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Abstract
A novel explicit phase field material point method (ex-PFMPM) is proposed for
modeling dynamic fracture problems. The rate-dependent phase field govern-
ing equation is discretized by a set of particles, and the phase field is updated
by the explicit forward-difference time integration. Furthermore, the stability of
the ex-PFMPM is studied. A novel explicit critical time step formula is obtained
based on the system eigenvalues in one dimension and then extended to two
and three dimensions. The critical time step formula takes the effect of parti-
cle position and neighboring cell interaction into consideration, and can also be
used in an explicit phase field finite element method. Several numerical exam-
ples, including a dynamic crack branching, a plate with pre-existing crack under
velocity boundary conditions and a three point bending problem are studied
to verify the proposed ex-PFMPM. The use of the history field in the explicit
method is studied, which shows that it will lead to fake phase field update and
overestimation of the fracture energy in the unloading case. All of the numeri-
cal results show that the proposed ex-PFMPM has the capacity of modeling the
crack initiation and propagation problems with both accuracy and efficiency.
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1 INTRODUCTION

The prediction of the dynamic fracture initiation and propagation is an important issue of many engineering problems.
Since 19th century, many theoretical studies have been conducted in fracture mechanics. Inglis and Griffith1 made ana-
lytical contributions to the early development of fracture, and Irwin1 extended the Griffith’s approach by developing
the energy release rate criterion to analyze the growth of cracks. Although, a physical sound theory of fracture mecha-
nism has been established nowadays, theoretical analysis of the crack growth still encounters many difficulties due to
the complexity of crack patterns in engineering applications. Furthermore, the experimental analysis of crack growth is
time consuming and of poor repeatability due to the inconsistent experimental samples. Therefore, the numerical simu-
lation plays a crucial role in the study of fracture problems. In order to illustrate crack growth, various simulation models
have been proposed since 1970s. The so-called element erosion technique is incorporated into the finite element method
(FEM), which suffers difficulties in mass and energy conservation. Chen and Wilkins used the finite difference method
(FDM)2 to simulate fracture problems. Belyschko and his collaborators3 employed the partition of unity principle for the

2680 © 2023 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2023;124:2680–2708.

https://orcid.org/0000-0001-9905-281X
https://orcid.org/0000-0002-6894-9613
http://wileyonlinelibrary.com/journal/NME


ZENG et al. 2681

simulation of fracture problems and developed the extended finite element method (XFEM). The cohesive zone method
(CZM)4 was presented by embedding the cohesive zone at the edges or facets of the original FEM mesh.

Several meshfree methods aiming at fracture modeling have been carried out. Carpiteri et al.5 presented an augmented
Lagrangian element-free (ALEF) approach based on the construction of shape functions with a moving least-squares
approximation for crack growth. Belytschko6 put forward a technique for modeling 3D dynamically propagating cracks
in elastic material by the element-free Galerkin (EFG) method. Rahman7 proposed an interaction integral to calculate
stress-intensity factors (SIFs) for mixed-mode fracture analysis with EFG, which can also be implemented in conjunction
with FEM. Belytschko et al.8 presented a simplified meshfree method for arbitrary evolving cracks called cracking-particle
method, which models a crack by a discontinuous enrichment and does not require an explicit crack representation.
Rabczuk et al.9 improved the cracking-particle method, which models the cracks by splitting particles located on the
opposite sides of the associated crack segments.

In recent years, the phase field fracture method,10,11 which is based on the basic theory of Griffith elastic fracture
mechanics, is widely used to simulate the propagation, branching and merging of crack. The phase field fracture method is
developed within the smeared crack approach which represents crack surfaces implicitly by introducing damage variables
for the degradation of materials. Therefore, the crack propagation occurs naturally without explicitly tracking the crack
surface, and the cracking initiation problem can be well simulated with the use of phase field fracture model. Because of
its powerful capability in crack growth simulation, the phase field fracture model has been combined with several meth-
ods (like FEM) to simulate different kinds of crack processes. Borden et al.10 introduced a phase-field approximation to
the Lagrangian method for discrete fracture problems and derived the coupling equations that govern the motion of the
body and evolution of the phase-field. Aldakheel et al.12 proposed an efficient low order virtual element method (VEM)
for the phase-field modeling of isotropic brittle fracture in elastic solid structures undergoing small deformation. And
plenty of works13-15 have contributed to the further development of phase-field models for fracture in ductile materials.
Borden et al.13 presented a cubic degradation function providing a stress–strain response prior to crack initiation which
approximates linear elastic behavior more accurately, and introduced a yield surface degradation function for the plas-
tic softening mechanism to correct the nonphysical elastic deformation after crack initiation. Miehe et al.15 extended the
developed continuum phase field models from brittle fracture to ductile fracture coupled with thermo-plasticity at finite
strain. Furthermore, the anisotropic fracture problem is also studied based on the phase field fracture model. A variational
phase-field model for strongly anisotropic fracture was presented,16 which resorts to the extended Cahn–Hilliard frame-
work proposed in the context of crystal growth. A crack phase-field model was extended to capture anisotropic fracture for
soft matter by an anisotropic volume-specific crack surface function and a rate-dependent formulation of the phase-field
evolution.17 However, most of the above mentioned works update the phase field with implicit time integration which
leads to low computational efficiency.

In order to overcome the shortcomings of phase field with implicit time integration, an explicit phase field gov-
erning equation based on three fields was given by Miehe et al.18 In the explicit phase field theory, the phase field
can be updated with the forward-difference method for time integration. Therefore, the explicit algorithm can circum-
vent the difficulty of convergence in implicit form and gain great computational efficiency. Ren et al.19 proposed an
explicit phase field model for dynamic brittle fracture, in which the mechanical field is integrated with a Verlet-velocity
scheme and the phase field is updated with sub-steps at each step. In their work, the phase field modulus is used,
rather than the conventional phase field viscosity. Wang et al.20 derived the driving force of phase field evolution based
on the Mohr–Coulomb criterion for rock and other materials with shear frictional characteristics and developed a
three-dimensional explicit parallel phase field model with the use of phase field viscosity. Ziaei et al.21 developed a mas-
sively parallel algorithm on the graphical processing unit and designed a time adaptivity strategy to account for the
decreasing critical time step during the evolution of the fields. However, the choice of the critical time step in the explicit
phase field theory is still an unsolved problem. The widely used estimated formula20 ignores the effect of the strain energy
on the critical time step and may severely overestimate the critical time step, which will lead to instability during the
simulation.

