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Summary

The material point method (MPM) has demonstrated itself as an effective numer-
ical method to simulate extreme events with large deformations including fracture
problems. However, the traditional MPM encounters difficulties in simulating dis-
continuities due to its continuous nodal shape function. In this paper, The eXtended
Material Point Method (XMPM) is proposed to simulate the 3D crack propagation.
The XMPM modifies the particle displacement approximation by introducing the
local enrichment functions based on the partition of unity into the MPM framework.
To accurately trace the evolution of the crack surface, the XMPM employs both the
level set method and an extra set of crack surface mesh, which is independent of the
background grid. Only locally enriching the nodes near the crack makes the XMPM
efficient and able to multiple cracks without extra tricks. Besides, a series of adaptive
crack front processing methods, including crack front splitting, merging and lock-
ing with its meeting the material boundary, are developed in the XMPM framework
to ensure the continuity and smoothness of the crack surface. Numerical examples
demonstrate the capability of XMPM to simulate the discontinuity, calculate the frac-
ture parameters and handle the evolution of the crack surface growth in 3D dynamic
crack propagation.
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1 INTRODUCTION

Fracture is a common failure mode in many engineering fields, which has resulted in major safety accidents and brings serious
loss of life and property damage.With the rise of modern industry, the application of metal materials in engineering has increased
rapidly, and with the continuous emergence of large-scale building structures, catastrophic accidents caused by fracture have
increased dramatically, such as aircraft crash, bridge collapse, pressure vessel explosion1, etc. Therefore, the study of fracture
mechanics has important theoretical significance and engineering application prospect, which attracts researchers’ attention.
Fracture mechanics, as a branch of solid mechanics, mainly focuses on the strength and propagation of cracked bodies. In

the 1920s, Griffith2 made a pioneering research for fracture mechanics and proposed a crack instability criterion based on the
energy balance. Irwin3 introduced the concept of stress intensity factor, established the crack growth criterion, and connected the
energy release rate of Griffith theory with stress intensity factor, which laid a foundation for linearly elastic fracture mechanics.
Paris4 et al. then used stress intensity factor to analyze fatigue crack growth. Rice5 and Cherepanov6 proposed the concept of
J-integral for elastic-plastic fracture to characterize the stress field strength at the crack tip, which is equivalent to energy release
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2 Yong Liang, Xiong Zhang, Yan Liu

rate in the case of linear elasticity and small-scale yield. J-integral and HRR singular field developed by Hutchinson, Rice and
Rosengren7 establish the theoretical framework of elastic-plastic fracture mechanics. The crack opening displacement criterion
has also been widely used in the prediction of crack growth in elastic-plastic fracture. At present, fracture mechanics is still one
of the most active fields in the study of solid mechanics. Experiments are the most direct means to study fracture problems, which
provides a reliable basis for theoretical verification and numerical algorithm. However, most of the cracks are three-dimensional,
the crack surface is complex and the propagation path is arbitrary. Due to the huge complexity, not only the theoretical analysis
is difficult to progress, even many experimental methods face lots of difficulties. With the rapid development and improvement
of computer technology and various numerical algorithms, numerical simulation has gradually become an effective means to
study fracture problems due to its low cost, strong applicability and infinite repeatability.
The finite element method (FEM) has been widely used in fracture mechanics problems such as the conventional FEM with

adaptive mesh8, cohesive zone model9, node force release method, and embedded discontinuous method10. The conventional
FEM approximates the displacement field with continuous shape function, which requires the continuity of material in elements.
Therefore, when dealing with the discontinuity such as crack growth and inclusion, the discontinuity has to be coincident with
the element boundary, which greatly limits the arbitrary crack growth in space. To ensure that coincidence, a set of adaptive grid
schemes is usually needed8, which brings the computational burden, and the repeated mapping of physical quantities between
the new and old grids will also influence calculation accuracy. Besides, the traditional Lagrangian FEM also encounters mesh
distortion in the case of large deformation, which leads to great errors.
To overcome the difficulties of traditional FEM in simulating cracks, the extended finite element method (XFEM) is first

proposed by Belytschko11, which separates the description of crack from the grid description. Then,Moës12 et al. introduced the
Heaviside function and the crack tip asymptotic displacement field functions of a linear elastic case to represent crack surface
and crack tip respectively. The XFEM introduces the discontinuous enrichment into original displacement approximation to
represent the discontinuity based on the principle of the partition of unity13,14, which allows the crack to pass through the
elements so that remeshing is unnecessary while crack propagates. Besides, the XFEM uses the known solution to construct the
enriched function base, so it can get more accurate results on the coarser mesh for the singular field while the traditional FEM
has to refine the mesh. The theory of XFEM has been continuously developed after it is put forward. Generally, the Heaviside
function is used as the enriched function for the crack surface. Many other enrichments such as bimaterial interface crack15,
orthotropic material crack16, electromagnetic material crack17, V-notch crack18 and cohesive crack19,20 are also proposed for
the different cases. In addition, Belytschko21, Daux22, Budyn23 and Taleghani24 et al. proposed the corresponding enriched
functions for crack bifurcation and multiple cracks intersection respectively. The XFEM has been widely used in many fields
such as aerospace, civil engineering and mechanical engineering, which makes it one of the important methods to deal with the
discontinuities, localization and fracture problems. However, the XFEM, which is based on the theory of standard FEM, still
faces the numerical difficulty of mesh distortion when solving the problem with extreme large deformation.
In recent decades, the meshless method25,26 has attracted more and more attention due to the difficulty of mesh distortion

in grid-based methods while modelling large deformation problems. The meshless method abandons the grid and uses a group
of particles to discretize the material domain, which reduces the grid dependence of traditional grid-based methods. There are
about 30 kinds of meshless methods27 depending on the weighted residual method and trial functions used. Many meshless
methods have been applied to solve fracture problems. Belytschko25,28,29,30 et al. used local refinement in EFG to improve the
calculation accuracy of stress intensity factors and simulate both static and dynamic crack growth. Fleming31 et al. proposed two
kinds of crack tip enriched functions, which effectively reduced the numerical oscillation and improved the calculation accuracy
of stress intensity factor. Rao32,33 et al. applied EFG in heterogeneous fracture and nonlinear fracture. Liu34 et al. used RKPM
(Reproducing Kernel Particle Method) to simulate dynamic fracture. The meshless method is also applied to fracture problems
by coupling with other numerical methods35,36.
The material point method (MPM) is an extension of the FLIP (Fluid Implicit Method) method from fluid mechanics to

