown in Fig. 1 . The contact forces f 
g 
I 
(I = 1 . . . 8) on

he background grid nodes and f e J (J = 1 . . . 4) on the finite element 

odes can be given by 

f 
g 
I = N Ip F 

c n 

c 

f 
e 
J = −N J (ξ

c , ηc ) F c n 

c (21) 

The purpose of the contact force F c n 

c is to push the particle 

nd the finite element away from each other so that the contact 

onditions are satisfied. After imposing the contact force on the 

ontact pair, the velocity of the particle p is updated by 

 

p ,k +1 / 2 = v p ,k −1 / 2 + 
t k 
8 ∑ 

I=1 

N Ip 
f I 

m I 

(22) 
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Fig. 1. Imposing contact forces. 
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the finite element face. 

Fig. 2. The contact area. Left is the 3D case where the contact area is a block re- 

gion. Right is the 2D case where the contact area is a rectangular area. 
here v p is the velocity of the particle, 
t k is the time step, m I 

s the mass of the background grid node I and f I is its total nodal

orce. It can be decomposed into the contact force f 
g 
I 

and the orig- 

nal nodal force ˜ f I , i.e. 

f I = f 
g 
I + 

˜ f I (23) 

here 

f 
g 
I = 

n p ∑ 

p=1 

N Ip F 
c 
p n 

c 
p (24) 

nd 

˜ f I = −
∫ 
�

( ∇N I ) · σd V (25) 

The velocity of the contact position v c can be obtained by in- 

erpolating the finite element nodal velocity as 

 

c = 

4 ∑ 

J=1 

N J (ξ
c , ηc ) v J (26) 

here v J indicates the velocity of element node J . The nodal veloc- 

ty is updated by 

 

k +1 / 2 
J 

= v k −1 / 2 
J 

+ 
t k 
f J 

m J 

(27) 

here m J is the nodal mass. The nodal force has the similar de- 

omposition as Eq. (23) , 

f J = f 
e 
J + 

˜ f J (28) 

According to Eq. (21) and Eqs. (22) –(28) , the particle and con- 

act position velocity updating formula share a similar expression 

s 

 

p ,k +1 / 2 = 

˜ v p ,k +1 / 2 + 
t k F c n 

c 
8 ∑ 

I=1 

N 

2 
Ip 

m I 

v c ,k +1 / 2 = 

˜ v c ,k +1 / 2 − 
t k F c n 

c 
4 ∑ 

J=1 

N 

2 
J 

m J 

(29) 

here 

˜ 
 

p ,k +1 / 2 = v p ,k −1 / 2 + 
t k 
8 ∑ 

I=1 

N Ip 

˜ f I 
m I 

˜ v c ,k +1 / 2 = v c ,k −1 / 2 + 
t k 
4 ∑ 

J=1 

N J 

˜ f J 

m J 

(30) 

ndicate the predicted velocity which is updated without the con- 

act forces. The contact condition requires the continuity of the ve- 

ocity of the particle and the contact position in the normal direc- 

ion, namely 

 

p ,k +1 / 2 · n 

c = v c ,k +1 / 2 · n 

c (31) 
4 
Substituting Eq. (29) into Eq. (31) results in the resultant con- 

act force 

 

c = 

˜ m p ˜ m c 


t k ( ̃  m p + 

˜ m c ) 
n 

c · ( ̃  v c ,k +1 / 2 − ˜ v p ,k +1 / 2 
) (32) 

here the equivalent mass of the particle and the contact position 

re 

1 

˜ m p 
= 

8 ∑ 

I=1 

N 

2 
Ip 

m I 

1 

˜ m c 
= 

4 ∑ 

J=1 

N 

2 
J 

m J 

(33) 

In conclusion, the basic flow of the algorithm is summarized as 

1. Use bucket search or other space search method to find out the 

potential contact pairs. 

2. Find the contact position for each potential contact pair, deter- 

mine its contact situation and calculate the contact normal vec- 

tor and contact gap. 

3. Calculate the predicted velocity and then the resultant contact 

force. 

4. Impose the contact forces on the background grid nodes and 

the finite element nodes. 

. Improved local search algorithm 

In this section, the geometrical features of the local search is 

nalyzed in detail. The contact area of a finite element is defined 

o describe the space region where a particle is possible to contact. 

owever, the contact area of different elements cannot make up 

 complete global contact area. Contact cracks between different 

nite elements causes severe contact penetration phenomenon es- 

ecially in the fluid problem. We propose an improved local search 

lgorithm to fill up the contact crack and the penetration problem 

s well solved. 

