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Abstract

A general peridynamics-based framework for elastic bimaterial interface fracture analysis is established. In this frame, the
ormation of peridynamic interface bond force is presented for nonlocal interface modeling, and the energy release rate and
ode mixity of interface cracks are computed with peridynamic model. A modified critical energy density (MCED) criterion

onsidering both interfacial and materials fracture toughness is proposed for peridynamic bond failure analysis, and the bond
ailure competition strategy is considered for crack path selection of an interface crack along or kinking out of the interface.
hen, four tests of a bimaterial plate under uniform tensile stress, asymmetric bimaterial cantilever beams (ABCB), bimaterial
ingle edge notched (BSEN) and four-point shearing (FPS) tests are investigated for the model verification and application. The
eformation and fracture behaviors of these specimens are predicted with the proposed peridynamic models, and compared to
hose from FEM, theoretical and experimental solutions. The results show that the proposed peridynamics-based method can
uccessfully capture the characteristics of bimaterial interface fracture, including the delamination fracture, kinking nucleation
nd crack path selection of interface cracks.
2021 Elsevier B.V. All rights reserved.

eywords: Peridynamics; Bimaterial interface fracture; Mode mixity; Crack path selection

1. Introduction

Bimaterial interfaces are commonly contained in layered systems, such as laminated composite, adhesive joints
nd metal–ceramics. Due to the material discontinuity across these interfaces, the interface fracture is one of the
ost common failure modes of layered systems. Thus, the better understanding and prediction of bimaterial interface

racture are crucial for the service life and structure design of layered materials and structures.
An interface crack contained between two dissimilar elastic materials has been widely studied (see Fig. 1).

n fracture mechanic theory, the asymptotic stress and displacement fields around the interface crack were
nalyzed [1,2], and the fracture criteria were presented with the stress intensity factor solutions [3,4]. The interface
rack path selection between different directions was also studied, and crack kinking out of an interface was
nvestigated [5]. Generally, analytical solutions show that the material discontinuity in bimaterial interface can lead
o the crack tip stress oscillation singularity, and the interface crack faces may be embedded into each other. These
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Fig. 1. An interface crack contained between two dissimilar materials.

factors display the difficulty of interface fracture problems and also restrict the application of the analytical methods.
Meanwhile, the numerical model, the Finite Element Method (FEM) shows great achievement on stress field
prediction in bimaterial systems [6]. Using the virtual crack closure technique (VCCT) [7] and the cohesive zone
model (CZM) [8,9], FEM models have also been performed for the energy release rate computation and interface
delamination modeling. However, their results are highly sensitive to mesh. Especially for crack kinking problems,
since the kinking angle is unknown, remeshing is required and the complex fracture criteria are needed [10].

Nonlocal theory of peridynamics, as a reformulation of continuous mechanics, was first proposed in 2000 [11],
in which the integral–differential motion equations are utilized instead of partial-differential equations. Thus, in
peridynamic theory, the inadequacies of classical local theory for the discontinuous problems are removed, and
the crack prediction problems, such as interface delamination and crack kinking, can be naturally solved without
preset crack path and extra fracture criteria. The bond-based peridynamic (BB-PD) model was firstly proposed as
the original version, in which the points are connected with bonds through spring-like interactions and the force
response in a bond is dependent only on its own deformation. However, this assumption has restrictions on material
parameter values, i.e., the Poisson’s ratio limits to be 1/3 for the two-dimensional (2D) plane stress and 1/4 for
the plane strain and three-dimension (3D) cases [12]. To handle these Poisson’s ratio limitations, some extended
BB-PD models have been proposed by incorporating with bond rotation effect [13,14], which also increases the
complexity of the BB-PD model. The state-based peridynamics (SB-PD) [15] was proposed as a more general frame,
in which the bond force density between points depends on the deformation of their whole family. Additionally,
the SB-PD can be further classified into two types: ordinary state-based peridynamics (OSB-PD) [15,16] and non-
ordinary state-based peridynamics (NOSB-PD) [17]. In the ordinary state-based (OSB-PD) model, the deformation
can be explicitly employed as the volumetric and distortional parts for material response, and material behaviors in
conventional solid mechanics can be reproduced, for not only linear elastic material [15], but also plastic [18,19],
viscoelastic [20], and viscoplastic materials [21].

Meanwhile, bond failure criteria, as the foundation of peridynamics-based method for fracture analysis, have been
successively proposed, in which the critical stretch-based [12,22] and critical energy density-based bond failure
criteria [23] are the two most common models. For the mode II and mixed-mode fracture analysis, the critical
skew [24] and mixed-mode bond failure models [25] were proposed. The failure models considering both stress and
energy conditions were also presented [26–28]. Meanwhile, the fracture mechanic theories have been reformulated
in peridynamics for energy release rate computation and fracture analysis, such as the J-integral [29,30], crack
extension technique [31], virtual crack closure technique [32], and cohesive zone model [33–35].

Due to these advantages on discontinuity modeling, the peridynamic theory has been successfully used for failure
predictions of various materials, such as concretes [36–39], composite materials [40–42] and rocks [43,44]. And
it also has been applied for the bimaterial interface analysis. Alali et al. [45] and Seleson et al. [46] investigated
the material interface in peridynamic theory and performed the convergence study of their peridynamic interface
models. Wang et al. [47] and Zhang et al. [48] analyzed the deformation and failure of bimaterial structure, in
which original bond failure models of the homogeneous materials were adopted. However, in above studies, some

deficiencies remain for peridynamics-based bimaterial elastic and fracture analysis. First, for bimaterial elastic
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Fig. 2. Ordinary state-based peridynamic model.

behaviors modeling, the explicit form of peridynamic interface bond force for nonlocal interface is not given. While
for bimaterial fracture analysis, there is no a typical bond failure model considering both interfacial and materials
fracture toughness, and the mode mixity of interface cracks have also not been considered.

In this paper, a general peridynamics-based framework for bimaterial interface fracture analysis is established.
First, forms of the peridynamic force state and interface bond force are presented for bimaterial elastic behaviors
modeling. The peridynamics-based methods for interface crack energy release rate and mode mixity computations
are given, and a modified critical energy density (MCED) criterion considering both interfacial and materials fracture
toughness is proposed for bonds failure analysis. Then, four cases, i.e., a bimaterial plate under uniform tensile
stress load, asymmetric bimaterial cantilever beams (ABCB), bimaterial single edge notched (BSEN) and four-point
shearing (FPS) tests, are analyzed for the model verification and application, in which the delamination fracture and
kinking nucleation of interface cracks are all investigated. The deformation and fracture behaviors of these tests are
predicted with the proposed peridynamic model, and compared to those from FEM and theoretical solutions and
experimental data.