The material point method (MPM)22,23 is an extension of the particle-in-cell (PIC) method. In the MPM scheme,23

a continuum body is discretized into a set of particles which carries all the state variables moving through a predefined
Eulerian background grid. The momentum equation is first solved on the background grid, and then the solution is
mapped to the particles to update their state variables. The deformed background grid can be discarded at the end of
every time step, and the initial regular mesh is used in next time step. The MPM combines the Lagrangian description and
Eulerian description, which makes MPM have relatively natural contact algorithm and great efficiency in simulating large
deformation problems.22,23 Many efforts have been made in MPM to simulate crack problems. Nairn24 proposed a material
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point method with crack (CRAMP) which simulates a crack with multivelocity fields. Wang et al.25 used an irregular
mesh to simulate 2D mixed mode crack and introduced the surfaces of the crack by allowing the placement of two sets of
nodes along the crack line. Chen et al.26 simulated several crack problems approximately by using the collection of failure
points and developed a failure criterion based on a bifurcation analysis. Liang et al.27 introduced enriched shape functions
in the material point method (EMPM) and the generalized interpolation material point method (EGIMP) to simulate
crack problems and calculated fracture parameters of the crack tip such as the energy release rate and stress intensity
factors. In spite of the progress that has been made in simulating crack problems, various limitations still exist. Most of
the existing numerical methods of dynamic fracture require explicit description of the location and the spatial derivatives
of each crack surface. And the requirement of additional relations that govern the initiation and the growth velocity and
direction of the crack still can not be ignored, which makes it difficult to simulate the cracking initiation problem. To
overcome the above shortcomings, a few studies have incorporated the phase field fracture model into MPM to simulate
the crack growth problem. A phase field material point method (PF-MPM) has been successfully proposed by Kakouris28

for quasi-static brittle fracture problems, and a variant accounting for anisotropy in the quasi-static regime has also been
developed.29 And Kakouris29 further developed a novel PF-MPM for robust simulation of dynamic fracture considering
the fractured contact surfaces. A grid-based adaptive technique30 for the MPM coupled with a phase-field fracture model
for brittle materials was developed to resolve the length scale in the phase-field evolution equation. However, all the above
works employ the implicit phase field fracture model to couple with the MPM in the dynamic fracture problem, which
leads to the low simulation efficiency and poor convergence. Wolper et al.31 coupled MPM with a Ginzburg–Laudau type
phase-field equation which is based on the explicit phase field fracture model for animating dynamic fracture. However,
the gradient of the phase field at the next time step appears in the Ginzburg–Laudau type phase-field equation, which
makes the method implicit, and leads to poor simulation efficiency.

More and more scholars have found that the particle distribution will heavily affect the stability of the explicit
MPM,32-34 and there are a lot of works on the stability analysis of particle methods.35-38 Belytschko et al.35 pre-
sented a unified stability analysis of meshless particle methods by perturbation method in one and two dimensions.
Balsara38 applied the von Neumann stability analysis method to the SPH method and Renaud33 also applied the von
Neumann stability analysis method to the discontinuous Galerkin material point method (DGMPM) for hyperbolic
problems. Steffen et al.39 proposed an optimal time step by estimating and balancing space and time errors in MPM.
Berzins40 applied the stability analysis of Spigler and Vianello41 to MPM and derived a stable time step bound for
one dimension. Ni and Zhang42 proved that the von Neumann stability analysis method is invalid in the explicit
MPM and derived the critical time step formula by solving the system generalized eigenvalue problem. The corre-
sponding formula illustrated the effect of particle distribution and neighboring cell interaction on the stability of the
standard MPM.

A novel explicit phase field material point method (ex-PFMPM) is proposed in this article to simulate the dynamic
fracture problem, which updates the phase field of the computational domain by the forward-difference method. To ana-
lyze the stability of the ex-PFMPM, the effects of particle position and neighboring cell interaction on the critical time
step are taken into consideration, and an explicit critical time step formula is obtained based on the system eigenval-
ues in one dimension and then extended to two and three dimensions. The critical time step formula can also be used
in an explicit phase field finite element method. Several numerical examples of dynamic fracture problem are designed
to verify the ability of ex-PFMPM in simulating crack process. And the effect of the use of history field parameters is
studied.

The remainder of this article is organized as follows. Section 2 briefly reviews the theory of phase field fracture model.
Section 3 presents the ex-PFMPM, and derives an explicit critical time step formula for the ex-PFMPM. Section 4 studies
several numerical examples to validate the proposed method, and Section 5 draws concluding remarks.

2 PHASE FIELD DESCRIPTION

2.1 Diffusive crack topology of phase field crack

Different from the discrete description of the geometry of the crack, as in the XFEM, phase field is built on the idea of
regularizing a sharp crack topology by a diffusive crack topology18 as shown in Figure 1. Consider a time-dependent crack
phase field d(x, t), characterizing that d = 0 implies the unbroken state and d = 1 is the fully broken state of the material
at x in the current configuration. Following the idea that the crack is not a discrete phenomenon, but processed with
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(A) (B)

F I G U R E 1 Description of cracks in 1D condition: (A) sharp crack; (B) diffuse crack.

material damage and micro-cracks aggregation, an exponential function for approximating the diffuse crack topology in
1D condition is introduced as

d(x) = exp(−|x|∕lc), (1)

where |x| is the distance from the center of the crack area, lc is a characteristic scale parameter representing the width of
diffuse crack.

Therefore, a regularized crack function can be derived based on the crack surface density as

ΓS(d) = ∫Ω 𝛾l(d)dΩ, (2)

where Ω is the current configuration of the material body,

𝛾l(d) =
1

2lc
d2 + lc

2
d
,id,i,

is the crack surface density. Assuming a given sharp crack surface topology inside the material body at time t, the
regularized crack phase field d(x, t) can be obtained by the variational principle of diffusive crack topology

d(x, t) = arg{inf ΓS(d)}, (3)

whose Euler equations are

d − l2
cΔd = 0 in Ω, (4)

∇d ⋅ n = 0 on Γ, (5)

where n is the outer unit normal on material boundary Γ, Δ is the Laplace operator.