solid mechanics by Sulsky et al.37,38. The MPM discretizes the material domain into a set of particles moving through the
predefined Eulerian background grid, which is used as a computational scratch pad to solve the momentum equations. The
solutions are then mapped back to update physical quantities at particles. The deformed grid is discarded and reset at the end
of each time step, which makes the MPM avoids the mesh distortion for problems with large deformation. The MPM has been
widely developed after it is put forward inmany aspects especially in eliminating the “cell crossing noise”, which seriously affects
the computational accuracy. Bardenhagen39 et al. first analyzed the causes in 2004 and proposed the generalized interpolation
material point method (GIMP) based on the Petrov-Galerkin method to reduce the noise. The GIMP uses the shape function
with C1 continuity, which has the continuous gradient at the boundary of elements. The numerical examples show the GIMP
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Yong Liang, Xiong Zhang, Yan Liu 3

effectively suppresses the numerical noise and the stress oscillation. Many forms derived from the GIMP are also proposed such
as cpGIMP40 (continuous particle GIMP), uGIMP41 (uniformGIMP) and also the iGIMP42 (implicit GIMP). The originalMPM
can also be regarded as a special GIMP which takes the characteristic function as Dirac function. Later, a series of methods
including the CPDI43 (convected particle domain interpolation), DDMP44 (dual domain material point), BSMPM45 (B-spline
MPM), IMPM46 (improved MPM) and SGMP47 (staggered grid MPM) have been proposed to eliminating the numerical noise,
which makes the MPM itself greatly improved. Throughout the past several decades, the MPM has been continuously developed
and applied successfully to many challenging problems such as hyper velocity impact48,49, explosion50,51,52, penetration53,54,
fragmentation55,56, multiphase flow57, fluid-structure interaction58,59,60, etc.
Another potential application of MPM is dynamic fracture modelling due to the advantages in problems with extreme

deformation. The original MPM uses a single grid with the continuous shape function, which prevents itself from modelling
discontinuities. Nairn61 proposed the CRAMP (MPMwith CRAcks) to simulate the explicit cracks. The CRAMP employs mul-
tiple velocity fields and a line crossing algorithm is used to determine the velocity types. Nairn used the CRAMP to calculate the
crack stress intensity factors62 and model the propagation63,64. Liang65 et al. modified the particle displacement approximation
by introducing the discontinuous enriched function to represent the crack and simulated the crack propagation with J-integral
and stress intensity factors. In addition, Kakouris66,67 et al. introduced phase field in the MPM framework to model fracture
behaviours. Cheon68 et al. proposed an adaptive refinement process for the MPM also coupled with a phase-field fracture model
to simulate crack propagation in brittle materials. Introducing the plasticity and softening in the constitutive model can also
simulate the separation to some extent. Soga69 et al. used Mohr-Coulomb, Cam-Clay and other derivatives to simulate the shear
bands in the landslide cases. Shen56 et al. used a Drucker-Prager model, a rate-dependent damage model and a bifurcation-
based decohesion model to describe the behaviour of compression, tensile and localization respectively, and simulated the glass
fragmentation under impact.
In this paper, the eXtended Material Point Method (XMPM) is proposed to model 3D crack problems. The XMPM modified

the particle displacement approximation with local enrichment functions in theMPM framework just as what XFEM has done in
FEM. The jump function is employed to represent the discontinuity on both sides of the crack. To accurately track the movement
and evolution of the crack surface, both Level Set Method (LSM) and an extra set of mesh of the crack surface (crack surface
mesh) are used in the XMPM. The level set function values are initialized and updated based on the crack surface mesh, used
to compute the enriched function and carried by the particles as other physical quantities. It should be noted that only locally
enriching the nodes near the crack makes the XMPM efficient and can simulate multiple cracks without extra tricks. Besides,
a series of adaptive crack front processing methods is developed to ensure the continuity and smoothness of the crack surface
while propagating. Numerical studies show that the XMPM is capable of modelling cracks including multiple uncrossed cracks,
computing fracture parameters (J integral and stress intensity factors for both static and dynamic conditions), and simulating 3D
crack propagation.
The rest of this paper is organized as follows: First, the MPM scheme and the XFEM are briefly reviewed in Section 2.

The detailed formulation of the proposed XMPM is presented in Section 3, which also describes the LSM and crack surface
mesh, time integration and update of particle variables. Section 4 presents the algorithm for computing fracture parameters and
introduces the dynamic crack propagation law. Several numerical tests are carried out in Section 5 to validate the proposed
method. Finally, some concluding remarks are drawn in Section 6.

2 MATERIAL POINT METHOD

2.1 Governing equations
The MPM seeks week solution of partial differential equations in the material domain Ω, which is given in the updated
Lagrangian formulation as follows:

∫
Ω

�üi�uidΩ + ∫
Ω

�ij�ui,jdΩ − ∫
Ω

�bi�uidΩ = 0 (1)

where Γt is the prescribed traction boundary of Ω, � is the current density, the subscripts i and j indicate the components of
the spatial variables following the Einstein convention, ui is the displacement, �ij is the Cauchy stress and bi is the body force
per unit mass, respectively. The traction term is omitted for simplicity.
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4 Yong Liang, Xiong Zhang, Yan Liu

2.2 MPM solution scheme
The MPM discretizes the material domain into a cluster of particles, which are also taken as the quadrature points. Then the
discretized form of Eq.(1) can be written as

np
∑

p=1
mpüip�uip +

np
∑

p=1
Vp�ijp�uip,j −

np
∑

p=1
mpbip�uip = 0 (2)

where np is the total number of the particles, mp, Vp, uip, �uip and bip are the mass, volume, displacement, virtual displacement
and body force of the particle p, respectively.

background grid 

particles

FIGURE 1 Typical MPM discretization

In the MPM, the particles are attached to the background grid at every time step. Therefore, the particle displacement uip can
be obtained by interpolating the grid nodal displacement uiI as

uip =
∑

I
NIpuiI (3)

where the subscript p denotes the variables associated with the particle p, the subscript I denotes the variables associated with
the grid node I , and NIp is the shape function of node I evaluated at the position of particle p. Similarly, other quantities of a
particle such as velocity and acceleration can also be interpolated by the corresponding grid nodal quantities.
Substituting the quantities of particles including Eq.(3) into the discretized weak form Eq.(2) and invoking the arbitrariness

of the virtual displacement �uiI lead to the grid nodal momentum equation

ṗiI = f intiI + f
ext
iI , ∀xI ∉ Γu (4)

where Γu denotes the displacement boundary of the material domain,

piI = mI u̇iI (5)

is the grid nodal momentum,

mI =
np
∑

p=1
NIpmp (6)

is the lumped grid nodal mass by row summation to improve the computational efficiency,

f intiI = −
np
∑

p=1
VpNIp,j�ijp (7)

is the internal nodal force,

f extiI =
np
∑

p=1
mpNIpbip (8)

is the external nodal force.