2. Nonlocal interface model in peridynamics

In nonlocal peridynamic theory, the continuous system is divided into finite material points, and these points
interact with each other by the peridynamic ‘bonds’. The motion equation of a material point x can be expressed
as [15]:

ρ (x) ü (x, t) =

∫
Hx

{
T [x, t]

⟨
x′

− x
⟩
− T

[
x′, t

] ⟨
x − x′

⟩}
dVx′ + b (x, t) (1)

where ρ is the density of point x, u is its displacement at time t, Hx is the neighborhood of point x with the cut-off
radius of nonlocal horizon δ, x′ is the neighbor point in Hx, and b (x, t) is the body force density. ξ = x′

− x is the
bond vector as shown in Fig. 2, X ⟨ξ⟩ and Y ⟨ξ⟩ are the reference and deformed vectors of bond ξ , and T [x, t] and[

x′, t
]

are the force vector states of points x and x′, respectively. In the ordinary state-based peridynamic theory,
the bond force vector can be expressed with the force scalar state t as [15]:

T [x, t] ⟨ξ⟩ = t ⟨ξ⟩
Y ⟨ξ⟩⏐⏐Y ⟨ξ⟩

⏐⏐ (2)

2.1. Peridynamic scalar force states in bimaterial system

In a bimaterial structure, as shown in Fig. 3, two different materials are connected with an interface, and the
interface is assumed as zero thickness. For this bimaterial system modeling, the material points in peridynamics are
naturally classified into two types that belong to material 1 or material 2. For example, point x1 belongs to material
1, points x2 and x3 belong to material 2 (see Fig. 3). And Hxi is the neighborhood horizon of point xi with the
same cut-off radius δ.
3
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w

Fig. 3. Peridynamic bimaterial system: (a) different types of material points and their horizons, (b) the bond force of the interface bond
between points x1 to x2.

In the ordinary state-based model, the scalar force state t of the points belong to the linear elastic isotropic
material i takes the form of [16]:

t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
(

k ′

i −
5µi

3

)
θ
ωx
q

+
15µi

q
ωe; 3D

2
(
k ′

i − 2µi
)
θ
ωx
q

+
8µi

q
ωe; 2D

Ei

q
ωe; 1D

(3)

where ω is the influence function, x is equal to bond length |ξ |, q is the weighted volume that is defined as ωx • x ,
e is the extension state, and θ is the volume dilatation that can be obtained with:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ = 3
ωx • e

q
; 3D

θ = 2
ωx • e

q
; 2D

θ =
ωx • e

q
; 1D

(4)

here the symbol (•) is the dot product operation [15], µi is the shear modulus of material i, and k ′

i is the bulk
modulus that can be expressed as:

k ′

i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ei

3 (1 − 2vi )
3D

Ei

2 (1 − vi )
Plane stress

Ei

2 (1 + vi ) (1 − 2vi )
Plane strain

(5)

where Ei and vi are the Young’s modulus and Poisson’s ratio of material i, respectively.
In this peridynamic bimaterial model, since horizons of the points near material interface cover both material 1

and material 2 zones (see Fig. 3(a)), the points in different materials can interact each other with their connected
bonds, called as ‘peridynamic interface bonds’ (see Fig. 3(b)). Thus, even though the material interface is not
explicitly revealed, the interior force can be transmitted through nonlocal interface by these peridynamic interface
bonds. In other words, though the force state of point x1 is computed with parameters of material 1, the deformation
states of point x1 (i.e. volume dilatation θ and extension state e) are captured via all deformation of its horizon
H , part of which is located in material 2 zone (see Fig. 3(a)).
x1
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2.2. The bond force of the peridynamic interface bond

As shown in Fig. 3(b), the bond force of point x1 effected by x2 through their connected interface bond is:

f [x1, t] ⟨x2 − x1⟩ = T [x1, t] ⟨x2 − x1⟩ − T [x2, t] ⟨x1 − x2⟩ (6)

onsidering Eq. (2), Eq. (6) can be further expressed as:

f [x1, t] ⟨x2 − x1⟩ =
(
t [x1] ⟨x2 − x1⟩ + t [x2] ⟨x1 − x2⟩

) Y ⟨x2 − x1⟩⏐⏐Y ⟨x2 − x1⟩
⏐⏐ (7)

here t[x1] and t[x2] are the force scalar states of points x1 and x2, which belong to material 1 and 2, respectively
(see Fig. 3(a)), and they can be computed by Eq. (3).

Similarly, the bond force of point x2 effected by x1 is:

f [x2, t] ⟨x1 − x2⟩ =
(
t [x1] ⟨x2 − x1⟩ + t [x2] ⟨x1 − x2⟩

) Y ⟨x1 − x2⟩⏐⏐Y ⟨x1 − x2⟩
⏐⏐ = −f [x1, t] ⟨x2 − x1⟩ (8)

hus, the linear admissibility condition for interacted force of the peridynamic interface bond is satisfied, and it can
urther ensure the balance of linear momentum condition of bimaterial system. In addition, considering the property
f ordinary state-based model in Eq. (2), the balance of angular momentum can also be satisfied [15].

Typically, considering the Poisson’s ratio restrictions in bond-based peridynamic model, and using the typical
nfluence function of ω = δ/ |ξ |, the scalar force state t of points in material i can be reduced into [22]:

t =
1
2

ci s (9)

where s is the bond stretch scalar state defined as s = e/ |ξ |, and ci is the peridynamic constant of material i in
bond-based peridynamic model [22], which can be expressed as:

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

18k ′

i

πδ4 ; 3D

12k ′

i

πδ3 B
; 2D

2Ei

δ2 A
; 1D

(10)

here k ′

i is the bulk modulus given in Eq. (5), B and A are the thickness and cross section for the 2D and 1D cases,
espectively. Then, the interacted force of the peridynamic interface bond can be rewritten as:

f [x1, t] ⟨x2 − x1⟩ =
1
2
(c1 + c2) s ⟨x2 − x1⟩

Y ⟨x2 − x1⟩⏐⏐Y ⟨x2 − x1⟩
⏐⏐ (11)

hich is equal to the bond-based peridynamic interface model in [46].

.3. The nonlocal property of peridynamic interface model

Here, one-dimensional (1D) peridynamic bimaterial bar is considered to investigate the nonlocal property of
roposed peridynamic interface model (see Fig. 4).