.1. Contact area and contact crack 

Considering the contact criterion Eqs. (19) and (20) , the contact 

ccurs only when a particle locates in the region formed through 

he element extending by a thickness of d /2 in the normal di- 

ection on each side. The region is defined as ‘contact area’ of 

he element. Fig. 2 shows the contact area in 3D space and 2D 

pace. Without loss of generality, only 2D schematic will be used 

o shown the geometrical features of the contact area. 

When a particle moves into the contact area of a finite element, 

ontact forces will be imposed on the contact pair to push them 

way. The velocity continuity condition (31) ensures that the con- 

act penetration would not further continue in the next time step. 

s a result, the contact area prevents particles from going through 
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Fig. 3. Flat surface discretized by multi-elements. 

Fig. 4. Contact crack. 
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The non-penetration condition can also be satisfied when a flat 

urface is discretized by multi-elements. Fig. 3 shows the global 

ontact area of the elements which compose a flat surface. Ap- 

arently a complete global contact area is formed thus the global 

on-penetration condition is guaranteed. It is noticeable that the 

ormal vectors of the neighboring elements are continuous on the 

ntersecting line of them, which ensures the uniqueness of the foot 

f a perpendicular. 

However, in most circumstances where the normal vectors are 

ot continuous on the intersecting line, the contact area of adja- 

ent elements cannot close. As shown in Fig. 4 , the two finite ele-

ent faces are connected at an angle so that the normal vector is 

ot well defined at the joint point (joint line in 3D space). The con- 

act area of the surfaces overlaps each other on one side but forms 

n unclosed contact crack on the other side. The contact crack can 

ause severe penetration problem especially in fluid problem. 

In general, the overlapped contact area would not influence the 

ontact property. Particles located in the overlapped contact area 

re supposed to be detected to contact with both the two surfaces 

nd the contact forces are imposed on the two contact pair. 

The contact crack gives rise to the penetration phenomena. 

hen a particle moves into the contact crack, the foots of a per- 

endicular always fall out of the two surfaces no mater how near 

hey are (see Fig. 5 a). Consequently, no contact pair can be de- 

ected so that the particle would move through the surfaces and 

nter the contact area on the other side. Then contact forces will 

e imposed on the particle to push it toward the other side (see 

ig. 5 b and c) which leads to penetration. The contact crack ap- 

ears on the convex side of the joint line of two surfaces and a 

arge number of cracks could appear when the FEM body under- 

oes large deformation. 

.2. Improved local search algorithm 

The contact criterion Eqs. (19) and (20) must be reconsidered to 

liminate the contact crack. A particle is supposed to contact with 

 surface as long as they are close enough. So the contact crite- 

ion should tolerate that the contact position is not the foot of a 

erpendicular in some circumstances and thus the contact vector 
ig. 5. Penetration process. (a) The particle moves into the contact crack. (b) The particle

ushed out of the contact area. 

5 
hould also be modified accordingly. It is reasonable that the con- 

act position lies on the joint point (joint line in 3D space) when 

he particle locates in the contact crack. However, it is difficult to 

etermine the contact vector because the normal vector of the sur- 

ace in the contact crack is not well defined. 

The contact crack problem is similar with the singular problem 

f the multiple yield surfaces. Many methods have been proposed 

o define the gradient on the joint line of yield surfaces. For exam- 

le, Abbo and Sloan [44] introduced the hyperbolic approximation 

o smooth the yield surface and Bicanic et al. [45] proposed to de- 

ne the gradient on the singular point as the linear combination 

f its neighboring yield surfaces. 