2.3 Extended finite element method
The foundation of the XFEM is the partition of unity70,71, which is a set of function given in domain Ω as

∑

I
'I (x) = 1,∀x ∈ Ω (9)
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The property of the partition of unity is that any function � (x) can be reproduced by a product of the partition of unity func-
tions with � (x). In the XFEM, the standard displacement based finite element approximation is modified by introducing the
enrichment of additional functions with the framework of partition of unity as

uhi (x) =
∑

I
NI (x) uiI +

∑

I
'I (x)� (x) qiI (10)

whereNI is the standard FEM shape function, uiI is the standard nodal degree of freedom, and the subscript I is associated to
node I . The first term of the right hand in Eq.(10) is the standard FEM approximation, while the second term is the enrichment
part. The unknown nodal value qiI is to adjust the enrichment to be the best approximations of the solution. It should be noted
that the shape functions NI and 'I , indicated in the above, need not be the same. However, the same functions are generally
used, i.e. 'I (x) = NI (x).
The choice of the enrichment functions is determined by the specific applications. For the crack problems with strong

discontinuities at both sides, the Heaviside functions is generally used, which is defined as

H( (x)) =

{

1  (x) > 0
−1 otherwise

(11)

Therefore, the modified displacement in the XFEM is rewritten as

uhi (x) =
∑

I
NI (x) uiI +

∑

I
NI (x)H ( (x)) qiI (12)

where  (x) is the level set functions introduced in section 3.1.1.

3 EXTENDED MATERIAL POINT METHOD

3.1 Crack surface description
The XMPM describes the crack surface independently from the grid. For constructing the enriched function, calculating the
fracture parameters and accomplishing the crack propagation, the XMPM combined the level set method and a set of crack
surface mesh to describe and track the crack surface.

3.1.1 Level set method
Level set method72 is usually used for tracking moving interfaces or the discontinuities73 by the zero level set of a function
 (x (t) , t) = 0. This function is one dimension higher than that of the interface. In general, a crack surface �C can be formulated
by the zero level set functions as

�C = {x ∶  (x, t) = 0} (13)
The initial level set function values is typically determined as

 (x, 0) = min ∥ x − x̂ ∥ ⋅sign (n⋅ (x− x̂)) (14)

where  is the signed distance, x̂ is the nearest point to the position x on the crack plane, and n is the unit normal vector of the
crack surface, the initial position of which is given by  (x, 0) = 0. Then the motion can be determined by an evolution equation
for  (x, t) by taking the time derivative of  (x, t) = 0. In addition, if the crack doesn’t penetrate the object completely, another
level set function is needed to describe the crack tip (a spatial curve in 3D). As shown in Fig.2, the level set function  represents
the signed normal distance from particle p to the crack line ( = 0) and ' represents the signed normal distance from particle
pto the line perpendicular to the crack line (' = 0 ).
Introducing the LSM into the XMPM makes it convenient to calculate the value of the enriched function. At the beginning

of the simulation, the LSM values of particles are initialized according to the given crack surface. Since the background grid
will be discarded after each time step, the LSM values, as other physical quantities, are carried by the particles and updated to
track the crack surface. Besides, only the particles near the crack need to be initialized so that multiple uncrossed cracks can be
handled directly by the XMPM. The LSM is sufficient to simulate the discontinuities. However, while calculating the fracture
parameters and modelling the crack growth, it needs to reconstruct the crack front position, which will not only bring additional
calculation, but also affect the computational accuracy . Therefore, an explicit description of the crack surface will be necessary.
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FIGURE 2 Level set surfaces defining the crack line and the tips

3.1.2 Crack surface mesh
The explicit description refers to generating a set of mesh to representing the crack surface. A 3D crack surface is generally a
spatial curved surface and the XMPM discretizes it into a set of triangular elements as shown in Fig.3. While simulating crack
growth, the newly generated crack surface will also be discretized into triangular elements, which will be described in Section 4.
The crack surface mesh will be used to construct the local coordinate system of the crack front and provide the crack tip opening
displacement when calculating the fracture parameters of the crack tip. In addition, the crack surface mesh will also be used to
initialize and update the LSM values. It is necessary to update the crack surface position after each time step in the same way
as that of the material point.

FIGURE 3 A 3D crack surface discretized into triangular elements

3.2 XMPM solution scheme
3.2.1 Displacement approximation
The XMPM introduces the discontinuous parts into the standardMPM displacement approximation to describe the discontinuity
of the crack, which is given as

uip = uip,cont + uip,discont (15)
The continuous part is the same as the standard MPM:

uip,cont =
ng
∑

I∈S
NIpuiI (16)
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Yong Liang, Xiong Zhang, Yan Liu 7

while the discontinuous part can be written as

uip,discont =
nc
∑

R∈SC

HpNRpqiR (17)

where S is the total set of grid nodes, ng is the number of S, SC is the set of nodes of the elements cut by the crack, nc is the
number of SC , uiI and qiR are the the corresponding degrees of freedom for the standard and Heaviside enrichment, respectively.
Hp represents the position of particle p relative to the crack, which is determined as

Hp = H( 
(

xp
)

) =

{

1  
(

xp
)

> 0
−1 otherwise

(18)

3.2.2 Enriched nodes
Based on the crack surface mesh, the elements cut by the crack can be determined. The nodes of those elements completely cut
by a crack are enriched. Therefore, parts of nodes of the elements including the crack tip are also enriched, which causes the
crack size in the simulation to be slightly larger than the actual size, but less than one element size.