As shown in Fig. 4, the bar with uniform cross section A is connected by zero thickness interface, and the linear
lastic isotropic material 1 and material 2 are considered in left and right sides of the interface. For a material point
in this peridynamic bimaterial bar, the stress σ (p) is defined as the total force that all its right points x exert on

ll its left points x′ [49]:

σ (p) =
1
A

∫ δ

0

∫ δ−s

0
f [x, t]

⟨
x′

− x
⟩

Adr Ads =

∫ δ

0

∫ δ−s

0
f [x, t]

⟨
x′

− x
⟩
Adrds (12)

here f[x,t] is bond force that can be computed from Eq. (11).
When a uniform deformation of u(x) = ε0x is applied in this bar, the scalar value of Eq. (12) can be computed

nd simplified as:

σ p = E ′ε (13)
( ) 0

5
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Fig. 4. The point p in the one-dimensional peridynamic bimaterial bar.

Fig. 5. The equivalent nonlocal elastic modulus in one-dimensional (1D) peridynamic bimaterial model.

here the equivalent nonlocal elastic modulus E ′
= σ (p) /ε0 is defined to embody the property of peridynamic

bimaterial model. Apply the integration in Eq. (12), the formation of E ′ can then be obtained as:

E ′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1

(
2

x
δ

−
x2

δ2

)
0 ≤ x < δ

E1 δ ≤ x < L1 − δ

1
2
(E1 + E2)+

1
2
(E1 − E2)

(
2
(L1 − x)

δ
−
(L1 − x)2

δ2

)
L1 − δ ≤ x < L1

1
2
(E1 + E2)+

1
2
(E1 − E2)

(
2
(L1 − x)

δ
+
(L1 − x)2

δ2

)
L1 ≤ x < L1 + δ

E2 L1 + δ ≤ x < L1 + L2 − δ

E2

(
2
(L1 + L2 − x)

δ
−
(L1 + L2 − x)2

δ2

)
L1 + L2 − δ ≤ x ≤ L1 + L2

(14)

Meanwhile, the distribution of E ′ related to the location x is presented in Fig. 5. As shown, unlike the parameter
value jump on material interface and boundary in continuum mechanics, the function of E ′ has the one-order
continuity in whole peridynamic bimaterial bar of 0 ≤ x ≤ L1 + L2. Typically, the nonlocal interface zone exists
between L1 - δ ≤ x < L1 + δ, in which E ′ quadratically changes from L1 - δ to L1 and then L1 to L1 + δ in
different functions. E ′ decreases to 0 as x approaches two boundaries, which shows the surface effect of peridynamic
theory [50]. Additionally, when the value of horizon δ converges to 0, the nonlocal zone of E ′ gradually decreases,
and the peridynamic bimaterial model would converge to classical mechanic theory.

Thus, the nonlocal property of peridynamic theory can cause the smearing effect of the material parameter in

the bimaterial interface, which would reduce the deformation discontinuity near the interface.
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Fig. 6. Virtual crack closure technique in discrete peridynamic model with typical value of m = 2. The bond across the crack extension da
aps to its corresponding bond behind.

. Energy release rate and mode mixity of the interface crack in peridynamics

The energy release rate (ERR) and mode mixity are essential and significant parameters to characterize an
nterface crack, and the peridynamics-based methods are presented for their values computation.

.1. ERR computation in peridynamics

Recently, the virtual crack closure technique was reformulated by Zhang and Qiao [32] in peridynamic theory,
s the PD VCCT, for the ERR calculation in the framework of peridynamics.

As shown in Fig. 6, in the PD VCCT method, the numerical total energy release rate can be expressed as:

G (a) =
1
∆x

∑
ξ ik∈Sξ ,ξ ik→ξoq

(
1
2

{
t ⟨xk − xi ⟩ + t ′

⟨xi − xk⟩
}

• e
⟨
xq − xo

⟩)
Vi Vk (15)

here the discrete peridynamic numerical model with typical value of m = 2 is considered, ∆x is the crack extension
ength, Sξ is the set of all bonds across the crack extension da, ξoq is the corresponding bond mapped of bond ξik ,
and t ′ are the force scalar states of points x and x′, respectively, e is the extension scalar state, and Vi and Vk are

volumes of nodes xi and xk , respectively.
In the mixed mode fracture, for the homogeneous isotropic materials, the ERR in Eq. (15) can be expressed as

he summation of the mode I and mode II G (a) = GI (a)+ GII (a). Thus, the displacement near the crack tip can
be analytically separated into two components uI and uII, for mode I and mode II, respectively [51]. For example,
the displacement ui of point xi can be divided into the symmetric and antisymmetric parts with the displacement
of its mirror symmetric point xl (see Fig. 7):

ui = uI
i + uII

i =
1
2

{
ui x + ulx

uiy − uly

}
+

1
2

{
ui x − ulx

uiy + uly

}
(16)

Using the separated deformations uI and uII for mode I and mode II, the corresponding extension scalar states
eI [x, a] and eII [x, a], and the force vector states TI [x, a] and TII [x, a] can be respectively obtained. Then, the
numerical mode I and mode II ERRs for mixed mode crack can be obtained as:

G Mode (a) =
1
∆x

∑
ξ ik∈Sξ ,ξ ik→ξoq

(
1
2

{
t Mode

⟨xk − xi ⟩ +
(
t ′
)Mode

⟨xi − xk⟩

}
· eMode ⟨xq − xo

⟩)
Vi Vk (17)

here Mode = I or II.
Similarly to the finite element method (FEM) based-VCCT, the GI and GII from Eq. (17) do not have unique
alues for bimaterial interface cracks because of the material mismatch. The values of GI and GII depend on the

7
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Fig. 7. Mirror points i and l with respect to x axis (crack surface) in discrete peridynamic model.

rack extension size ∆x as well as the nonlocal horizon δ, and do not converge as ∆x converges to infinitesimal
value. Anyway, the value of total energy release rate is still unique.

3.2. ERR-based mode mixity in peridynamics

A crack constrained in the interface is mostly in mixed mode condition, and the mode mixity of interface
cracks has a great effect on the interfacial fracture toughness and crack growth characteristics [7]. Here, the
peridynamics-based method is proposed for the mode mixity computation of interface cracks.

Based on the energy release rate (ERR), the mode mixity, ψG , can be defined as:

tan2 ψG =
GII

GI
(18)

here GI and GII are the mode I and II ERRs obtained from Eq. (17). For a crack in the homogeneous materials,
he solution of ERR-based mode mixity is unique. However, for a bimaterial interface crack, since the values of
RRs are mesh-dependent, the mode mixity, ψG , also depends on the mesh grid size ∆x.

The mesh-independent ERR-based mode mixity, ψ , was defined and computed as a correction of ψG by
ntroducing a normalizing length parameter l in [7], in which oscillating ERRs from the FEM VCCT were utilized.