To eliminate the contact crack, the contact position x c of a par- 

icle p is defined as the nearest point on the surface to the particle. 

enoting the vector pointing from point x on the finite element 

ace to particle p as 

 = x p − x , (34) 

he natural coordinates of the contact point x c = x (ξ c , ηc ) mini- 

ize the magnitude of g , namely 

ξ c , ηc ) = arg min 

ξ ,η
‖ g ‖ 

2 , (ξ c , ηc ) ∈ [ −1 , 1] × [ −1 , 1] (35)

The contact vector g c is defined as 

 

c = x p − x c , (36) 

hose unit vector is the normal vector on the contact position, 

amely 

 

c = 

g c 

‖ g c ‖ 

(37) 

The modified definition of the contact position criterion 

q. (35) can be degenerated into Eq. (16) when the contact po- 

ition locates in the internal surface. Assuming that 

ξ c , ηc ) ∈ (−1 , 1) × (−1 , 1) , (38) 

he contact position must be located on the extreme point of ‖ g ‖ 2 ,
hus the derivative of ‖ g ‖ 2 with respect to natural coordinates ξ , 

must satisfy 

∂‖ g ‖ 

2 

∂ξ
| (ξ c ,ηc ) = 2 g c · ∂ x (ξ c , ηc ) 

∂ξ
= 0 

∂‖ g ‖ 

2 

∂η
| (ξ c ,ηc ) = 2 g c · ∂ x (ξ c , ηc ) 

∂η
= 0 (39) 

Substituting Eq. (15) into Eq. (39) results in 

 

c · t ξ | (ξ c ,ηc ) = 0 

 

c · t η| (ξ c ,ηc ) = 0 

(40) 

hich has the same expression as Eq. (16) . Eq. (40) signifies that 

he contact vector is parallel to the normal vector defined by 

q. (17) so that the modified normal vector Eq. (37) can be degen- 

rated into the original expression Eq. (17) on the internal contact 

osition. 

When the particle moves into the contact crack, the contact po- 

ition locates on the joint point (joint line in 3D space) and if the 

istance criterion Eq. (20) is satisfied, the contact pair would be 

etected. As a consequence, the contact area extends a semicircle 
 penetrate the surface and enters the overlapped contact area. (c) The particle are 
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Fig. 6. The modified contact area. 
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ith radium d/ 2 + r around the joint point as shown in Fig. 6 (a).

he contact crack is filled by the extended contact area as shown 

n Fig. 6 (b) and the particle in it is detected to contact with the

oint point. 

.3. The steepest descent method to solve the contact position 

The modified contact positions criterion Eq. (35) is essentially 

n inequality-constrained optimization problem. Many numerical 

ethods can be employed to solve the contact position such as 

he quasi-Newton method and the conjugate gradient method. 

owever, because the finite element is usually regular-shaped and 

ightly-warped, the steepest descent method is able to solve the 

roblem efficiently. 

The most important step in the steepest decent method is to 

alculate the gradient of the objective function ‖ g ‖ 2 by 

∂‖ g ‖ 

2 

∂ξ
= 2 g · t ξ

∂‖ g ‖ 

2 

∂η
= 2 g · t η (41) 

nd the natural coordinates of the contact position is updated by 

n +1 = ξ n + αγ n ∂‖ g ‖ 

2 

∂ξ

n +1 = ηn + αγ n ∂‖ g ‖ 

2 

∂η
(42) 

here the superscript n indicates the variables at n th step, γ n is 

he step length, 0 < α ≤ 1 is a user-defined parameter. In most cir- 

umstances where elements are of small deformation, the iteration 

onverges very fast when α is set around 1. 

A regular flat contact surface is considered to estimate the step 

ength. As shown in Fig. 7 , x ( ξ n , ηn ) is the current coordinates and

he contact position x c is assumed to be located in the internal 

urface. x ( ξ n , ηn ) is updated by 

 (ξ n +1 , ηn +1 ) = x (ξ n , ηn ) + γ n ∂‖ g ‖ 

2 

∂ξ
t ξ + γ n ∂‖ g ‖ 

2 

∂η
t η (43) 
Fig. 7. Steepest descent method. 
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In order to estimate the optimal step length γ n , it is assumed 

hat the accurate contact position is reached in one step, namely 

 

c = x 
(
ξ n +1 , ηn +1 

)
so that 

 

c − x ( ξ n , ηn ) = γ n ∂‖ g ‖ 

2 

∂ξ
t ξ + γ n ∂‖ g ‖ 

2 

∂η
t η (44) 

The geometrical condition requires that 

 

n · ( x c − x n ) = ( x c − x n ) · ( x c − x n ) (45) 

here x n = x ( ξ n , ηn ) . Thereby, γ n can be solved by 

n = 

( g n · t ξ ) 2 + ( g n · t η) 2 

2[( g n · t ξ ) 2 ‖ t ξ‖ 

2 + ( g n · t η) 2 ‖ t η‖ 

2 ] 
(46) 