2.2 Governing equation of phase field crack

According to Griffith’s theory, with the regularized crack function Equation (2), the fracture energy Ψf of an elastic body
can be defined as

Ψf = GcΓS = Gc ∫Ω
(

1
2lc

d2 + lc

2
d
,id,i

)

dΩ, (6)

where Gc is the Griffiths critical energy release rate, which is the energy required to create a unit area of fracture surface.
Therefore, the total potential energy Ψpot(u,Γ) of the material body can be written as

Ψpot(u,Γ) = Ψe + Ψf = ∫Ω(𝜙e + 𝜙f)dΩ, (7)
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where Ψe is the elastic strain energy, 𝜙e is the elastic energy density, and 𝜙f is the fracture energy density. To account
for the fracture-induced stress degradation only in tension, the elastic energy density is decomposed into positive and
negative parts as

𝜙e = gd𝜙
+
e + 𝜙−e , (8)

where gd is the degradation function, the positive part

𝜙

+
e =

1
2
𝜆⟨𝜀1 + 𝜀2 + 𝜀3⟩

2
+ + 𝜇(⟨𝜀1⟩

2
+ + ⟨𝜀2⟩

2
+ + ⟨𝜀3⟩

2
+), (9)

is the elastic energy density due to tension, and the negative part

𝜙

−
e =

1
2
𝜆⟨𝜀1 + 𝜀2 + 𝜀3⟩

2
− + 𝜇(⟨𝜀1⟩

2
− + ⟨𝜀2⟩

2
− + ⟨𝜀3⟩

2
−). (10)

is the elastic energy density due to compress. The 𝜆 and 𝜇 are the Lame constants, 𝜀i is the principal strain and ⟨⟩± denotes
the Macaulay brackets

⟨A⟩± = (A ± |A|)∕2. (11)

In phase field crack, the decrease of the elastic energy due to the degradation of the material properties need to be
considered with the evolving of the crack surface. Therefore, a degradation function gd(d) that is worked on the positive
part of the energy strain density is proposed to achieve the material degradation. The degradation function

gd(d) = (1 − d)2, (12)

proposed by Miehe18 is used here, if it is not mentioned specially. Therefore, substituting Equations (8) into (7) with the
degradation, the expression for total potential energy finally assumes the form

Ψpot(u,Γ) = ∫Ω gd(d)𝜙+e dΩ + ∫Ω 𝜙
−
e dΩ + ∫Ω Gc𝛾l(d,Δd)dΩ. (13)

The elastic stress field can be derived from the elastic potential as

𝜎ij = gd
𝜕𝜙

+
e

𝜕𝜀ij
+
𝜕𝜙

−
e

𝜕𝜀ij
= gd𝜎

+
ij + 𝜎

−
ij , (14)

where 𝜎+ij and 𝜎−ij are the “positive” and the “negative” part of the stresses which can be written as

𝝈
± = 𝜆⟨𝜀1 + 𝜀2 + 𝜀3⟩±I + 2𝜇 (⟨𝜀1⟩±n1 ⊗ n1 + ⟨𝜀2⟩±n2 ⊗ n2 + ⟨𝜀3⟩±n3 ⊗ n3) , (15)

where I is the identity matrix and ni are eigenvectors for principal strain 𝜀i.
Finally, taking the variation for the total potential energy with respect to the phase-field variable d and displacement

u, the coupled strong form of the momentum equation and brittle-fracture phase-field formulation is established as

Gc

lc
d +

𝜕gd

𝜕d
𝜙

+
e − GclcΔd = 0,

∇d ⋅ n = 0 on Γ,
d = d0 on Ω0,

(16)

∇ ⋅ (gd𝝈
+ + 𝝈−) + b = 𝜌ü,

𝝈 ⋅ n = t on 𝜕Γt,

u = ū on 𝜕Γu,

(17)

where Γt and Γu denote the prescribed traction boundary and displacement boundary of Ω, respectively.
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Since the initiation and propagation process of cracks is irreversible, the evolution of the phase field process should
satisfy the constraints

d(x, t) ∈ [0, 1] ̇d(x, t) ≥ 0. (18)

The staggered solution algorithm is widely used to update the displacement field and phase field. To satisfy the
evolution constraints in Equation (18) in the simulation process, the maximum positive elastic energy is taken as the
history-field variable H, namely,

H = max(𝜙+e (t)) ∀t > 0. (19)

Thus, the history field satisfies the Karush–Kuhn–Tucker condition for elastic loading and unloading

H − 𝜙+e ≥ 0,
̇H ≥ 0,

̇H(H − 𝜙+e ) = 0. (20)

With the history-field variable replacing the positive elastic energy in the governing Equation (16), the irreversibility
of the phase field is enforced. Therefore, the governing equation can be written as

Gc

lc
d +

𝜕gd

𝜕d
H − GclcΔd = 0. (21)

2.3 Explicit evolution of the phase field

As aforementioned, the staggered solution algorithm is widely used in the numerical application. However, a serious
problem of this algorithm with the implicit phase field fracture model Equation (21) is that the convergence is not easily
obtained especially for complex crack growth problems. And the simulation efficiency is quite poor due to the iteration
process. Therefore, a rate-dependent phase field evolution equation18-20 is introduced as

𝜂
̇d = ⟨𝛽(d) − 𝛾(d)⟩+, (22)

where

𝛽(d) = −
𝜕gd

𝜕d
𝜙

+
e ,

is the local driving force,

𝛾(d) = Gc

lc
[d − l2

cΔd],

is the geometric resistance force and 𝜂 denotes the phase field viscosity parameter.
The determination of the phase field viscosity parameter 𝜂 is a research-worthy problem. Miche et al.18 pointed out

that 𝜂 can be set as 𝜂 = Δt2∕𝜖, where 𝜖 is another artificial regularization parameter without direct physical meaning and
should be determined by the conditioning number of the system matrices. And the history field parameter in Equation (19)
is used to replace the positive elastic energy to satisfy the evolution constraints in Equation (18), which leads to

𝜂
̇d =

⟨

−
𝜕gd

𝜕d
H − Gc

lc
[d − l2

cΔd]
⟩

+
. (23)

However, the monotonic increase of the phase field can be guaranteed directly with the Macaulay brackets ⟨⟩± in
Equation (23). In Section 4, we will study the effects of the history field in the ex-PFMPM.
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3 EXPLICIT PHASE FIELD MATERIAL POINT METHOD

3.1 Equilibrium discrete equations of MPM

In the MPM, a continuum body is discretized into a set of particles which carries all the physical data (phase field, velocity,
momentum, density, etc.). Particles move through the Eulerian background grid during simulation, as shown in Figure 2.
Therefore, the density 𝜌(x) of the continuum body can be written as

𝜌(x) =
np∑

p=1
mp𝛿(x − xp), (24)

where np is the number of MPM particles, mp and xp are the mass and position vector of particle p, respectively. The weak
form of the governing Equation (17) can be expressed as

∫Ω 𝜌üi𝛿üidV + ∫Ω 𝜌𝜎
s
ij𝛿ui,jdV − ∫Ω 𝜌bi𝛿uidV − ∫Γt

𝜌ts
i𝛿uidA = 0, (25)

where the subscripts i and j indicate the components of the spatial variables following the Einstein convention, Ω is the
material domain, 𝛤t denotes the traction boundary, ui denotes the displacement, 𝜎s

ij = (g(d)𝜎
+
ij + 𝜎

−
ij )∕𝜌 is the degraded

specific stress, bi and ts
i are respectively the specific body force and traction. Substituting Equations (24) into (25) results

in the discretized equation

np∑

p=1
mpüip𝛿uip +

np∑

p=1
mp𝜎

s
ijp𝛿uip,j −

np∑

p=1
mpbip𝛿uip −

np∑

p=1
mpt

s
ip𝛿uiph−1 = 0, (26)

where the subscript p denotes the variables associated with particle p, h is the thickness of the fictitious layer used to
convert the surface integral on the traction boundary Γt into a volume integral.