enriched nodes

crack

FIGURE 4 Enriched nodes of elements cut by the crack

3.2.3 Grid nodal momentum equation
Similarly, substituting the displacement approximation Eq.(15) into the discretized weak form leads to the formulation of the
proposed XMPM as

np
∑

p=1
mp

[ ng
∑

I∈S
NIp�uiI +

nc
∑

R∈SC

HpNRp�qiR

][ ng
∑

J∈S
NJpüiJ +

nc
∑

L∈SC

HpNLpq̈iL

]

+

np
∑

p=1

mp
�p
�ijp

[ ng
∑

I∈S
NIp,j�uiI +

nc
∑

R∈SC

HpNRp,j�qiR

]

=

np
∑

p=1
mpbip

[ ng
∑

I∈S
NIp�uiI +

nc
∑

R∈SC

HpNRp�qiR

]

(19)

Invoking the arbitrariness of �uiI and �qiR, Eq.(19) can be rewritten in matrix form as
{ [

ṗiI
]

[

ṗ∗iR
]

}

=
[ [

mIJ
] [

m∗IL
]

[

m∗RJ
] [

mRL
]

]{ [

üiJ
]

[

q̈iL
]

}

=
{ [

fiI
]

[

f ∗iR
]

}

(20)

where

mIJ =
np
∑

p=1
mpNIpNJp m∗IL =

np
∑

p=1
mpNIpHpNLp (21)

m∗RJ =
np
∑

p=1
mpHpNRpNJp mRL =

np
∑

p=1
mpNRpNLp (22)
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are the mass matrix and

fiI = −
np
∑

p=1

mp
�p
NIp,j�ijp +

np
∑

p=1
mpNIpbip (23)

f ∗iR = −
np
∑

p=1

mp
�p
HpNRp,j�ijp +

np
∑

p=1
mpHpNRpbip (24)

are the nodal forces.

3.2.4 Lumped mass matrix
The XMPM is proposed for fracture problems, whose duration is very small. So that an explicit method with a very small
timestep is required to accurately capture the high-frequency response. A lumped mass matrix is usually used in an explicit
method because of the low computational cost.
Observe the mass matrix in Eq.(20). It consists of four mass sub-matrices given in Eq.(21) and Eq.(22). The subscripts, I

and J , correspond to all the nodes while R and L just represent the enriched nodes. Therefore, the mass sub-matrices
[

mIJ
]

and
[

mRL
]

are the square matrices of dimensions ng and nc respectively while the coupled mass sub-matrices m∗IL and m∗RJ are
not the square matrices. m∗IL is the matrix of dimension ng ∗ nc and m∗RJ is the matrix of dimension nc ∗ ng. As introduced in
section 3.2.2, only the nodes of the elements cut by the crack are enriched, so we usually have nc ≪ ng. The nodal mass matrix
can’t be lumped by row summation as the conventional MPM. To expand the mass matrix to a square matrix, the set of nodes
S − SC are also enriched virtually. Then the mass sub-matrices can be lumped as

mI =
ng
∑

J∈S
mIJ =

ng
∑

J∈S

np
∑

p=1
mpNIpNJp =

np
∑

p=1
mpNIp (25)

mR =
ng
∑

L∈S
mRL =

ng
∑

L∈S

np
∑

p=1
mpNRpNLp =

np
∑

p=1
mpNRp (26)

m∗I =
ng
∑

L∈S
m∗IL =

ng
∑

L∈S

np
∑

p=1
mpHpNIpNLp =

np
∑

p=1
mpHpNIp (27)

m∗R =
ng
∑

J∈S
m∗RJ =

ng
∑

J∈S

np
∑

p=1
mpHpNRpNJp =

np
∑

p=1
mpHpNRp (28)

The momentum equation of grid node I is given as
{

ṗiI
ṗ∗iI

}

=
[

mI m∗I
m∗I mI

]{

üiI
q̈iI

}

=
{

fiI
f ∗iI

}

(29)

However, for the virtually enriched nodes, the mass matrix is not full rank. Taking a virtually enriched nodeR as shown in Fig.5
for example, it doesn’t belong to the elements cut by the crack and is away from the crack so that we haveHp ≡ HR. According
to Eq.(25) to Eq.(28),

mR = HRm
∗
R (30)

Then the determinant of the mass matrix of node R is

virtually enriched node R

crack

FIGURE 5 Virtually enriched nodes
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det
(

MR
)

= mR ⋅ mR − m∗R ⋅ m
∗
R = 0 (31)

which means that there is only one independent equation for the virtually enriched node R

mRüiR + m∗Rq̈iR = fiR (32)

Considering the contribution of the grid node R while updating the particle information, taking the velocity for example, the
increment is given as

ΔvRip = Δt
(

NRpüiR +HpNRpq̈iR
)

= ΔtNRp
(

üiR +HRq̈iR
)

(33)
The combined term üiR +HRq̈iR is needed to update the particle velocity, which can be solved by the Eq.(32) as

üiR +HRq̈iR =
fiR
mR

(34)

The form is the same as that of the conventional MPM. In conclusion, the virtually enriched nodes degenerate to the conventional
grid node. The XMPM treat them as the conventional MPM. However, for the indeed enriched nodes, the momentum equation
given in Eq.(29) need to be solved.

3.2.5 Update of the particle information
As the conventional MPM, the XMPM stores all material properties on the particles. After solving the grid nodal momentum
equations, the grid nodal velocities and accelerations are mapped back to the corresponding particles to update their positions
and velocities. The central difference method38 is taken as the time integration scheme in the XMPM. Therefore, the particle
position and velocity can be obtained as follows,

xn+1ip = xnip + Δt
n+1∕2

( ng
∑

I∈S
Nn
Ipu̇

n+1∕2
iI +

nc
∑

R∈SC

HpN
n
Rpq̇

n+1∕2
iR

)

(35)

vn+1∕2ip = vn−1∕2ip + Δtn
( ng
∑

I∈S
Nn
Ipü

n
iI +

nc
∑

R∈SC

HpN
n
Rpq̈

n
iR

)

(36)

where the superscript n, n ± 1∕2 and n ± 1 represent the time step as shown in Fig.6.