The convergence criterion is another important part of the local 

earch algorithm. When the contact position locates in the internal 

urface, the gradient condition Eq. (40) can be used as a conver- 

ence criterion, namely 

 g n · t ξ | < ε ξ

 g n · t η| < ε η
(47) 

here εξ and εη are extremely small numbers. The criterion can 

e nondimensionalized as 

os 2 βξ + cos 2 βη < ε 1 (48) 

here ε1 is a small dimensionless number, 

os βξ = 

g ·t ξ
‖ g ‖‖ t ξ ‖ , cos βη = 

g ·t η
‖ g ‖‖ t η‖ (49) 

re the cosine values of the angles between g and the tangent vec- 

or t ξ and t η . 

Another convergence criterion is also required to deal with the 

ituation where the contact position locates on the joint point. 

hen the coordinates are updated out of the surface region by 

q. (42) , they are supposed to be moved to the joint point (joint 

ine in 3D space) by 

n +1 = 

{
1 if ξ n +1 > 1 

−1 if ξ n +1 < −1 

n +1 = 

{
1 if ηn +1 > 1 

−1 if ηn +1 < −1 

(50) 

nd then the convergence criterion 

ξ n +1 − ξ n ) 2 + (ηn +1 − ηn ) 2 < ε 2 (51) 

s employed to further determine if the convergence is reached, 

here ε2 is also a small dimensionless number. 

In summary, the flow chart of the local search algorithm is 

hown in Fig. 8 . 

. Contact conditions and contact iteration 

Contact conditions are reconsidered in this section. Conditions 

ased on the velocity and the displacement are compared and a 

eneral formulation of contact force is proposed. The contact con- 

itions can hardly be satisfied for all the contact pairs simultane- 

usly because of their interaction, so an iterative method is pro- 

osed to impose the contact forces. 
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Fig. 8. Flow chart of the local search algorithm. 
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.1. Contact conditions analysis 

In the contact theory, two contact bodies must satisfy both the 

isplacement and velocity conditions at the contact position. In the 

FEMP method, the displacement condition is given by 

 

x p − x c ) · n 

c � 

d 

2 

+ r (52) 

hich means the two bodies would not penetrate each other and 

he velocity condition is given by 

 

v p − v c ) · n 

c � 0 (53) 

hich represents the penetration trend is stopped by the contact 

orce. The equality in Eqs. (52) and (53) are reached simultane- 

usly. The contact forces can be given based on each of the condi- 

ions. Because the contact process finishes when the contact bodies 

ove apart, the contact force is calculated according to the equal- 

ty conditions. 

The displacement condition requires that the particle is pushed 

ut of the contact area at the next time step, namely 

x p , k +1 − x c ,k +1 
)

· n 

c = 

d 

2 

+ r (54) 

 

p is updated by 

 

p ,k +1 = x p ,k + 
t k +1 / 2 
n e ∑ 

I=1 

v k +1 / 2 
I 

N Ip (55) 

nd the velocity of node I is updated by 

 

k +1 / 2 
I 

= v k −1 / 2 
I 

+ 
t k 
˜ f I + N Ip F 

c n 

c 

m I 

(56) 

˜ 
 and 

˜ v are the predicted position and velocity respectively which 

gnore the influence of contact forces. They are obtained by 

˜ 
 

p ,k +1 = x p ,k + 
t k +1 / 2 
n e ∑ 

I=1 

˜ v k +1 / 2 
I N Ip (57) 
7 
˜ 
 

k +1 / 2 
I = v k −1 / 2 

I 
+ 
t k 

˜ f I 
m I 

(58) 

ubstituting Eqs. (56) –(58) into Eq. (55) gives 

 

p ,k +1 = 

˜ x 
p ,k +1 + 
t k 
t k +1 / 2 F c n 

c 
8 ∑ 

I=1 

N 

2 
Ip 

m I 

˜ 
 

p ,k +1 = x p ,k + 
t k +1 / 2 ˜ v p ,k +1 / 2 
(59) 

here 

˜ 
 

p ,k +1 / 2 = 

8 ∑ 

1 

N Ip ̃  v 
k +1 / 2 
I (60) 

s the predicted velocity of the particle. Similarly, 

 

c ,k +1 = 

˜ x 
c ,k +1 − 
t k 
t k +1 / 2 F c n 

c 
4 ∑ 

J=1 

N 

2 
J 

m J 

˜ 
 

c ,k +1 = x p ,k + 
t k +1 / 2 ˜ v c ,k +1 / 2 
(61) 

ubstituting Eqs. (59) and (61) into Eq. (54) gives 

 

c = 

˜ m p ˜ m c 

(
˜ v c ,k +1 / 2 − ˜ v p ,k +1 / 2 

)
· n 

c 


t k ( ̃  m p + 

˜ m c ) 