With the use of shape function NIp, the position and displacement field of particles can be approximated on the
background grid as

xip =
∑

I
NIpxiI , (27)

uip =
∑

I
NIpuiI , (28)

where the subscript I denotes the variables associated with the grid node I. Substituting Equations (28) into (26) leads to

ṗiI = f int
iI + f ext

iI xI ∉ Γu, (29)

Background grid

Material domain

Particle

F I G U R E 2 Material point method (MPM) discretation of the material domain.
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where

piI = mIu̇iI , (30)

is the grid nodal momentum,

mI =
np∑

p=1
mpNIp, (31)

is the lumped grid nodal mass,

f int
iI = −

np∑

p=1
NIp,j

[

gd(dp)𝜎+ijp + 𝜎
−
ijp

] mp

𝜌p
, (32)

and

f ext
iI =

np∑

p=1
mpNIpbip +

np∑

p=1
NIpt

s
iph−1 mp

𝜌p
, (33)

are the internal and external grid nodal force, respectively.

3.2 Phase field discrete equations

The weak form of the explicit phase field governing Equation (23) can be written as

∫Ω 𝜂
̇dqdv = ∫Ω

{

−
𝜕gd

𝜕d
H − Gc

lc
[d − l2

cΔd]
}

qdv, (34)

where q is the corresponding weighting function for the phase field. Employing the integration by parts and particle
quadrature, Equation (34) can be rewritten as

np∑

p=1
𝜂pVp ̇dpqp =

np∑

p=1
VpSpqp −

np∑

p=1
GclcVpd

,ipq
,ip, (35)

where

Sp =
[

−
𝜕gd

𝜕d
H − Gc

lc
d
]

p
. (36)

With the shape function NIp, the state variables of particle p can be interpolated from their grid nodal values, that is,

dp =
ng∑

I=1
NIpdI , (37)

qp =
ng∑

I=1
NIpqI , qp,i =

ng∑

I=1
NIp,iqI , (38)

where ng denotes the total number of grid nodal points. Substituting Equations (37) and (38) into (35) and considering
the arbitrariness of the weighting function q, the discrete weak form at grid nodes can be expressed as

CI ̇dI = yint
I + yext

I , (39)
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where

CI =
np∑

p=1
𝜂pVpNIp, (40)

yext
I =

np∑

p=1
VpSpNIp, (41)

yint
I = −Gclc

ng∑

J=1

np∑

p=1
VpNJp,iNIp,idJ . (42)

As shown in Equation (40), a lumped viscous matrix is used in the simulation to avoid the matrix assembly.

3.3 Stability analysis

In this section, we firstly investigate the ex-PFMPM based on the moving-mesh MPM which is referred to a MPM that
is fully Lagrangian. In moving-mesh MPM, the mesh and particles keep stationary in the reference configuration and
displacements of both the particles and grid nodes are kept track of. The moving-mesh MPM is actually the same as the
standard FEM with the adoption of the lumped mass matrix except that the particles instead of the Gauss points serve
as the quadrature points in the moving-mesh MPM. As mentioned by Ni and Zhang,42 the effect of particle position and
neighboring cell interaction on the critical time step of the standard MPM need to be taken into consideration, when
conducting the stability analysis. Therefore, to get an explicit critical time step formula based on the system eigenvalues
in one dimension, as shown in Figure 3, we assume that the standard MPM has uniform mesh discretization in the 1D
computational domain, and the mesh size is xI+1 − xI = xI − xI−1 = l. Given that the sectional area is A, the Young’s mod-
ulus is E, and the particles are numbered from 1 to k1 + k2 in sequence, the discrete governing equation of the two-cell
system shown in Figure 3 can be written as

A ̇D = F − BD − KD, (43)

where

D = [dI−1, dI , dI+1]T, (44)

A = 𝜂p

⎡
⎢
⎢
⎢
⎣

V n
I−1 0 0
0 V n

I 0
0 0 V n

I+1

⎤
⎥
⎥
⎥
⎦

, (45)

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(2Hn
I−1 +

Gc

lc
)V n

I−1 0 0

0 (2Hn
I +

Gc

lc
)V n

I 0

0 0 (2Hn
I+1 +

Gc

lc
)V n

I+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (46)

............ ............

1Ix Ix 1Ix

2k1k particles particles

F I G U R E 3 Diagram of 1D mesh and particle distribution.
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and

K =
⎡
⎢
⎢
⎢
⎣

Kn
1 −Kn

1 0
− Kn

1 Kn
1 + Kn

2 −Kn
2

0 −Kn
2 Kn

2

⎤
⎥
⎥
⎥
⎦

, (47)

where

Kn
1 =

AGclc

l2

k1∑

p=1
ln
p , Kn

2 =
AGclc

l2

k1+k2∑

p=k1+1
ln
p , (48)

V n
I =

np∑

p=1
VpNIp, (49)

and ln
p is the length of particle p in time step n. Note that F is the external load matrix, which has no influence on the

system natural frequency. Therefore, we assume F = 0. Based on Equation (43), with the forward-difference method in
time integration, the critical time step of ex-PFMPM can be written as

Δtcr =
2

𝜆max(C)
, (50)

where the amplification matrix C of the system is defined by

C = A−1(B + K) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(2Hn
I−1+Gc∕lc)V n

I−1+Kn
1

𝜂pV n
I−1

− Kn
1

𝜂pV n
I−1

0

− Kn
1

𝜂pV n
I

(2Hn
I +Gc∕lc)V n

I +Kn
1+Kn

2
𝜂pV n

I
− Kn

2
𝜂pV n

I

0 − Kn
2

𝜂pV n
I+1

(2Hn
I+1+Gc∕lc)V n

I+1+Kn
2

𝜂pV n
I+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (51)

With the Gerschgorin’s theorem, each eigenvalue 𝜆i(i = 1, 2, 3) of the amplification matrix C is within the correspond-
ing Gerschgorin set Gk, which can be written as

Gk =

{

|gk| <

3∑

j=1
|Ckj|

}

, k = 1, 2, 3. (52)