1 2-n
t

1 2+n
t

1-n
t

n
t

1+n
t

1 2-
D

n
t

1 2+
D

n
t

0=t
t

D
n
t

FIGURE 6 Leapfrog time integrator scheme

The enriched nodes only exist locally around the crack. Due to the compactness of the shape function, the Eq.(35) and Eq.(36)
degenerate to the form as

xn+1ip = xnip + Δt
n+1∕2

ng
∑

I∈S
Nn
Ipu̇

n+1∕2
iI (37)

vn+1∕2ip = vn−1∕2ip + Δtn
ng
∑

I∈S
Nn
Ipü

n
iI (38)

for the particles located in the cells which doesn’t contain any enriched nodes. Eq.(37) and (38) are the formulations to update
the particle information used in the conventional MPMwith central difference method. That’s to say, the XMPM can degenerate
to the conventional MPM when there is no crack or in the area away from the crack. Hence the XMPM costs only a little extra
computation effort compared to the original MPM.
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10 Yong Liang, Xiong Zhang, Yan Liu

To update the particle information, we need to solve Eq.(29) for each enriched node and Eq.(32) for each unenriched node.
However, only the combined term üiI + Hpq̈iI is needed for the enriched node so that there is no need to solve the Eq.(29)
directly. Take the update of velocity for example, the Eq.(36) can be rewritten as

vn+1∕2ip = vn−1∕2ip + Δtn
( ng−nc

∑

I∈S,I∉SC

Nn
Ipü

n
iI +

nc
∑

I∈SC

Nn
Ip

(

üniI +Hpq̈
n
iI

)

)

(39)

Besides, multiplying the second equation in Eq.(29) byHp and then adding it to the first equation result in

ṗiI +Hpṗ
∗
iI =

(

mI +Hpm
∗
I

)

üiI +
(

m∗I +HpmI
)

q̈iI (40)

InvokingHpHp = 1, we have

ṗiI +Hpṗ
∗
iI =

(

mI +Hpm
∗
I

)

üiI +
(

Hpm
∗
I + mI

)

Hpq̈iI =
(

mI +Hpm
∗
I

) (

üiI +Hpq̈iI
)

(41)

Then, the combined term üiI +Hpq̈iI can be obtained as

üiI +Hpq̈iI =
ṗiI +Hpṗ∗iI
mI +Hpm∗I

(42)

Substituting Eq.(42) into Eq.(39), the formulation for updating particle velocity in XMPM is finally given as

vn+1∕2ip = vn−1∕2ip + Δtn
( ng−nc

∑

I∈S,I∉SC

Nn
Ip

ṗniI
mI

+
nc
∑

I∈SC

Nn
Ip

(

ṗniI +Hpṗ
∗,n
iI

mI +Hpm∗I

))

(43)

Similarly, the formulation for updating particle position is given as

xn+1ip = xnip + Δt
n+1∕2

( ng−nc
∑

I∈S,I∉SC

Nn
Ip

pn+1∕2iI

mI
+

nc
∑

I∈SC

Nn
Ip

(

pn+1∕2iI +Hpp
∗,n+1∕2
iI

mI +Hpm∗I

))

(44)

Besides, the XMPM updates the stress state at particles as the conventional MPM to inherit the Lagrangian properties and the
rate form of the constitutive models is used for nonlinear analysis. So the strain rate "̇ij and vorticity
ij at particle p are required.
They can be obtained from the velocity gradient of the background grid cell as

"̇ijp =
1
2

( ng−nc
∑

I∈S,I∉SC

(

NIp,j
piI
mI

+Nn
Ip,i

pjI
mI

)

+
nc
∑

I∈SC

(

NIp,j

(piI +Hpp∗iI
mI +Hpm∗I

)

+NIp,i

(

pjI +Hpp∗jI
mI +Hpm∗I

)))

(45)


ijp =
1
2

( ng−nc
∑

I∈S,I∉SC

(

NIp,j
piI
mI

−Nn
Ip,i

pjI
mI

)

+
nc
∑

I∈SC

(

NIp,j

(piI +Hpp∗iI
mI +Hpm∗I

)

−NIp,i

(

pjI +Hpp∗jI
mI +Hpm∗I

)))

(46)

Furthermore, we can observe that all the formulations used in the XMPM are very similar to that in the conventional MPM.
Therefore, the XMPM is easy to be implemented in a conventionalMPM code, such as theMPM3D code53. The XMPM can also
be realized with the option USL, USF or MUSL. The differences between the original MPM and the XMPM can be concluded
as follows: 1) At the beginning of the simulation, initialize the LSM values of particles and generate the crack surface mesh; 2)
In each time step, the position of the crack surface mesh needs to be updated; 3) More quantities need to be calculated referred
to the enriched degrees of freedom. The MUSL scheme is used in all the following simulations.

4 THE DYNAMIC FRACTURE PARAMETERS AND CRACK PROPAGATION

The XMPM enhances the ability of simulating cracks in theMPM framework. To further model the crack growth, the calculation
of the fracture parameters such as J-integral and stress intensity factors is of great necessity.

4.1 J-integral
J-integral is a key fracture parameter put forward by Cherepanov6 and Rice5 independently to characterize the stress and strain
intensity at the crack tip. At first, the concept of J-integral was limited to the elastic static condition. Then, the concept of dynamic
J-integral is proposed for the dynamic crack growth problem and the body force, inertial force are also considered. The dynamic
J-integral used in this paper was proposed by Nishioka74 et al. in 1983 given as
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Jm = lim
ε→0 ∫

Γε

[

(W + E) nm − �ijnj
∂ui
∂xm

]

dS (47)

= lim
ε→0

⎧

⎪

⎨

⎪

⎩

∫
Γ+ΓC

[

(W + E) nm − �ijnj
)ui
)xm

]

dS + ∫
VΓ−Vε

�
[

)2ui
)t2

)ui
)xm

−
)ui
)t

)2ui
)t)xm

]

dV

⎫

⎪

⎬

⎪

⎭

(48)

whereW = ∫ �ijd"ij is the stress work density, E = 1
2
�u̇iu̇i is the kinetic energy density. As shown in Fig.7, nm is the cosine of

the external normal vector, Γε is the arbitrary integration path near the crack tip, Γ is the arbitrary integration path far from the
crack tip, ΓC is the crack surface surrounded by Γ, VΓ is the integral surface surrounded by the integration path Γ + ΓC, and V"
is the integral surface surrounded by the integral path Γε. The dynamic J-integral defined by Nishioka has the physical meaning
of dynamic energy release rate, is independent of the selected path, and can be partitioned into dynamic stress intensity factors.
Physically, the regionV" is considered as the process zone in which fracture occurs. For numerical simulations, only the far-field
paths can be used to compute the integral. Therefore, the following expression75 is considered for the dynamic J-integral.