+ 

˜ m p ˜ m c 


t k 
t k +1 / 2 ( ̃  m p + 

˜ m c ) 

(
d 

2 

+ r − g c 
)

(62) 

Similarly, the velocity condition requires 

v p ,k +1 − v c ,k +1 
)

· n 

c = 0 (63) 

hich leads to 

 

c = 

˜ m p ˜ m c 

(
˜ v c ,k +1 / 2 − ˜ v p ,k +1 / 2 

)
· n 

c 


t k ( ̃  m p + 

˜ m c ) 
(64) 

Compared with Eq. (64) , Eq. (62) has an additional term associ- 

ted with the penetration depth. Because the contact are detected 

nly when Eq. (20) is satisfied, the second term in Eq. (62) is pos-

tive. As a result, the resultant contact force based on the displace- 

ent condition must be larger than that based on the velocity con- 

ition. So the equality in Eqs. (52) and (53) can hardly be reached 

imultaneously which is because the time discretization makes the 

isplacement in the next step is determined by the velocity. For 

 single contact pair, the contact force based on the displacement 

ondition makes 
(
v p ,k +1 − v c ,k +1 

)
· n 

c > 0 which may cause contact 

orce oscillation. On the other hand, the contact force based on the 

elocity displacement condition cannot push the contact pair away 

nough so that Eq. (52) is satisfied. A general expression fo the re- 

ultant contact force can be given by 

 

c = 

˜ m p ˜ m c 

(
˜ v c ,k +1 / 2 − ˜ v p ,k +1 / 2 

)
· n 

c 


t k ( ̃  m p + 

˜ m c ) 

+ α
˜ m p ˜ m c 


t k 
t k +1 / 2 ( ̃  m p + 

˜ m c ) 

(
d 

2 

+ r − g c 
)

(65) 

hich is the linear combination of the resultant contact force 

ased on the velocity condition and the displacement condition 

ith a user-defined parameter 0 ≤ α ≤ 1. 

The value of parameter α is determined empirically. When 

≈ 1, the displacement condition is satisfied but the normal ve- 

ocity of the particle and contact surface is discontinuous which 

eads to severe contact force oscillations. On the other hand, when 

≈ 0, the contact force oscillations decrease but the contact pen- 

tration may appear especially when the contact pair has a large 

elative velocity. In practice, it is suggested to set a bigger α in 
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Fig. 9. Two particles contact to a single surface. 
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Fig. 10. Iteration process on imposing contact forces. 

t

c  

t

q

s  

F

I

w

T

f

t

(  

m

c

d

f

a

o  

t

i

c

s

b  

t

T

c

t

o  
he problem with large relative velocity such as the armor piercing 

imulation and a small α in quasi-static problems. In this paper, α
s set to 0.3. 

.2. Contact force iteration 

The interaction among contact pairs must be taken into con- 

ideration when imposing contact forces. Let m denote the total 

umber of detected contact pairs. Because two contact pairs may 

hare a common particle or finite element, or merely their parti- 

les share common background grid nodes, or their elements share 

ommon nodes, the contact conditions at these contact pairs 

 x p ,k +1 

l 
− x c ,k +1 

l 
) · n 

c 
l � 

d l 
2 

+ r l , l = 1 , 2 . . . m (66) 

annot be satisfied simultaneously by simply imposing the force 

ike Eq. (65) on each contact pair. For example, two particles move 

nto both sides of the contact area of an element face as shown in

ig. 9 . Because the two particles locate in the same cell, their con- 

act forces are added onto same nodes. The contact forces imposed 

n the second particle would pull the first particle back into the 

ontact area so that the contact condition Eq. (66) is not satisfied. 