The same method can be performed in peridynamics to obtain the mesh-independent mode mixity ψ with the
reference length l and the mesh grid size ∆x. Furthermore, this computed mode mixity obeys the bimaterial phase
change law as [7]:

ψ0 = ψ + ε ln
l0

l
(19)

where ε is the bimaterial constant defined in [7], l0 and l are two reference lengths for the mode mixities ψ0 and
ψ , respectively.

4. Bimaterial interface fracture in peridynamics

In this section, for bimaterial interface fracture analysis, the peridynamic interface and interior bonds are
identified, a modified critical bond energy density (MCED)-based criterion is proposed for these bonds failure
analysis, and crack path competition of an interface crack along or kinking out of the interface is discussed.

4.1. Peridynamic bonds in bimaterial system

As a crack constrained in the bimaterial interface, the interfacial crack tip is mostly under the mixed mode
condition if the crack keeps growing along the interface; while the advancing crack tip tends to be in mode I when

the crack kinks out the interface and grows inside the materials [3].

8
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Fig. 8. Two kinds of peridynamic bonds in the bimaterial model: ξM for the interface interaction (red line), ξ1
I and ξ2

I for the interior
interactions inside the material 1 and 2 (black line).

Thus, for bimaterial fracture modeling, the bonds in peridynamic bimaterial model are divided into two kinds
(see Fig. 8): all bonds across the bimaterial interface are identified as the peridynamic interface bonds ξM; while
he other bonds inside material 1 and 2 are identified as the interior bonds ξ 1

I and ξ 2
I . Since the mode condition

and fracture property of cracks in the bimaterial interface and relative isotropic materials are different, a modified
bond failure criterion is defined for these bonds failure prediction.

4.2. Modified critical energy density (MCED)-based bond failure criterion

The bond energy density was first defined in the energy-based bond failure criterion [23]. In the ordinary state-
based peridynamics, considering the dual force density property and the linear elastic property, the bond energy
density can be simplified into [16]:

w ⟨ξ⟩ =
1
2

(
t ⟨ξ⟩ + t ′

⟨ξ⟩
)
· e ⟨ξ⟩ (20)

here e ⟨ξ⟩ is the extension scalar of bond ξ , t ⟨ξ⟩ and t ′ ⟨ξ⟩ are the force scalar of points x and x′, respectively
(see Fig. 2).

Here, the modified critical energy density (MCED) wc ⟨ξ⟩ is defined for failure prediction of the interface bond
ξM and interior bond ξ i

I (i = 1, 2). Considering the fracture energy equivalence in [24], the total bond released
nergy at unit area of interface crack or interior crack is equal to the interfacial fracture toughness or materials
ritical energy release rate, respectively. Thus, the MCED of the interface bond ξM and interior bond ξ i

I can be
btained as:

wc
⟨
ξM
⟩
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4Γ (ψ0)

πδ4 3D

3Γ (ψ0)

2δ3 B
2D

; wc
⟨
ξ i

I

⟩
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4G ic

πδ4 3D

3G ic

2δ3 B
2D

(21)

here B is the thickness of the 2D model, Γ (ψ0) is the interfacial fracture toughness that is the function of mode
mixity ψ0, and G1c (i = 1) and G2c (i = 2) are the critical strain energy release rates of material 1 and 2,
respectively.

As shown in Eq. (21), the value of wc ⟨ξ⟩ is bond-dependent. For an interior bond ξ i
I , it is uniform inside a

material; while for an interface bond ξM, it is the function of interfacial fracture toughness Γ (ψ0), in which the
mode mixity ψ can be obtained from Eq. (19). Since the value of ψ of an interfacial crack may change with
0 0
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loading condition and crack length, the value of wc
⟨
ξM
⟩

would also vary with the load situation and location of the
nterface bond.

Then, the MCED-based bond failure criterion can be expressed as:

d ⟨ξ⟩ =

{
1 if w ⟨ξ⟩ < wc ⟨ξ⟩ for all t ′

≤ t,

0 otherwise
(22)

where d = 0 means that the bond is irreversibly broken, the bond ξ can be an interface bond ξM or an interior bond
i
I (i = 1, 2) related to their corresponding values of wc ⟨ξ⟩ in Eq. (21).

4.3. Path selection of an interface crack

For a bimaterial interface crack, it may propagate along the interface or kink out of the interface, depending on
the loading condition and the fracture toughness of bimaterial interface and relative materials [3].

In above peridynamic bimaterial model, the bonds are divided into interface bonds ξM and interior bonds ξ i
I with

heir critical values wc ⟨ξ⟩ in Eq. (21). As the MCED-based bond failure criterion in Eq. (22) is applied, there is
natural failure competition between interface bonds ξM and interior bonds ξ i

I . When the bond energy densities
w
⟨
ξM
⟩

of interface bonds ξM successively arrive critical values wc
⟨
ξM
⟩
, the interface crack will keep propagating

long the interface with failure of interface bonds; while when the bond energy densities w
⟨
ξ i

I

⟩
of interior bonds ξ i

I
ear the crack tip arrive their wc

⟨
ξ i

I

⟩
, the interface crack will kink out the interface and grow inside the materials.

The ratio of the MCED values between the interior bond ξ i
I and interface bond ξM is:

χi =
wc
⟨
ξ i

I

⟩
wc
⟨
ξM
⟩ =

G ic

Γ (ψ0)
(23)

hich naturally meets the classical interface crack kinking criterion in [3].
Thus, with the MCED-based bond failure model, the crack growth paths along or kinking out of the interface

an be naturally captured with failure competition between interface bonds ξM and interior bonds ξ i
I , and no extra

racture criterion is needed.

.4. Progress of bimaterial interface fracture in peridynamics

The whole progress of peridynamics-based method for bimaterial interface fracture analysis is given in Fig. 9.
As shown in Fig. 9, the peridynamic scalar force state of Eq. (3) is applied for the elastic analysis of bimaterial

ystem. For the bimaterial failure analysis, the bonds in peridynamic bimaterial model are identified as interface
onds ξM and interior bonds ξ i

I (i = 1, 2), which utilize the MCED-based failure model of Eq. (22) for bonds failure
rediction. In the MCED model, the mode mixity ψ0 of interface crack is timely computed by Eqs. (17)–(19), the
nterfacial fracture toughness is obtained from the function of Γ (ψ0), and the MCED values of the interface bond
ξM and interior bond ξ i

I are obtained from Eq. (21).
In summary, a peridynamics-based frame is thus established for bimaterial interface fracture analysis. It can

aturally be utilized for interface delamination analysis, and also path selection prediction of an interface crack.

. Examples

In this section, four examples (i.e., a bimaterial plate under uniform tensile stress load, asymmetric bimaterial
antilever beams (ABCB) with an interface crack, a bimaterial single edge notched (BSEN) plate under tension or
hear load and four-point shearing (FPS) test of rock–concrete bonded beam) are considered for verification and
pplication of the peridynamic bimaterial elastic and fracture models.