Substituting Equations (51) to (52) gives the lower and upper bounds for the eigenvalues 𝜆i(i = 1, 2, 3) as

|𝜆i| < max{a1, a2, a3}, (53)

where

a1 =
(2Hn

I−1 + Gc∕lc)V n
I−1 + 2Kn

1

𝜂pV n
I−1

, (54)

a2 =
(2Hn

I + Gc∕lc)V n
I + 2Kn

1 + 2Kn
2

𝜂pV n
I

, (55)

a3 =
(2Hn

I+1 + Gc∕lc)V n
I+1 + 2Kn

2

𝜂pV n
I+1

, (56)

Substituting Equations (54)–(56) into the stability condition Equation (50) leads to a lower bound of the critical time
step, namely,

Δtcr =
2V n

I

(2Hn
I + Gc∕lc)V n

I + 2Kn
1 + 2Kn

2
𝜂p, (57)
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where Kn
1 and Kn

2 defined in Equation (48) will stay constant no matter how the particles are distributed in one cell, but the
node volume V n

I defined in Equation (49) will be severely influenced by the particle distribution. Therefore, the critical
time step has strong correlation to the particle distribution, and it will decrease to 0 as the node volume V n

I → 0 when
all the particles approach the opposite grid node of the same cell. Furthermore, the time history field Hn

I also has great
influence on the critical time step, which is not considered in the literature. The critical time step will sharply decrease
with the increase of the strain energy of the particle.

The computational process of the standard MPM can be divided into two steps, a Lagrangian step followed by an
Eulerian step. In the Eulerian step, the mesh will be reset to its original position while the particles remain in their current
positions. Ni et al.42 stated that the Eulerian step will not make the standard MPM scheme unstable, so that the stability
is determined by whether the error will be amplified in Lagrangian part. Therefore, the aforementioned stability analysis
of ex-PFMPM is based on the moving mesh MPM.

However, different from the analysis in Ni and Zhang42 for the standard MPM, the mapping and reconstruction
between particles and background grids have direct influence on the stability in ex-PFMPM. The mapping and recon-
struction process must be taken into consideration when calculating the critical time step. The amplification matrix C
with mapping and reconstruction effects can be rewritten as

C = A−1NT
1 N2(B + K), (58)

where A, B, and K are defined in Equations (45) and (47), and

N1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1N(I−1) 1 V1NI 1 0
⋮ ⋮ ⋮

VpN(I−1) p VpNI p 0
⋮ ⋮ ⋮

Vk1 N(I−1) k1 Vk1 NI k1 0
0 Vk1+1NI (k1+1) Vk1+1N(I+1) (k1+1)

⋮ ⋮ ⋮

0 VpNI p VpN(I+1) p

⋮ ⋮ ⋮

0 Vk1+k2 NI (k1+k2) Vk1+k2 N(I+1) (k1+k2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,N2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N(I−1) 1

VI−1

NI 1
VI

0

⋮ ⋮ ⋮
N(I−1) p

VI−1

NI p

VI
0

⋮ ⋮ ⋮
N(I−1) k1

VI−1

NI k1
VI

0

0 NI (k1+1)

VI

N(I+1) (k1+1)

VI+1

⋮ ⋮ ⋮

0 NI p

VI

N(I+1) p

VI+1

⋮ ⋮ ⋮

0
NI (k1+k2)

VI

N(I+1) (k1+k2)

VI+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (59)

By defining

NT
1 N2 =

⎡
⎢
⎢
⎢
⎢
⎣

SI−1
I−1 SI−1

I 0

SI
I−1 SI

I SI
I+1

0 SI+1
I SI+1

I+1

⎤
⎥
⎥
⎥
⎥
⎦

, (60)

matrix C can be written as

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

SI−1
I−1

EI−1+Kn
1

𝜂pV n
I−1

− SI−1
I

Kn
1

𝜂pV n
I−1

−SI−1
I−1

Kn
1

𝜂pV n
I−1
+ SI−1

I
EI+Kn

1+Kn
2

𝜂pV n
I−1

−SI−1
I

Kn
2

𝜂pV n
I−1

SI
I−1

EI−1+Kn
1

𝜂pV n
I
− SI

I
Kn

1
𝜂pV n

I
−SI

I−1
Kn

1
𝜂pV n

I ∕Δt
+ SI

I
EI+Kn

1+Kn
2

𝜂pV n
I

− SI
I+1

Kn
2

𝜂pV n
I

−SI
I

Kn
2

𝜂pV n
I ∕Δt

+ SI
I+1

EI+1+Kn
2

𝜂pV n
I

− SI+1
I

Kn
2

𝜂pV n
I+1

SI+1
I

EI+Kn
1+Kn

2
𝜂pV n

I+1
− SI+1

I+1
Kn

2
𝜂pV n

I+1
−SI+1

I
Kn

2
𝜂pV n

I+1
+ SI+1

I+1
EI+1+Kn

2
𝜂pV n

I+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (61)

where

EI = (2Hn
I + Gc∕lc)V n

I . (62)
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Substituting Equations (61) into (52) and considering the stability condition Equation (50), the critical time step Δtcr
with mapping and reconstruction effects is obtained as

Δtcr =
2V n

I

(EI−1 + 2Kn
1 )S

I
I−1 + (EI + 2Kn

1 + 2Kn
2 )S

I
I + (EI+1 + 2Kn

1 )S
I
I+1
𝜂p. (63)

The aforementioned analysis is based on the 1D condition. Since the background grid of the standard MPM in
ex-PFMPM is always structural and orthogonal, the 1D 2-cell formula can be extended to 2D and 3D problems by decou-
pling the calculation of the critical time step into x-, y-, and z-direction. The critical time step of a 3D problem can be
chosen as the minimum of the critical time step of each direction with the 1D 2-cell formula, that is,

Δtcr = min{Δtx
cr,Δty

cr,Δtz
cr}, (64)

where Δtx
cr, Δty

cr, and Δtz
cr are determined by the 1D 2-cell formula of Equations (57) and (63) as

Δti
cr =

2V n
iI

(2Hn
I + Gc∕lc)V n

iI + 2Kn
i1 + 2Kn

i2
𝜂p, (65)

Δti
cr =

2V n
iI

(Ei(I−1) + 2Kn
i1)S

I
I−1 + (EiI + 2Kn

i1 + 2Kn
i2)S

I
I + (Ei(I+1) + 2Kn

i1)S
I
I+1
𝜂p, (66)

where the subscript i indicates the specific component of the spatial variables x, y, z. Given that there are k1 particles and
k2 particles respectively in the two neighboring cells joint at the grid node I in x-direction, the decoupled volume V n

xI , Kn
x1,

and Kn
x2 can be written as

V n
xI =

k1∑

p=1
V n

p (1 + 𝜉p)∕2 +
k2∑

p=k1+1
V n

p (1 − 𝜉p)∕2,

Kn
x1 =

Gclc

l2

k1∑

p=1
V n

p , (67)

Kn
x2 =

Gclc

l2

k1+k2∑

p=k1+1
V n

p , (68)

where rp is the parent coordinate of particle p in x-direction. Δty
cr and Δtz

cr can also be obtained in the same way with the
decoupled parameter calculated by the corresponding parent coordinates spandtp.