To overcome the difficulties caused by the interaction among 

he contact pairs to make the contact conditions satisfied for all 

ontact pairs simultaneously, the contact forces must be imposed 

epeatedly. So an iteration process of imposing contact forces is in- 

roduced. In each iterative step, the predicted displacement and ve- 

ocity are updated which is used to calculate a new contact force 

or each contact pair by Eq. (65) . Only positive contact forces are 

dded to nodal forces because the contact forces should not be 

egative. The nodal forces, which include the internal forces and 

ontact forces in previous iterative steps, are employed to calcu- 

ate the predicted displacement and velocity in the next iterative 

tep. The iteration converges when all contact pairs satisfy contact 

onditions. Fig. 10 gives the flow chart of the iterative process. In 

ost circumstances where the contact situation is rather simple, 

he convergence can be reached very soon. 

. Numerical results 

Several numerical examples are presented in this section to test 

he performance of the proposed algorithm. Section 5.1 illustrates 

he elimination of the contact crack and measures the efficiency 

f the improved local search method. Section 5.2 verifies that the 

ontact penetration is successfully eliminated by the new contact 

lgorithm. Section 5.3 is an application of the non-penetration con- 

act method into 3D airbag simulation. And Section 5.4 presents a 

edge falling into water simulation as an example of the FSI prob- 

em. 

.1. Validation of the improved local search method 

In order to illustrate the contact area and the contact crack of 

he surfaces, a local search test is given here. 
8 
First of all, we test the contact status of a large number of par- 

icles to a given surface. The particles are randomly generated in a 

ubic [ −1 , 1] × [ −1 , 1] × [ −1 , 1] . To prevent the surface from being

oo distorted, the four nodes of the surface are restricted into four 

uadrants of the cubic respectively. The thickness of the surface is 

et as 0.24 and 20 0,0 0 0 particles with radius r = 0 . 2 are generated.

ig. 11 shows the contact status of these particles with the surface. 

n order to highlight the contact area of the surface, the particles 

hich are not detected to contact the surface are not displayed. 

he particles that contact at the internal position and on the sur- 

ace edges are represented by solid balls and hollow balls, respec- 

ively. Comparing the result of the original local search method 

 Fig. 11 a) with the improved method ( Fig. 11 b), we can find both

ethods have similar performance on the internal contact parti- 

les, but the particles contacting on the surface edges can only be 

etected by the improved method. 

The local search methods are also tested on two connected sur- 

aces. The particles are also generated in the same cubic as before 

nd two connected surfaces are generated randomly in the middle 

f the cubic. The test results are shown in Fig. 12 . In addition to

he contact area extension around the surface edges, the particles 

n the contact crack around the joint line are also be detected to 

ontact to the surfaces by the improved method. 

In order to compare the efficiency between the improved local 

earch method and the original method, the CPU time consumed 

y 10 0 0 tests are compared. In each test, 20 0,0 0 0 random po-

ential contact pairs are examined through a local search method. 

he CPU time consumed by each test ranges widely because the 

ontact pair is generated randomly. To illustrate the efficiency of 

he original and the improved local search method, a histogram 

f the frequency of the CPU time is given in Fig. 13 . In the his-
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Fig. 11. Contact status of particles with one surface obtained by (a) the original local search method, and (b) the improved local search method. 

Fig. 12. Contact status of particles with two connected surfaces obtained by (a) the original local search method, and (b) the improved local search method. 

Fig. 13. The CPU time histogram. 
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Fig. 14. The iterative process of the original and improved local search method. (a) 

The original method. (b) the improved method. 

Fig. 15. Water fall onto a folded plate. 
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e

ogram, solid blocks and hollow blocks represents the number of 

ests which consume the CPU time within the corresponding range 

hrough the improved and original local search method, respec- 

ively. For example, there are 474 tests whose CPU time locates in 

he range 40ms < t ≤ 60ms through the improved local search 

ethod. Considering the number of tests whose CPU time is less 

han 60ms, the number of tests employing the improved method 

s more than the original method, and vice versa. It indicates that 

he original method tends to cost more time than the improved 

ethod. The main reason is that the improved local search method 

eaches to convergence earlier because of the criterion (51) . As is 

hown in Fig. 14 , because the coordinates of the aim point is lim-

ted on the boundary line by the improved method, it reaches to 

onvergence sooner than the original method. 
9 
.2. Water falling onto a folded plate 

In this section, a quasi-2D FSI example are given to show that 

e contact penetration phenomenon can be eliminated through the 

mproved local search method. 