.1. A bimaterial plate under uniform tensile stress load

A bimaterial plate under uniform tensile stress load is first considered to validate the peridynamic bimaterial
odel for elastic analysis. The geometrical sizes of the plate are shown in Fig. 10, in which the plane stress and

lane strain conditions are all considered, and the plate thickness B is 1 mm. The uniform tensile stress of 1 MPa
10
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E

Fig. 9. The whole progress of bimaterial interface fracture analysis in peridynamics.

Fig. 10. A bimaterial plate under uniform tensile stress load.

is applied as presented in Fig. 10. The elastic isotropic material 1 (E1, v1) and material 2 (E2, v2) are considered
on the upper and lower sides of the interface, and material parameters take the values of E1 = 200 GPa, v1 = 0.27;

= 50 GPa, v = 0.27.
2 2
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Fig. 11. Comparisons of displacement distributions in x-direction (m): (a) FEM and (b) Peridynamics, and y-direction: (c) FEM and (d)
peridynamics, of the bimaterial plate in plane stress case.

In the numerical peridynamic model, uniform mesh size is used. The δ-convergence analysis [52] is performed
with decreasing horizon values of δ = 8 mm, 4 mm and 2 mm, and a fixed value of m = 4. The adaptive dynamic
relaxation (ADR) method [53] is utilized for quasi-static analysis. The typical influence function of ω = δ/ |ξ |

is utilized in this and following examples. The peridynamic scalar force state in Eq. (3) is performed for elastic
behaviors prediction of this bimaterial plate and the numerical FEM analysis is also performed for the sake of
comparison and validation.

Displacement distributions of the plate from the present peridynamic model and the FEM are given in Fig. 11,
where fixed values of δ = 2 mm and m = 4 with the plane stress condition are used. As shown in Fig. 11, the
displacements from the present model greatly match those from the FEM solutions.

For the quantitative comparison, displacement components along the interface are presented in Fig. 12; while
the y-direction displacement and volume dilatation (defined in Eq. (4)) along the middle of the bimaterial plate are
presented in Figs. 13–14, where horizon values of δ = 8 mm, 4 mm and 2 mm, and a fixed value of m = 4 are
considered for the δ-convergence. Generally, it is shown that the results by proposed peridynamic bimaterial model
are converging to the FEM solutions as nonlocal horizon δ decreases, in both the plane stress and plane strain cases.
Typically, there is a great value drop of the volume dilatation in the bimaterial interface zone, and the disturbance
12
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e

a

Fig. 12. Displacements along x-axis with different values of δ in the plane stress: (a) x component, and (b) y component, and plane strain
cases: (c) x component, and (d) y component.

xists near the boundary (see Fig. 14), which meets the distribution of the equivalent nonlocal elastic modulus E ′

in Eq. (14).

5.2. Asymmetric bimaterial cantilever beams (ABCB) with an interface crack

The asymmetric bimaterial cantilever beam (ABCB) test (see Fig. 15) is then analyzed, in which geometrical
sizes of the ABCB specimen are given as: L = 160 mm, H1 = 50 mm and H2 = 30 mm. A pre-crack a0 exists
long the bimaterial interface. And the plane strain condition is considered with the uniform beam thickness of

B = 1 mm.
The elastic isotropic materials are used, in which E1 = 200 GPa, v1 = 0.3, v2 = 0.3, and E2 = 200 GPa

and E2 = 100 GPa are considered for bimaterial ratios of E1/E2 = 1 and E1/E2 = 2, respectively. For mixed-mode
interface cracks, the interfacial fracture toughness is the function of the mode mixity. When E1/E2 = 1, the bimaterial
mismatch vanishes, the Benzeggagh and Kenaue (B-K) law [54] can be applied as:

Γ (ψ0) = GIc + (GIIc − GIc)

(
ψ0

2

2

)η
(24)
ψ0 + 1
13
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c

Fig. 13. The y-direction displacement along the line of x = 100 mm with different values of δ in the plane stress (a) and plane strain (b)
ases.

Fig. 14. The volume dilatation along the line of x = 100 mm with different values of δ in the plane stress (a) and plane strain (b) cases.

where GIc = 30 J/m2, GIIc = 100 J/m2, η is equal 1 for simplification, and the mode mixity ψ0 is equal to
ERR-based mode mixity ψG computed from Eq. (18). While when E1/E2 = 2, the experimental interfacial fracture
toughness function from Suo and Hutchinson [3] is considered as:

Γ (ψ0) = Gc
[
1 + (1 − λ) tan2 ψ0

]
(25)

where Gc = 30 J/m2, λ is equal 0.3, and ψ0 is the mesh-independent mode mixity in the typical reference length
of l0 = 0.1 mm, and it can be calculated by the phase change of Eq. (19) from the corrected mode mixity ψ .

In peridynamic numerical model, the δ-convergence [52] is performed with decreasing horizon values of δ =

4 mm, 2 mm and 1 mm, and a fixed value of m = 4. And the progress in Fig. 9 is performed for bimaterial fracture
analysis in peridynamics.

5.2.1. Elastic behaviors of the ABCB specimen
First, the fixed displacement load of u0 = −1.0 × 10−4 m is applied in the ABCB specimen (see Fig. 15), and

the pre-crack length a = 80 mm is considered. For the ABCB specimen deformation analysis, the peridynamic
0

14
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Fig. 15. Asymmetric bimaterial cantilever beams (ABCB) with an interface crack.

scalar force state in Eq. (3) is performed and the adaptive dynamic relaxation (ADR) method [53] is utilized for
quasi-static elastic analysis.

The distributions of volume dilatation and strain energy density around the bimaterial interface crack tip are
presented in Fig. 16, where bimaterial ratios of E1/E2 = 1 and E1/E2 = 2 are respectively considered. As shown
in Fig. 16, the volume dilatation and strain energy density are concentrated at the crack tip with the asymmetric
contour due to asymmetric loading, which reflects the mixed-mode state of the interface crack. And the contour
mismatch exists near the bimaterial interface in case of E1/E2 = 2 because of the material parameter mismatch
across the interface (see Fig. 16(b) and (d)).

Typically, the plots of volume dilatation along the line of x = 82 mm are presented in Fig. 17, where δ-
convergence is performed and the FEM solutions are given for comparison. As shown in Fig. 17, the values of
volume dilatation reach their maximum near the crack tip (y = 0 mm), and the plots from peridynamics converge
to the FEM solutions as the value of δ decreases. Typically, in case of E1/E2 = 2, there is a much sharper drop of
volume dilatation value across bimaterial interface, and the curves from peridynamics are smoother than the FEM
solutions (see Fig. 17(b)), which show the smearing effect of peridynamic bimaterial model on elastic property
presented in Fig. 5.