Jm = ∫
Γ+ΓC

[

(W + E) nm − �ijnj
)ui
)xm

]

dS + ∫
VΓ

�
[

)2ui
)t2

)ui
)xm

−
)ui
)t

)2ui
)t)xm

]

dV (49)

crack tip

εΓ

εV

cθ

2x

1x

Y

X

cΓ

Γ

VΓ

n

FIGURE 7 The J-integral path around the crack tip

It’s convenient to construct an integral curve in 2D. However, in the 3D problem, the crack tip is no longer a point, but a spatial
curve. As shown in Fig.8, the J-integral is performed on an x1 − x2 plane in crack-tip local coordinates, which is perpendicular
to the crack front and has the origin located at the crack front. A circular integral path is adopted in this paper and MLS is used
to reconstruct the physical quantities of the integral points.

X

Y

Z

x2

x2x1

x1
x3

o

o

integral points

crack front

FIGURE 8 The J-integral path in 3D
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12 Yong Liang, Xiong Zhang, Yan Liu

4.2 Stress intensity factor
With the dynamic J-integral, we have the energy release rate G = J1. For the case of isotropic and linear elastic materials, the
dynamic stress intensity factors can be further calculated. The relationship between the dynamic stress intensity factor and the
energy release rate is given74 as

G = 1
2�

{

AI (C)K2
I + AII (C)K

2
II + AIII (C)K

2
III
}

(50)

where � is the shear modulus, AI, AII and AIII are the function of the crack propagation velocity C defined as

AI (C) =
�1

(

1 − �22
)

D (C)
, AII (C) =

�2
(

1 − �22
)

D (C)
, AIII (C) =

1
�2

(51)

where D (C) = 4�1�2 −
(

1 + �22
)2, �1 and �2 are defined by the crack propagation velocity C , dilatational-wave speed Cd and

shear-wave speed Cs as
�21 = 1 −

C2

C2d
, �22 = 1 −

C2

C2s
(52)

Considering the relationship between dynamic stress intensity factors and crack opening displacement �,

KII
KI

=
�II
�I

�1
�2
,
KIII
KI

=
�III
�I

�1�2
(

1 − �22
)

D (C)
(53)

The explicit expression of dynamic stress intensity factor can be obtained75 as

KM =
�M

AM (C)
K̂, (M = I, II, III) (54)

where

K̂ =

{

2�G
�2I ∕AI + �

2
II∕AII + �

2
III∕AIII

}1∕2

(55)

4.3 Crack propagation
The classical strength failure criterion usually takes the stress as the parameter, while in fracture mechanics the stress intensity
factor is usually used as the control parameter to establish the failure criterion, which can be expressed as

K = KC (56)

where KC is the critical value of the stress intensity factor and represents the fracture toughness of the material.

4.3.1 Dynamic crack propagation law
“The maximum stress criterion” was first studied by Erdogan and Sih76 in 1963 both experimentally and analytically and can be
stated as “the crack will start to grow from the tip in the direction along which the tangential stress �� , is maximum and the shear
stress �r� , is zero”. By maximizing the hoop stress near the crack tip, the maximum hoop stress angle �c can be obtained as77

�c = 2arctan
⎡

⎢

⎢

⎣

1
4

⎛

⎜

⎜

⎝

KI
KII

− sign(KII)

(

8 +
(

KI
KII

)2
)1∕2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(57)

Then the corresponding maximum hoop stress intensity K∗ can be computed78 by

K∗ = cos 3
(

�c
2

)

KI −
3
2
cos

(

�c
2

)

sin
(

�c
)

KII (58)

whereK∗ is the dynamic maximum hoop stress intensity factor andKIC is the dynamic crack initiation toughness of the material
obtained from experiments. The crack propagates when K∗ reaches KIC.
The crack propagates when the dynamic maximum hoop stress intensity factor K∗ reached the dynamic crack initiation

toughness KIC, which is a material property and can be obtained from experiments. The crack propagation velocity C can be
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determined by making K∗ equals to the dynamic crack growth toughness KID and the relationship between KIC and KID is78,79

KID(C) =
KIC

1 −
(

C
CR

) (59)

where CR is the Rayleigh-wave speed. Thus the crack propagation velocity C can be obtained from Eq.(59) as

C =

{

0 if K∗ < KIC
CR

(

1 − KIC
K∗

)

otherwise
(60)

Then a crack increment will be △l = C △ t, where △t is the timestep in the explicit algorithm. However, compared with
the mesh size, this increment△l is too small to be recognized in the numerical simulation. A length related to the mesh size
(generally half to one of the grid size) is taken as the crack growth increment to ensure the continuity of crack surface.

4.3.2 The evolution of the crack surface
In 3D problem, the crack front is a spatial curve which consist of a group of line segments. As shown in Fig.9, the XMPM
evaluates the stress intensity factors along the crack front (red segments) while modelling the crack propagation. Based on
the dynamic crack propagation law described in section 4.3.1, the length and direction of the crack growth increment can be
determined at each points. Then the next front points can be set (cyan points) in Fig.9(b). Connecting the current and next front
points can obtain the newly crack surface, which is also discretized into the triangular elements (Fig.9(c)).

X

Y

Z

(a) present crack (b) next front 

(c) new crack (d) splitting and merging

A

B

D

C

FIGURE 9 The update of crack fronts

During the simulation, the length of the crack front becomes shorter or longer. As shown in Fig.9(d), the line AB will be too
long to effectively represent the crack surface, which means that it can’t identify all the cells the crack passes through, while
the line CD is so short that it’s very sensitive to direction, which is used to build the local coordinate system for calculating
the stress intensity factors. The XMPM will adaptively divide a longer line by two segments and merge the two endpoints of a
shorter line. These techniques make the XMPM more stable while crack propagating.
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14 Yong Liang, Xiong Zhang, Yan Liu

The XMPM describes the crack surface independently of the background grid, which makes it possible to simulate the discon-
tinuities in the elements. However, the crack front can extend beyond the boundary of the material domain. As shown in Fig.10,
the hollow points represent the front points outside the material domain while the solid points inside the material domain. If
the hollow points continue to expand, it will grow in an unpredictable direction. Therefore, after each crack propagation, those
front lines completely outside the material domain, connected by two hollow points, will be marked and won’t propagate again.
Besides, if one hollow point goes inside the material domain, it will turns into a solid point and another hollow point will be set
outside the material domain.

material boundary

crack mesh stop propagating

FIGURE 10 The crack front out of the material domain

5 NUMERICAL EXAMPLES

The proposed XMPM has been implemented in our MPM3D code38,53, and several numerical examples are studied in this
section to verify and validate the method.