As is shown in Fig. 15 , the water in a block region is discretized

ith particles and the folded plate is discretized with thin shell el- 

ments. In order to test the influence caused by the contact crack, 
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Fig. 16. Particle distribution of the original and improved contact algorithm at the 

same time. (a) Contact penetration occurs with the original local search method. (b) 

Contact penetration is eliminated through the improved local search method. 
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Fig. 18. Airbag simulation results. (a) Severe contact penetration is observed in the 

original method result. (b) The improved method eliminates the contact penetra- 

tion. 

Fig. 19. Steel container with two airbags. 
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articles are deliberately arranged so that some particles locate ex- 

ctly above the vertices of the folded plate. The weakly compress- 

ble EOS 

p = (ρ − ρ0 ) c 
2 
0 (67) 

s employed to model water where p and ρ are the pressure and 

ensity of water, ρ0 = 10 0 0 kg / m 

3 is the reference density and c 0 =
0 m / s is the artificial sound speed. The folded plate is a rigid body 

hich is fixed at the initial position. When the water impact on 

he folded plate, its surface would present a zig-zag shape similar 

s the folded plate. 

Fig. 16 shows the particle distribution obtained by both the 

riginal and improved contact algorithm at the same time. In the 

article distribution of the original contact algorithm, particles 

bove the vertices move through the plate, giving rise to severe 

ontact penetration, as shown in Fig. 16 (a). The contact penetration 

s effectively eliminated through the improved local search method 

mployed as shown in Fig. 16 (b). 

.3. Airbag simulation 

Contact penetration phenomenon is also observed in 3D simu- 

ation. For example, the airbag is widely used in engineering so the 

irbag simulation is highly demanded in engineering field. Fig. 17 

llustrates a typical spherical airbag structure composed of rubber 

lms and bounded with reinforced tapes along longitude and lat- 

tude. The reinforced tapes with higher strength and stiffness are 

ewn onto the airbag in order to eliminate the relative slip. 

The rubber films and reinforced tapes are discretized by thin 

hell elements and cable elements respectively. They are modeled 

s linear elastic material. For the rubber films E = 20 0 0 MPa , μ =
Fig. 17. A typical airbag structure. 
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10 
 . 3 , ρ = 1400 kg / m 

3 and for the reinforce tapes E = 60 0 0 MPa ,

= 0 . 2 , ρ = 1400 kg / m 

3 . The cable elements connect to the shell

lements simply by sharing the same nodes. Air, which is re- 

arded as the ideal gas, is discretized with particles. The atmo- 

pheric pressure is imposed on the shell elements as an uniform 

oading. The reinforced tapes restrict the airbag inflation and as a 

onsequence, the airbag deforms as a watermelon shape. Fig. 18 

hows the particle distribution at the same time of the original 

nd improved method. To clarify the simulation model, a part of 

he rubber films is concealed to expose the air particles. The sur- 

ace becomes uneven because of the contact force oscillation. The 

neven surface give rise to a large amount of contact crack and 

s a result, severe contact penetration phenomenon is observed in 

he result of the original contact algorithm as shown in Fig. 18 (a). 

n the contrary, the improved contact algorithm thoroughly elim- 

nates the contact penetration, as shown in Fig. 18 (b). 

The non-penetration algorithm method has been successfully 

pplied in complex engineering problems. Fig. 19 shows a steel 

ontainer connected with two airbags which falls into water. The 

teel container and the airbag films are modeled as thin shell el- 

ments. The reinforce tapes and connecting belts are discretized 

y cable elements. The compressed air in the airbag is modeled as 

he ideal gas. The weakly compressible EOS is employed to model 

he water. The steel container, airbag films, reinforced tapes and 

onnecting belt are model as elastic materials. Their material pa- 

ameters are shown in Table 1 . 

The airbags are filled with compressed air at the beginning of 

imulation. In oder to impose the initial stress and strain on the 

irbag film, a relaxation process is conducted. After the relaxation 

rocess, the water region and the gravity are activated and the 

nitial velocity is imposed to the falling body. Fig. 20 shows the 

nternal pressure of airbags in the relaxation process. Because of 

he damping employed in the FEM body, the pressure oscillation 

ecays soon. The deformation is little in the relaxation process. 

ig. 21 shows the simulation process with different initial attitudes 
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Table 1 

Material parameters of the falling body. 