Since the orthogonal equidistant background grids are widely used in MPM, the aforementioned analysis does not
consider the nonequidistant grids. However, our time step criterion can be easily generalized to nonequidistant grids by
replacing Equation (48) with

Kn
1 =

AGclc

l2
1

k1∑

p=1
ln
p , Kn

2 =
AGclc

l2
2

k1+k2∑

p=k1+1
ln
p , (69)

where l1, l2 are the mesh size of the left and right grid of the two-cell system, respectively. And in MPM, the orthogonal
background grids are commonly used due to its high efficiency in determining the parent coordinates of the material
points. Besides, our MPM code employed structured mesh, so we did not derive the critical time step formula for the
unstructured mesh in this work.

3.4 Computational procedure of the explicit phase field material point method

Different from the staggered solution procedure of the coupled implicit phase field MPM, the displacement field is updated
using the explicit central-difference integration and the phase field is updated using the explicit forward-difference time
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integration with the use of lumped element mass/viscosity matrices in our ex-PFMPM. The following two steps are
performed prior to the first time step:

1. A continuum body is discretized into a finite set of particles, which carry all physical properties (mass, volume, etc.).
2. Set the initial phase field d0

p of particle p based on the preset crack by

d0
p = exp[−|x0

p|∕lc], (70)

where |x0
p| is the the minimum distance from particle p to the preset crack path.

For each time step, the following steps are performed:

(1) Reform the regular background mesh and reconstruct the mass, momentum and the lumped viscous dissipation
parameter of background grid nodes from MPM particles by

mk
I =

np∑

p=1
mpNk

Ip, (71)

pk−1∕2
iI =

np∑

p=1
mpvk−1∕2

ip Nk
Ip, (72)

Ck
I =

np∑

p=1
𝜂p

mp

𝜌

k
p

Nk
Ip. (73)

For fixed boundaries, impose the essential boundary condition pk−1∕2
iI = 0.

(2) Calculate the nodal forces of background grids by

f int,k
iI = −

np∑

p=1
Nk

Ip,j𝜎
k
ijp

mp

𝜌

k
p
, (74)

f ext, k
iI =

np∑

p=1
mpNk

Ipbk
ip +

np∑

p=1
Nk

Ipt
k
iph−1 mp

𝜌

k
p
, (75)

f k
iI = f int,k

iI + f ext,k
iI . (76)

(3) Solve the momentum equation with

pk+1∕2
iI = pk−1∕2

iI + f k
iIΔtk

, (77)

and calculate the nodal crack driving force and the geometric resistance force by

ydri, k
I = −

np∑

p=1

mp

𝜌

k
p

𝜕gd

𝜕d
Hk

pNIp, (78)

yres, k
I = −

np∑

p=1

mp

𝜌

k
p

Gc

ld
dk

pNIp −
np∑

p=1
Gcld

mp

𝜌

k
p

dk
,ipNIp,i, (79)

and solve the governing Equation (39) by using the explicit forward-difference time integration

Δdk
I =

(

ydri, k
I + yres, k

I

)

Δtk∕Ck
I . (80)
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(4) Update velocity and displacement of particles by

xk+1
ip = xk

ip + Δtk+1∕2
ng∑

I=1

pk+1∕2
iI Nk

Ip

mk
I

, (81)

vk+1∕2
ip = vk−1∕2

ip + Δtk
ng∑

I=1

f k
iI Nk

Ip

mk
I

, (82)

and update the phase field dp by

dk+1
p = dk

p +
ng∑

I=1
NIpΔdk

I . (83)

(5) Impose the monotonically increasing condition and the value constraint of the phase field by

dk+1
p =

{
dk+1

p dk+1
p > dk

p

dk
p dk+1

p ⩽ dk
p,

(84)

dk+1
p =

{
1 dk+1

p > 1
dk+1

p dk+1
p ⩽ 1,

(85)

and update the gradient of the phase field by

dk+1
p,i =

ng∑

I=1
NIp,i

np∑

q=1
NIqdk+1

q . (86)

(6) Reconstruct the grid momentum from updated MPM particles by

pk+1∕2
iI =

nP∑

p=1
mpvk+1∕2

ip Nk
Ip, (87)

and impose the essential boundary condition. Calculate the updated grid node velocity by

vk+1∕2
iI =

pk+1∕2
iI

mn
I
. (88)

(7) Calculate the incremental strain and incremental vorticity of particles by

Δ𝜀k+1∕2
ijp = Δtk+1∕2

ng∑

I=1

1
2

(

Nk
Ip,jv

k+1∕2
iI + Nk

Ip,iv
k+1∕2
jI

)

, (89)

ΔΩk+1∕2
ijp = Δtk+1∕2

ng∑

I=1

1
2

(

Nk
Ip,jv

k+1∕2
iI − Nk

Ip,iv
k+1∕2
jI

)

, (90)

and then update the stress of particles by a constitutive model, and density by

𝜌

k+1
p =

𝜌

n
p

(1 + Δ𝜀k+1∕2
iip )

. (91)

The flow chart of the ex-PFMPM is summarized in Figure 4.
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Reconstruct the mass, momentum and the damp parameter      of background grid 

nodes from MPM particles, and apply the essential boundary conditions;

Calculate the nodal forces of background grids, and solve the momentum equation;

calculate the nodal crack driving force, and solve the governing equation

Map the updated grid nodal velocity and acceleration to MPM particles to 

update their velocity and displacement; update the phase field and its gradient 
of MPM particles

USF MUSL USL

Calculate particles’ incremental 

strain and incremental vorticity;

update particles’ stress, density 

and the history field

Reconstruct the grid momentum from 

updated particles’ momentum; apply 

the essential boundary condition 

Calculate particles’ incremental strain and incremental vorticity;

update particles’ stress, density and the history field

I

H

H

F I G U R E 4 Flow chart of the explicit phase field material point method (ex-PFMPM).

Test 1
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Free Boundary Interior Domain particle of parent
coordinate

particle of variable parent
coordinate

particle of variable parent
coordinate c 0.99,0.0,0.99r

h [ 1,1]r

s 0r

F I G U R E 5 Verification tests for 1D formula.