5.2.2. Energy release rates and mode mixity
The energy release rates (ERRs) and mode mixity of the ABCB specimens are computed with the fixed

displacement load of u0 = −1.0 × 10−4 m. The PD VCCT-based method in Eqs. (17)–(19) is utilized, and the
FEM solution is considered for comparison. When E1/E2 = 2, the mesh-independent mode mixity ψ is computed
by the correction method in [7], in which the reference parameter l = B (plate thickness) is used.

The ERRs and mode mixity of the ABCB specimens in cases of E1/E2 = 1 and E1/E2 = 2 are presented in Table 1
and Table 2, respectively, where the pre-crack length a0 = 80 mm is considered with the δ-convergence. As shown
in Table 1, when E1/E2 = 1, the values of ERRs and ERR-based mode mixity are mesh-independent. The results
from presented peridynamic method converge to the FEM solutions as the value of δ decreases, and the maximum
difference is 2%. When E1/E2 = 2 (see Table 2), the values of mode I and mode II ERRs and ERR-based mode
mixity are mesh-dependent; while the total ERR and the corrected mode mixity ψ are mesh-independent, and the
differences of the total ERR and ψ from the peridynamics to the FEM solutions are 0.89% and 2.82%, respectively.

Then, the total ERR and mode mixity ψ of the ABCB specimens for varying crack lengths from 40 mm to
120 mm are presented Figs. 18–19, where the mesh-independent correction method is performed for mode mixity
ψ calculation in case of E1/E2 = 2. As shown in Figs. 18–19, both in E1/E2 = 1 and E1/E2 = 2 cases, the total
ERR and ψ from the PD VCCT have a good match with the FEM VCCT solutions with the maximum difference
of 3.1%.
15
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Fig. 16. Distributions of volume dilatation [(a) and (b)], strain energy density (J/m3) [(c) and (d)] around interface crack tip of the ABCB
specimens with E1/E2 = 1 and E1/E2 = 2 cases.

Fig. 17. Plots of volume dilatation along the line of x = 82 mm of the ABCB specimens with (a) E1/E2 = 1; (b) E1/E2 = 2.
16
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Fig. 18. Total energy release rate of the ABCB specimens for varying values of crack length a0: (a) E1/E2 = 1; (b) E1/E2 = 2.

Fig. 19. Mode mixity of the ABCB specimens for varying values of crack length a0: (a) E1/E2 = 1; (b) E1/E2 = 2.

Table 1
Energy release rates and mode mixity when E1/E2 = 1.

Mesh size GI (J/m2) GII (J/m2) ψG (◦)

δ = 4 mm 106.84 52.28 40.08
δ = 2 mm 105.76 50.83 39.72
δ = 1 mm 105.50 50.30 39.56
FEM (∆x = 1 mm) 107.10 49.37 38.90

5.2.3. Interface delamination of the ABCB specimen
The ABCB specimen is then applied with increasing displacement of u(t) = −2.0 × 10−2 * t m for interface

delamination analysis. In the peridynamic numerical model, the explicit time integration is applied, and critical
time steps for different mesh sizes are obtained from [16]. The proposed MCED-based failure model in Eq. (22)

i
is utilized for bimaterial interface fracture analysis, in which interior bonds ξ I are set as unbrokenable in this case

17
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Table 2
Energy release rates and mode mixity when E1/E2 = 2.

Mesh size GI (J/m2) GII (J/m2) G (J/m2) ψG (◦) ψ (◦)

δ = 4 mm 55.32 42.32 97.64 50.14 37.03
δ = 2 mm 52.66 43.53 96.19 52.09 36.92
δ = 1 mm 50.23 45.32 95.55 51.70 36.96
FEM (∆x = 1 mm) 52.00 42.70 94.70 51.92 38.03

for sake of interface delamination fracture. The interfacial fracture toughness functions in Eqs. (24) and (25) are
considered for the cases of E1/E2 = 1 and E1/E2 = 2, respectively.

First, the fixed pre-crack length a0 = 80 mm is considered, the distributions of y-direction displacement, strain
energy density, crack path and released energy density of the ABCB specimen at crack propagation of 4 × 10−2 s
and 10 × 10−2 s are presented in Fig. 20, where the bimaterial ratio of E1/E2 = 2 is considered. With the increasing
y-directional displacement loading, the strain energy density is concentrated at the crack tip (see Fig. 20(c)), and
the crack starts to grow from the location of pre-crack tip (see Fig. 20(e)) and propagates along the interface (see
Fig. 20(f)). Meanwhile, the released energy density appears at pre-crack tip and follows with the crack path (see
Fig. 20(g) and (h)). Typically, as shown in Fig. 20(h), the maximum value of the released energy density in fresh
interfacial crack is larger than that of the behind crack, which reflects that the interfacial fracture toughness increases
with the increasing crack mode mixity as interface crack growing (see Fig. 19).

The applied load–displacement plots of ABCB tests are shown in Fig. 21, where mesh sizes of δ = 4 mm and
2 mm are considered. For comparison, when E1/E2 = 1, the FEM-based VCCT method with the same B-K interface
law is performed for this ABCB test; while when E1/E2 = 2, the analytical deformation solution before the crack
growth is considered. As shown in Fig. 21, the peridynamic model successfully captures the load–displacement
relationship of the ABCB test as compared with the FEM-VCCT fracture and analytical deformation solutions.

Then, the ABCB specimens with varying crack lengths from 40 mm to 120 mm are investigated with the MCED-
based bond failure criterion. The critical applied load Pc and displacement uc for different values of pre-crack
length a0 are presented in Fig. 22, in which the material ratio of E1/E2 = 2 is considered. And for comparison, the
ERR-based analytical solutions of critical load and displacement can be obtained as:

Pc = P

√
Γ (ψ0)

G (a)
, uc = u0

√
Γ (ψ0)

G (a)
(26)

where u0 = −1.0 × 10−4 m is the fixed displacement load, P is the applied load of the ABCB specimen for pre-crack
ength a0, G (a) is the total energy release rate that given in Fig. 18(b), and Γ (ψ0) is the experimental interfacial
racture toughness in Eq. (25). As shown in Fig. 22, the critical load and displacement from the peridynamic model
reatly match those from the ERR-based analytical solutions, and the differences of PD predicted critical load and
isplacement to ERR-based results are 4.97% and 4.90%, respectively.

.2.4. Growth path competition of the ABCB interface crack
Last, different ratios χ2 = G2c/Γ (ψ0) of material 2 critical energy release rate to interfacial fracture toughness

re considered, and the crack path competition between interface delamination and interface crack kinking is
nvestigated.