5.1 The validation on capacity and efficiency of the XMPM
First, the capacity of XMPM to simulate crack problems including multiple cracks is studied. As shown in Fig.11, the specimens
involve different numbers of cracks, that is 1, 2 and 4. This is a 2D problem but simulated in 3D procedure and the crack
penetrates the plate in the direction of thickness. The plate has a size of 400mm × 120mm × 10mm and the mid-line of the
cracks are located in the mid-plane of the plate and the angle between the crack surface relative to the mid-plane is defined as
tan � = 2. All the cracks are parallel and the horizontal distances are 200mm and 100mm for the two and four cracks cases
respectively. The material has a density of � = 1.5g∕cm3, Young modulus of E = 0.1MPa and Poisson ratio of � = 0.33.

400 mm

200 mm 100 mm 100 mm 100 mm

1
2
0
 m

m

O

8
0
 m

m

θ

O O

crack

t = 10 mm

(a) 1 crack (b) 2 cracks (c) 4 cracks

FIGURE 11 The plates with different number of cracks
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As mentioned before, the XMPM only needs to locally enrich the nodes around the crack surface so that the LSM values of
the particles far away from the cracks are unnecessary, which enables the XMPM to simulate multiple uncrossed cracks without
other techniques. Fig.12 shows the LSM values of particles need to be initialized for each crack.

-2.8-5.6 0 2.8 5.6

LSM values (mm) 

(a) 1 crack (b) 2 cracks (c) 4 cracks

FIGURE 12 Level set function values around the cracks

A short-time axis impact load � = 100MPa is applied on both sides of the plate. The distribution of the horizontal displace-
ment, velocity and stress at t = 25ms are shown in Fig.13. They all show the discontinuities on both sides of the cracks and the
stress field describes reasonable behaviours with concentrating stress around the crack tip.

6.000e-01

-6.000e-01

0.3

-0.3

posx

aX

4.423e-020.022-5

 X

 (GPa)xxσ

-0.3-0.6 0 0.3 0.6

dis (mm) 

-0.022-0.044 0 0.022 0.044

velocity (m/s) 

-5.5e-5-1.26e-4 2.40e-4 4.0e-4 6.0e-4

(a) 1 crack (b) 2 cracks (c) 4 cracks

FIGURE 13 The horizontal distribution of the displacement, velocity and stress

Besides, the extra computational effort of the XMPM is also investigated based on this example. The relative extra cost of the
XMPM is defined by

tr =
tXMPM − tMPM

tMPM
(61)

All the simulations in this paper are run in a PC with one Intel(R) core(TM) i7-4790 CPU @ 3.60GHz. Table 1 compares the
computational time used by the conventional MPM and XMPM, where the conventional MPM simulates the same problem
without the cracks involved. The XMPM costs 14.01% more than the MPM to simulate a predefined crack, while it increases
approximately to 18% for two cracks and 24% for four cracks respectively. It shows that the extra cost increases linearly with
the number of cracks, which makes XMPM a potential way to simulate lots of cracks.
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16 Yong Liang, Xiong Zhang, Yan Liu

TABLE 1 Comparison in efficiency for different number of cracks

crack number 1 2 4
tMPM (s) 82.372
tXMPM (s) 93.909 97.420 102.36
tr(%) 14.01 18.27 24.27

5.2 The static and dynamic stress intensity factor
In this section, the calculation of 3D stress intensity factors for both static and dynamic conditions is performed, which is
introduced in Section 4 under the assumption of linear elasticity.

5.2.1 A cylindrical bar with an inclined crack
First consider a cylindrical bar with an inclined circular crack shown in Fig. 14, which is also studied by CRAMP80. The
cylindrical bar has a radius of r = 50mm and length of l = 90mm, where the crack has a radius of a = 50mm and the angle
relative to the loading direction is � = 60◦. The material has a density of � = 7900kg∕m3, Young modulus of E = 20GPa and
Poisson ratio of � = 0.298. The simulation uses a grid size of 1mm × 1mm × 1mm with initially two particles in each direction
in each cell, and the radius of J-integral path is 4mm, four times the cell size.

O

50 mm

10 mm

= 40MPaσ
0

9
0
 m

m

60
o

X
Y

Z

θ

FIGURE 14 A cylindrical bar with an inclined crack

The specimen is subjected to a linear increasing load � (t) defined by Eq.(62) , to obtain the static solution for comparison
with the analytical solution.

�(t) =

{ t
t0
�0 t < t0

�0 t ⩾ t0
(62)

where �0 = 40MPa and the linear loading time t0 is set to 0.75ms. Meanwhile the velocity damping is also applied. The
simulation is continued to time t = 1s, when the velocity of the bar has approximately reached zero.
The analytical solution of stress intensity factors is given81 as

KIa =
2
�
�
√

�a cos2 � (63)

KIIa =
4

� (2 − �)
�
√

�a cos � sin � cos � (64)

KIIIa =
4 (1 − �)
� (2 − �)

�
√

�a cos � sin � sin � (65)
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where � = 90◦ − � and � is defined in Fig.14.
The distribution of all three stress intensity factors along the crack front are plotted in Fig.15, which are normalized by

K0 =
2
�
�
√

�a. The simulation results agree well with the theoretical solutions. However, there exist differences where the
XMPM has a bigger value. In XMPM, the elements are discontinuous as long as the crack enters them, which leads to a bigger
crack dimension in XMPM simulation than the actual one, i.e. a. Therefore, the XMPM gets these results.

0

K
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 K
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K
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K
III 

 
solid lines theoretical

points XMPM

FIGURE 15 The static stress intensity factors along the crack front

5.2.2 A rectangular specimen with an elliptical crack
Next, the dynamic stress intensity factor is studied. As shown in Fig.16, an elliptical crack is embedded in the mid-
plane of a rectangular rod, which is subjected to an axial tensile load of � (t) = 400MPa. The specimen has a size of
300mm × 180mm × 120mm and the axis of the elliptical crack are 70mm and 40mm respectively. Fig.16 shows only half of the
specimen. The material has a density of � = 7900kg∕m3, Young modulus of E = 200GPa and Poisson ratio of � = 0.298. The
simulation uses a grid size of 5mm × 5mm × 5mm with initially two particles at each direction in each cell, and the radius of
J-integral path is 20mm, also four times the cell size.