4 NUMERICAL EXAMPLES

4.1 Verification of the proposed critical time step formulae

As shown in Figure 5, an 1D computational domain is divided into a set of cells with one particle in each cell. Particles
represented by the solid dot are set at the cell centers with particle coordinate rs = 0.0. The parent coordinate of the particle
represented by the hollow dot varies from−1 to 1, which represents different particle positions. And the parent coordinate
of the particle represented by the cross mark is chosen from three values, namely,−0.99, 0.00, and 0.99, which is designed
to demonstrate the effect of neighboring cell interaction on the critical time step together with the particle of hollow dot.
The two particles with hollow dot and cross mark are set at the different locations in the computational domain, namely,
the free boundary (Test 1) and the interior domain (Test 2) to verify the critical time formula in different conditions.

We assume the crack energy release rate Gc = 1 J∕m2, the section area A = 1 m2, the viscous dissipation parameter
𝜂 = 1, the cell side length of the background grids l = 0.01 m and the regularization parameter lc = 2l = 0.02 m. The exact
critical time step Δt100−cell

cr will be calculated directly by solving the system eigenvalue problem.
In the existing literature, the critical time step is usually determined by Wang20

Δtest =
L2

min

2𝛼
, 𝛼 = Gclc∕𝜂, (92)

where Lmin is the minimum characteristic scale of the cell, which equals to l in this example. In order to compare the
critical time step obtained by our formulae with that used in the existing literature, the ratio R of the critical time step
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Δtcr, calculated by solving the system eigenvalue problem of the 100-cell system and the 2-cell formulae Equations (57)
and (63), to Δtest is investigated, namely,

R = Δtcr∕Δtest. (93)

The critical time step of the explicit phase field method without considering the effect of the history field H (i.e., H = 0)
is examined first. Figures 6 and 7 plot the ratio R versus the parent coordinate rh of the particle with hollow dot obtained by
directly solving the system eigenvalue problem of the 100-cell system and the 2-cell formulae based on the moving mesh
MPM and standard MPM for Test 1 and Test 2. As shown in Figures 6 and 7, the critical time step based on the moving
mesh MPM underestimates the critical time step regardless of the parent coordinate of particle with hollow circle, because
it ignores the effect of the Eulerian parts of the standard MPM. It is worth to be mentioned that the minimum value of
the ratio of the standard MPM is higher than that of the moving mesh MPM. Furthermore, when the parent coordinate of
particle with hollow circle rh → 1.0 in Figure 6A, rh → 1.0 in Figure 6B, and rh → −1.0 or 1.0 in Figure 6C, the critical time
step will severely decrease to 0. As discussed in Ni and Zhang,42 the critical time step in MPM will considerably decrease
because of the small nodal mass when particles are near the cell boundary. Similarly, when particles distribute near the
cell boundary in ex-PFMPM, a small nodal viscous dissipation value will be obtained at the opposite cell boundary, which
causes a severely small critical time step. However, on the contrary, the ratio of the standard MPM always keep R > 1 no
matter what the parent coordinate of particle with hollow circle is. The same situation arises when the parent coordinate
of particle with hollow circle rh → −1.0 in Figure 7B. As shown in Figures 6B and 7B,Δt2−cell

cr = Δt100−cell
cr when the parent

coordinate of the particle with hollow circle rh = 0.0. It means that the 2-cell formula can give a precise critical time step
when all the particles are at the center of the cell, and thus our formula based on the Gerschgorin’s theorem can also
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F I G U R E 6 The ratio R versus the parent coordinate rh for Test 1.
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F I G U R E 7 The ratio R versus the parent coordinate rh for Test 2.
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provide a satisfactory estimation for the critical time step in the PF-FEM with single-point Gaussian quadrature and the
lumped mass matrix. The above analysis also indicates that the ex-PFMPM is more stable than an explicit phase field
FEM.

By comparing the results given by directly solving the system eigenvalue problem of the 100-cell system and the
2-cell formula of the standard MPM shown in Figures 6 and 7, we find that the 2-cell formula underestimates the crit-
ical time step due to the Gerschgorin’s theorem, thus guarantees the stability of the simulation process. Besides, the
underestimation of the critical time step remains at an acceptable level, that is, Δt2−cell

cr > 0.4 × Δt100−cell
cr for any particle

distribution.
When applying the 2-cell formulae Equations (57) and (63) for practical use, the effect of the strain energy of particles

needs to be considered. We assume the history field H = 10Gc∕lc for all particles in Equations (57) and (63), and the
ratio R versus the parent coordinate rh of the particle with hollow dot obtained by directly solving the system eigenvalue
problem of the 100-cell system and the 2-cell formulae Equations (57) and (63) in Test 1 and Test 2 are depicted in Figures 8
and 9, respectively. Compared to the ratio R shown in Figures 6 and 7, the tendency of the ratio R versus the parent
coordinate rh of the particle with hollow dot is similar, but the critical time step significantly decreases as the 2-cell formula
Equations (57) and (63) predicts. This illustrated the effect of the strain energy on the critical time step, and the widely used
estimated formula Equation (92) will severely overestimate the critical time step, which will lead to instablility during
the simulation. And the critical time step given by the 2-cell formula is closer to the critical time step given by the system
eigenvalue in the high stain energy level compared to that in Figures 6 and 7, which indicates that the 2-cell formula can
give a satisfactory prediction in the numerical application.

To validate the extension of the 1D 2-cell formula of ex-PFMPM to 2D and 3D, a 2D test as shown in Figure 10 is
studied. There are 20 cells in each direction and only one particle in each cell. The parent coordinate rh and sh of the
hollow dot varies in [−1, 1]which represents different particle position in the cell, and all the particles represented by the
solid dot are at cell centers whose parent coordinate r0 = 0, s0 = 0.
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F I G U R E 8 The ratio R versus the parent coordinate rh for Test 1 with history field H = 10Gc∕lc.
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F I G U R E 9 The ratio R versus the parent coordinate rh for Test 2 with history field H = 10Gc∕lc.



ZENG et al. 2697

F I G U R E 10 Diagram of 2D test for the extended 1D 2-cell formula.

(A) (B) (C) 

F I G U R E 11 The critical time step versus the parent coordinate based on moving mesh material point method (MPM).

(A) (B) (C) 

F I G U R E 12 The critical time step versus the parent coordinate considering Eulerian parts.

To investigate the effect of the strain energy on the critical time step, we first assume the history field H = 0.
Figures 11A and 12A show the R2−cell ratio contour defined in Equation (93) of the critical time step versus the parent
coordinates rh and sh of the hollow dot with extended 1D 2-cell formula Equation (64) of the ex-PFMPM based on the
moving mesh MPM and standard MPM. Figures 11B and 12B show the R400−cell ratio contour given by solving the 400-cell
system eigenvalue problem of the ex-PFMPM based on the moving mesh MPM and standard MPM. And Figures 11C and
12C show the ration R1 = R2−cell∕R400−cell of the critical time step given by the extended 1D 2-cell formula to the critical
time step given by solving the 400-cell system eigenvalue problem of the ex-PFMPM based on the moving mesh MPM
and standard MPM.