The distribution of local damage (crack path) and released energy density of the ABCB specimen in case of
1/E2 = 2 are given in Fig. 23, where the pre-crack length of a0 = 80 mm is considered, and different ratios of
2 = 1, 2 and 4 are respectively considered. As shown in Fig. 23, when χ2 = 1, the interface crack directly kinks

nto material 2 as the increasing displacement is applied; when χ2 = 4, the crack keeps growing along the bimaterial
nterface; while when χ2 = 2, the crack firstly grows along the bimaterial interface and then kinks into material 2
n the approximate location of x = 110 mm. It is because when the crack grows along the interface, the value of
(ψ0) increases with the increasing of the mode mixity (see Fig. 19), which leads to the value decreasing of χ2.
ccording to numerical tests with different χ2, the critical value of χ2c for this interface crack kinking is 1.8, which
eans that if the input value χ2 < 1.8, the interface crack will start to grow by kinking into material 2; while if
2 > 1.8, the interface crack will grow along the interface at the initiation time.

18
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Fig. 20. Distributions of y-direction displacement (m) [(a) and (b)], strain energy density (J/m3) [(c) and (d)], local damage/crack propagation
[(e) and (f)], and released energy density (J/m3) [(g) and (h)] of the ABCB specimen (E1/E2 = 2) at crack propagation of 4 × 10−2 s and

0 × 10−2 s.

In summary, the elastic and fracture behaviors of the ABCB specimen are successfully captured with the proposed
eridynamics-based method, the energy release rates and mode mixity are computed, and the interface delamination
racture and crack path selection are well predicted.

.3. A bimaterial single edge notched (BSEN) plate under tension or shear load

The geometrical sizes and boundary conditions of the bimaterial single edge notched (BSEN) plate are presented
n Fig. 24, where the tension and shear load are respectively considered. The plane strain condition is performed, and
he uniform beam thickness of B = 1 mm is used. A pre-crack along the interface of a0 = 50 mm is considered.

he elastic isotropic materials are utilized, in which E1 = 90 GPa, v1 = 0.3, v2 = 0.3, and E2 = 90 GPa and
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Fig. 21. Applied load versus displacement of ABCB specimens by the peridynamic MCED model with comparisons to FEM and analytical
solutions: (a) E1/E2 = 1; (b) E1/E2 = 2.

Fig. 22. The critical applied load (a), and critical displacement (b) of bimaterial specimens for varying values of crack length a0 in case of
E1/E2 = 2.

E2 = 9 GPa are used for bimaterial ratios of E1/E2 = 1 and E1/E2 = 10. The interfacial fracture toughness function
in Eq. (25) is also utilized in this example. And for peridynamic modeling, the fixed value of m = 4 is used, and
different values of δ = 4 mm and 2 mm are considered. The peridynamic elastic model in Eq. (3) is performed for
deformation prediction, and the progress in Fig. 9 is performed for fracture analysis in peridynamics.

First, the fixed loads of tension displacement u1 = 1.0 × 10−2 mm or shear displacement u2 = 1.0 × 10−2 mm
are respectively applied in the BSEN plate (see Fig. 24). The adaptive dynamic relaxation (ADR) method [53] is
utilized for quasi-static elastic analysis. The PD VCCT-based method in Eqs. (17)–(19) is performed for total energy
release rate (ERR) and mode mixity computations, in which the mesh-independent mode mixity ψ is obtained by
the correction method with the reference parameter of l = B in case of E1/E2 = 10. And the FEM-based VCCT

ethod is also performed for ERR computation. Thus, the values of total ERR and mode mixity of the BSEN plate
nder the tension or shear load are reported in Table 3. As shown in Table 3, when the tension load is applied, the
nterface crack of the BSEN plate is nearly in the pure mode I condition for both E /E = 1 and E /E = 10 cases;
1 2 1 2
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Fig. 23. The distribution of local damage [(a), (c) and (e)], and released energy density (J/m3) [(b), (d) and (f)] of the ABCB specimens
(E1/E2 = 2) for varying fracture toughness ratios of χ2.

Fig. 24. The bimaterial single edge notched (BSEN) specimen under (a) tension or (b) shear load.

while when the shear load is applied, the interface crack is under mode II dominated condition, and the mode mixity

of interface cracks in case of E1/E2 = 10 is larger than that in E1/E2 = 1 case. Typically, the predicted values of total

ERR from the PD VCCT method greatly match the FEM solutions, which are 52.09 J/m2 (E /E = 1), 10.41 J/m2

1 2
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Fig. 25. The local damage of the BSEN specimens under typical tensile displacement loads in cases of E1/E2 = 1 [(a) and (b)], and
E1/E2 = 10 [(c) and (d)].

Fig. 26. Applied load versus displacement of the BSEN specimens under tension loading: (a) E1/E2 = 1; (b) E1/E2 = 10.
22
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Fig. 27. The local damage of the BSEN specimens under typical shear displacement loads in cases of E1/E2 = 1 [(a) and (b)], and
1/E2 = 10 [(c) and (d)].

E1/E2 = 10) and 14.22 J/m2(E1/E2 = 1), 1.87 J/m2 (E1/E2 = 10) for tension and shear loads, respectively. And
the maximum difference of the total ERR from the peridynamics to the FEM solutions is 3.0%.

Using the values of the mode mixity in Table 3, and considering the interfacial fracture toughness function of
Eq. (25), the corresponding interfacial fracture toughness Γ (ψ0) for different load conditions and bimaterial ratios
can be obtained. When tension load is considered, Γ (ψ0) is equal to 30 J/m2 and 32.23 J/m2 for E1/E2 = 1 and
E1/E2 = 10 cases; while in the shear load condition, Γ (ψ0) is equal to 91.05 J/m2 and 262.21 J/m2 for the cases
of E1/E2 = 1 and E1/E2 = 10, respectively. And in the following fracture analysis, the material 2 critical energy
release rate is set as 30 J/m2 for simplification.

Then, the BSEN plate is applied with linearly increasing tensile displacement load. The local damage (crack path)
of BSEN plates with increasing displacement tensile loading are presented in Fig. 25, where bimaterial ratios of
E1/E2 = 1 and E1/E2 = 10 are respectively analyzed. As shown in Fig. 25, with the increasing tensile displacement
loading, the crack starts to grow and propagates rapidly along the interface (see Fig. 25(b) and (d)). Additionally,
the applied load–displacement curves of BSEN tension tests are given in Fig. 26, where mesh sizes of δ = 4 mm
and 2 mm are respectively used, and the FEM solutions are also given for comparison. As shown in Fig. 26, for
both E1/E2 = 1 and E1/E2 = 10 cases, the applied loads linearly increase with the displacement, and drop suddenly
when the cracks start to grow. And the predicted curves from the peridynamic model greatly match those from the
FEM results.