Young’s modulus (MPa) Poisson’s ratio Density (kg/m 

3 ) 

Steel container 206,000 0.3 7850 

Airbag film 2000 0.3 1400 

Reinforce tape 6000 0.2 1400 

Connecting belt 6000 0.2 1400 

Fig. 20. Internal pressure in relaxation process. 
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Fig. 22. Free falling of a wedge into water. 
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here the color of water particles represents the velocity magni- 

ude. The contact penetration phenomenon have been thoroughly 

liminated even in the complex solid-liquid-gas three-phase con- 

act process. 

.4. Wedge falling into water 

The wedge falling problem has been widely studies by many re- 

earchers. The theoretical solutions in various conditions have been 

iven based on the fully nonlinear velocity potential theory [46] . 

hao et al. [47] also conducted an experiment which serves as a 

enchmark for numerical simulations. Many computational meth- 

ds were employed to simulate this problem such as the level set 

mmersed boundary model [48] and the SPH method [49] . Chen 

39] has given the velocity curve of the ICFEMP. In this section, 

he non-penetration contact algorithm are used in the simulation 

f wedge falling problem to show its accuracy in the FSI problem. 

The simulation model is illustrated in Fig. 22 . The wedge and 

ater is simulated with finite elements and particles respectively. 

he rigid wedge is 500 mm in width and 1000 mm in length. 
Fig. 21. Simulation process with 

11 
he mass of the wedge is 241 kg. The V-shaped section has two 

0 ◦ dead-rise angles. Water are stored in a tank with a width of 

0 0 0 mm and depth of 10 0 0 mm. In the simulation, a plane strain

odel is employed while the water is modeled by the weakly 

ompressible EOS (67) where p and ρ are the pressure and den- 

ity of water, ρ0 = 10 0 0 kg / m 

3 
is the reference density and c 0 

s the artificial sound speed which is often chosen as 50 m / s to 

void pressure oscillation [50] . The wedge has an initial velocity 

f −6 . 51 m / s . The particle spacing and cell size are set as 5 mm

nd 20 mm respectively, while the average element size is 28 mm. 

here are 80,0 0 0 particles and 171 elements in total for the simu- 

ation. 

The velocity history of the centroid of the wedge is plotted in 

ig. 23 . The velocity curve of the ICFEMP with the non-penetration 

ontact algorithm is similar with that of Chen’s work [39] , which 

s because the original contact algorithm and the non-penetration 

ontact algorithm use the similar contact forces like Eq. (65) . The 

urve agrees well with the experiment until t = 0 . 017 s . At the be-

inning when the wedge contacts the water, the velocity decreases 

lower than the experiment result because the contact algorithm 

s imprecise when the contact region is small. After t = 0 . 017 s ,
different initial orientation. 
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Fig. 23. Velocity history of the falling wedge. 
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he error increases rapidly because of the weakly compressible EOS 

nd the three-dimensional effects as mentioned by Zhao et al. [47] . 

. Conclusion 

The particle-to-element contact algorithm employed in ICFEMP 

ethod is divided into three steps: global search, local search and 

mposing contact forces. This paper focuses on the local search step 

nd the way to impose contact forces. 

Based on the geometric property of the local search method, 

t is illustrated that the contact area of two connected elements 

ould not close up in some circumstances which gives rise to 

he contact crack. The particles in contact crack cannot be de- 

ected to contact with the elements. As a result, the contact pen- 

tration phenomenon occurs sometimes. An improved local search 

ontact method is proposed in this paper. The contact position is 

e-defined as the nearest point in the surface to the particle, which 

urns the local search method into an optimization process. As a 

onsequence, the contact area is extended around the joint line so 

hat the contact crack disappears. Examples are given to show that 

he improved local search method eliminates the contact penetra- 

ion thoroughly. 

The contact condition is analyzed as well. The velocity con- 

ition and the displacement condition leads to different contact 

orces. The contact force based on the displacement makes the ve- 

ocity condition satisfied but may increase contact force oscillation. 

o a general contact force is proposed which is the linear combi- 

ation of the contact force based on the displacement and velocity 

ondition. However, the contact condition cannot be satisfied si- 

ultaneously for all contact pairs by simply imposing forces for 

ach contact pair. In order to overcome the difficulty caused by 

he interaction among contact pairs, an iterative process of impos- 

ng contact forces is proposed. The improved contact algorithm has 

een successfully applied in the airbag simulation. 
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