1
2
0
 m

m

4
0
 m

m

180 mm

A

O

70 mm

150 m
m

= 400MPaσ
0

FIGURE 16 A rectangular specimen with an elliptical crack

The stress intensity factor of the point A in Fig.16 is calculated and the result is plotted in Fig.17. Other numerical methods
including CRAMP80, FEM82 and FDM83 also study this dynamic problem. The XMPM is more consistent with the CRAMP
and FEM.
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FIGURE 17 A cylindrical bar with an inclined crack

5.3 The dynamic crack propagation
There are few studies on simulation of 3D crack propagation in the MPM framework. The section shows several examples64 to
demonstrate the capability of XMPM to handle the 3D crack propagation.

5.3.1 The three-point bending with crack propagation
As shown in Fig.18, a three-point bending specimen with an edge crack, subjected to central impact, is modeled first. The
specimen has a length of 400mm, a width of 100mm and a thickness of 10mm. The crack has an initial length of 50mm.
This problem was experimentally studied by Nishioka84. The specimen has a density of � = 1190kg∕m3, Young modulus of
E = 2.94GPa, Poisson ratio of � = 0.3, fracture toughness of KIC = 1.2MPa

√

m and is impacted by a cylindrical body, which
has a mass of m = 5.05kg and an initial velocity of v0 = 5m∕s. The stiff body is modeled with Ec = 100GPa and �c = 0.25.

0 5 m/sv =

400 mm

1
0

0
 m

m

5
0

 m
m

t = 10 mm

FIGURE 18 A three-point bending specimen with an edge crack

Due to the symmetry of the problem, the crack will grow along its initial crack plane as the SIF exceeds the fracture toughness.
Fig.19 gives the crack length versus time obtained by the CRAMP, experiment and XMPM with different crack incremental
length for each propagation. The results show that the XMPM accurately captures the crack first propagation time, which is
approximately at t = 0.16ms. For the crack incremental length of 0.25 times element size, the propagation length agrees well
with the experimental results.
The mixed mode crack is studied by moving the cylindrical body 20mm to the left as shown in Fig.20. This will lead to a

change in the crack direction towards the impact point. The Fig.21 shows the evolution of the crack surface and the discontinuous
displacement filed as expected. With the different grid size, 4mm, 2mm and 1mm, the crack propagation paths have a difference
as shown in Fig.22, although the general direction is the same. However, the simulation results have a better agreement with the
experimental results by refining the mesh.
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FIGURE 19 Crack length versus time with different crack incremental length
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FIGURE 20 A three-point bending specimen subjected to the eccentric impact

5.3.2 A square rod with an inclined crack
Consider a square rod with an quarter inclined crack located at the middle of one edge, as shown in Fig.23. The specimen has a
size of 50mm × 50mm × 100mm and is subjected to an axis load of � = 100MPa. The crack has a radius of 18.475mm and the
angle relative to the edge is 60◦. The material has a density of � = 7900kg∕m3, Young modulus of E = 200GPa, Poisson ratio
of � = 0.298 and fracture toughness of KIC = 20MPa

√

m.
Fig.24 shows evolutionary process of the crack patterns, including the crack surface mesh, LSM values of particles and the

displacement nephogram. The crack pattern changes to mode I dominated type from mixed-mode after it starts to grow. With
the propagation, the crack front gets longer and reaches to the rod boundary. Then it stops growing, which is seen at t = 22.5μs.
Finally, the crack fully penetrates the specimen, two parts of which move separately. It shows the techniques in XMPM to handle
the cracks propagation work well.

5.3.3 A hollow tube with an inclined crack
A hollow tube with an inclined crack is then studied in this section. As shown in Fig.25, the tube has a length of l = 100mm,
internal radius of r = 35mm and thickness of t = 10mm. The through-wall crack is centrally located at the mid-plane with a
length of 14.14mm. The angle of the crack surface relative to the axis direction is 45◦. The material used is the same as that in
section 5.3.2, which has a density of � = 7900kg∕m3, Young modulus of E = 200GPa, Poisson ratio of � = 0.298 and fracture
toughness of KIC = 20MPa

√

m.
The evolution of the crack surface is shown in Fig.26. The similar conclusion is observed that the crack pattern changes

to mode I dominated type from mixed-mode after it starts to grow for both crack fronts. This example also demonstrates the
capability of the XMPM to handle the situation that the crack front interacts with materials boundaries while propagating.
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FIGURE 21 The evolution of the crack surface
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FIGURE 22 Crack propagation paths of three-point bending with eccentric impact

6 CONCLUSION

In this paper, the XMPM is proposed for modelling 3D crack problems by introducing the idea of the XFEM into the MPM
framework. The traditionalMPM encounters difficulties in simulating discontinuities due to the continuous nodal shape function.
The proposed XMPM enriches the nodal degrees of freedom in the region around the crack and employs jump function to
describe the discontinuity on both sides of the crack. The discretization scheme of the XMPM is then derived from the weak form
of the momentum conservation equations based on the modified particle displacement approximation, just as the conventional
MPM. The XMPM introduces the discontinuity of the crack independent of the background grid with an extra set of crack
surface mesh and the LSM is also employed to determine the nodal enriched function conveniently. It should be noted that only
the particles near the crack need to be initialized to obtain the LSM values so that multiple uncrossed cracks can be handled
directly by the XMPM. The efficiency study also shows the extra cost due to the existing cracks increases linearly with the
number of cracks, in the form of increasing the number of the enriched nodes, which makes XMPM a potential way to simulate
lots of cracks. The calculation of stress intensity factors for both static and dynamic conditions is performed to demonstrate the
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FIGURE 23 A square rod with an inclined crack

capability of XMPM to obtain the correct fracture parameters from the stress field, which also verified the results of simulation.
To ensure the continuity and smoothness of the crack surface, a series of adaptive crack front processing methods is developed
in the XMPM based on the crack surface mesh. The numerical examples show the cracks propagate as expected from mix-mode
type to mode I dominated type and the techniques works well. However, the simulation of 3D crack propagation is still an area
worthy of further study.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
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