In the BSEN shear test, the linearly increasing shear displacement load is considered, and the crack paths of
BSEN plates are presented in Fig. 27. As shown in Fig. 27, the cracks start to grow by kinking into material 2 (see
Fig. 27(a) and (c)), and the kinking angle in case of E1/E2 = 10 is larger than that of E1/E2 = 1 case, since the
crack mode mixity is larger when E /E = 10. In addition, the applied load–displacement plots of BSEN shear tests
1 2
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Fig. 28. Applied load versus displacement of the BSEN specimens under shear loading: (a) E1/E2 = 1; (b) E1/E2 = 10.

Table 3
Simulation results of BSEN plate under tension or shear loads.

E1 / E2 Tension load Shear load

1 10 1 10

G (J/m2) 50.88 10.41 14.27 1.87
ψ (◦) 0.65 5.26 59.61 70.23

Fig. 29. Four-point shearing (FPS) test of rock–concrete bonded specimen (mm).

are presented in Fig. 28. Compared to the BSEN tension test, the crack propagation process of the shear test lasts
for a longer time with the increasing displacement load, and the numerical disturbance exists when cracks start to
grow because of the explicit integration strategy.

Thus, for the BSEN tension test, though the material mismatch leads to the mode mixity in crack tip, the mode
mixity has small effect on the interface delamination fracture. While for the BSEN shear test, the material mismatch
across the interface has a great effect on crack mode mixity as well as the kinking angle.

5.4. Four-point shearing (FPS) test of rock–concrete bonded beam

The fracture characteristics of rock–concrete interface were experimental studied by the four-point shearing (FPS)
test in [55]. In this section, this FPS specimen is analyzed with the proposed peridynamic bimaterial models.

The rock–concrete bonded beam under the FPS condition is given in Fig. 29, in which the pre-crack along the
interface is considered with the length 40 mm. The interface crack is under the mixed mode condition, and a wide
range of mode mixity ratio ψ can be obtained when the values of rock section length LR are ranging from 210 mm
to 250 mm. The material properties of the rock and concrete are reported in Table 4. And the interface fracture
toughness of the rock–concrete interface obtained from the experimental data is [55]:[ 2 ]
Γ (ψ0) = 17.4 1 + tan (0.56ψ0) (27)
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Fig. 30. Mode mixity of the FPS specimens for varying values of rock length LR .

Fig. 31. Crack paths of FPS specimens with different rock length LR , with comparisons to the experimental results in [(d) and (e)].

or the peridynamic modeling, the plane strain condition is considered, and the uniform beam thickness of
B = 100 mm is used. The fixed mesh sizes of δ = 8 mm and m = 4 are considered. The linearly increasing
orce load P is applied, in which the ratio of force loads on the two loading points is 1:5 (see Fig. 29). The
roposed progress in Fig. 9 is utilized for this rock–concrete interface fracture analysis.

The mode mixity of FPS specimens for varying values of rock length LR is presented in Fig. 30, in which the
eridynamics-based method in Eqs. (17)–(19) is performed. As shown in Fig. 30, the values of interface crack mode
ixity are significantly increasing with the rock length LR , and the rock–concrete interface cracks are gradually

hanging from mode I-dominated condition to mode-II dominated condition as LR increases from 210 mm to
250 mm. Meanwhile, the values of mode mixity predicted from peridynamic model greatly match the data from
the experiment in [55].

The local damage (crack path) of FPS specimens with varying rock length LR are presented in Fig. 31, in which
experimental results from [55] are given in cases of LR = 240 mm and 250 mm. As shown in Fig. 31, same
as the experimental result, when LR ≤ 240 mm, the cracks grow along the rock–concrete interface; while when
LR = 250 mm, the interface crack grows by kinking into rock and propagates toward the loading location. It is
because when rock length L is approaching 250 mm, the mode mixity increases rapidly (see Fig. 30), the interface
R
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p
i

Fig. 32. Applied load-crack mouth opening displacement (P-CMOD) curves of the FPS specimens for varying values of rock length LR .

Fig. 33. Critical applied loads of the FPS specimens for varying values of rock length LR : proposed peridynamic model (PD) and the
experimental data (Exp).

Table 4
Material properties of rock and concrete [55].

Material E (GPa) v ρ (kg/m3) Gc (J/m2)

Rock 18.10 0.323 2750 51.2
Concrete 27.85 0.178 2350 71.0

fracture toughness obtained from Eq. (27) reaches its maximum value, and the interface crack prefers to kink into
the rock material based on the crack path competition of Eq. (23).

Meanwhile, applied load related to crack mouth opening displacement (P-CMOD) curves of the FPS tests are
resented in Fig. 32, where the CMOD is obtained from the relative displacement of the two-sided points of the
nterface crack mouth. As shown in Fig. 32, for all LR , the applied loads P nearly increase linearly with the CMOD,

and reach their critical values when cracks start to grow. And for the larger rock length LR , the slopes of curves are
relatively higher because of their larger mode mixity ratio. Additionally, the critical applied loads Pc of FPS tests
for different values of rock length LR are shown in Fig. 33, where the experimental data from [55] are considered
for comparison. As presented in Fig. 33, the critical applied load predicted from the peridynamic model have a
reasonable agreement with the experiment data.

6. Conclusions

In this paper, the peridynamics-based models are proposed for the bimaterial interface fracture investigation.
First, the nonlocal bimaterial interface model for interior force transferring is presented, and the MCED-based bond
26
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failure model is proposed for interface crack analysis. Then, four examples of a bimaterial plate under uniform
tensile stress load, asymmetric bimaterial cantilever beams (ABCB), bimaterial single edge notched (BSEN) and
four-point shearing (FPS) tests, are analyzed for the model verification and application.

In the ABCB test, the peridynamics-based model can well capture the elastic and fracture behaviors of the
BCB specimens, in which the interface delamination fracture and crack path selection are well predicted. The

nergy release rates and mode mixity computed from peridynamics greatly match those from FEM solutions within
he difference of 3.1%, and the predicted critical load and displacement values are within the difference of 5.0% to
RR-based results. While in the BSEN and FPS tests, under mode-I dominated condition, the interface cracks grow
long the interface crack; while in mode-II dominated condition, the interface cracks prefer to grow by kinking
nto materials. And the material mismatch and loading condition have a great effect on the crack mode mixity and
inking angle.

In conclusion, the proposed peridynamics-based method can successfully capture the characteristics of bimaterial
nterface fracture. With capability of this proposed model on bimaterial fracture, the peridynamic theory can be
urther extended for failure analysis of layered structure and adhesive joints.
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