As Figure 11A shows, in the moving mesh MPM, the isohypse of the ratio keeps vertical or horizontal because the
extension of the 1D 2-cell formula is based on the mesh orthogonality, while the ratio isohypse in Figure 11B is oblique
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and symmetry to the diagonal because the particles are symmetric to the diagonal. The critical time step is much larger
when the hollow dot is near the left-bottom corner than other three corners. It is because that the decoupled volume
V n

xI or V n
yI of the grid node in left-bottom corner will decrease sharply to 0 when the particle with hollow dot is near the

three other corners, while the decoupled volume V n
xI or V n

yI will increase to V n
p when the particle with hollow dot is near

the left-bottom and the decoupled volume V n
xI or V n

yI of the other grid nodes will not turn to infinitely small. However,
as shown in Figure 12A,B, in the ex-PFMPM based on the standard MPM, the particle position has comparatively small
impact on the critical time step, and the stability of the ex-PFMPM based on the standard MPM is much better than
the ex-PFMPM based on the moving mesh MPM. As Figure 11C shows the extended 1D 2-cell formula can give a fairly
accurate prediction of the critical time step in most part of the cell. No matter where the hollow particle is, the ratios R1
is always smaller than 1, which means that the critical time step given by the extended 1D 2-cell formula can guarantee
the simulation stability. However, near the right-top corner, the ratios R1 of the critical time step will sharply decrease
along the diagonal direction which is observed in the critical analysis in the standard MPM.42 However, as shown in
Figure 12C, in the ex-PFMPM based on the standard MPM, the value of R1 is rather small, because the 2-cell formula of
the ex-PFMPM based on the standard MPM highly underestimate the critical time step.

Next we assume the history field H = 10Gc∕lc to investigate the effect of the strain energy on the critical time step,
and the results are shown in Figures 13 and 14. In the ex-PFMPM based on the moving mesh MPM, the distribution and
direction of the isohypse in Figure 13A,B are similar to those in Figure 11A,B, respectively, except for the values of the
isohypse which are all under 0.3 and much smaller than those without the effect of the strain energy. And comparing
Figures 13C with 14C, the value of the isohypse in Figure 14C is much larger, which means the extension of the 2-cell

(A) (B) (C) 

F I G U R E 13 The critical time step versus the parent coordinate based on moving mesh material point method (MPM) with history
field H = 10Gc∕lc.

(A) (B) (C) 

F I G U R E 14 The critical time step versus the parent coordinate considering Eulerian parts with history field H = 10Gc∕lc.
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formula can give a more precise estimation for critical time step in practical use. In the the ex-PFMPM based on the
standard MPM, the distribution and direction of the isohypse in Figure 13A is similar to those in Figure 12A, but the ratio
given by solving the 400-cell system eigenvalue problem almost remain unchanged R400−cell ≈ 0.39 as shown in Figure 14B.

4.2 1D string with pre-existing crack

To verify the theoretical analysis in Section 3.3, a practical numerical example in one-dimensional condition is considered
in this section. As shown in Figure 15, a concentrated force F1 is applied at the left end of a 1D string with a pre-existing
crack in the middle. We set the Young’s modulus E = 10 MPa, material density 𝜌 = 1000 kg∕m3, section area A = 1 m2,
total length L = 1 m and the crack energy release rate Gc = 1 J∕m2. And, the computational domain is discretized into 100
uniform cells of length l = 0.01 m with 1 particle in each cell. The viscous dissipation parameter 𝜂 = 1, and the regulariza-
tion parameter lc = 2l = 0.02 m. All the numerical examples in these Sections 4.3–4.5 are simulated by the standard MPM.

Three tests are carried out. In Test 1, a pure phase field evolution problem is studied, in which the concentrated
force F1 = 0. The two constraint conditions Equations (84) and (85) of the phase field are not imposed, because they will
enhance the stability and are difficult to be considered in the theoretical analysis. The time step size used in each step is
determined by

Δt = CFL × Δtcr, (94)

where Δtcr is obtained by directly solving the system eigenvalue problem.
The error e = |

∑np
p=1d(xp)|∕np obtained with different parent coordinate rh are plotted in Figure 16. As Figure 16 shows,

the phase field update is stable when the CFL number equals 0.99 and unstable when CFL number equals 1.01 for all three
different parent coordinate rh of the hollow dot, which means that the critical time step given by the system eigenvalue
is the exact value of the critical time step. And it verifies our theoretical analysis in Section 3.3.

F I G U R E 15 One-dimension string with pre-existing crack for explicit phase field material point method (ex-PFMPM) test.

(A) (B) (C)

F I G U R E 16 The calculation error of different parent coordinate 𝜉h.
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In Test 2, the effect of the strain energy is studied. The concentrated force F1 applied at the left end is set to F1 = 0.1 N.
And the two constraint conditions Equations (84) and (85) of the phase field are considered. The displacements of the
1D string at time t = 0.1 s obtained with different time step sizes are shown in Figure 17A. The reference solution is the
simulation result obtained with 10,000 particles. As shown in Figure 17A, all simulations with time step size determined
by different estimation methods give stable simulation results. However, the simulation with 2-cell formula is the most
efficient as shown in Table 1. Compared to the critical time step determined by Equation (92), the 2-cell formula can give
a bigger time step which leads to less simulation steps. And compared to the critical time step determined by the system
eigenvalue, the 2-cell formula does not need to calculate the system eigenvalue which leads to less simulation cost in each
step, and results in higher simulation efficiency. And in the simulation with huge degree of freedom, the extra simulation
and storage cost of solving the system eigenvalue problem is prohibitive.

In Test 3, we set the concentrated force F1 = 20 N and the crack energy release rate Gc = 0.2 J∕m2. With this parameter
setting, the strain energy will seriously influence the critical time step of ex-PFMPM. And the two constraint conditions
Equations (84) and (85) of the phase field are considered. The displacement of the 1D string at time t = 0.1 s obtained
with different time step sizes are plotted in Figure 17B. As shown in Figure 17B, the simulation with time step size based
on the system eigenvalue and the 2-cell formula can give a stable simulation result, but the estimated time step given by
Equation (92) leads to an unstable simulation because of the ignoring of the strain energy in Equation (92). As shown in
Table 2, the simulation with the 2-cell formula is more efficient than that with the system eigenvalue. And the simulation
time difference is much bigger than that in Test 2, because the critical time step determined by the 2-cell formula is closer
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F I G U R E 17 The displacement of the 1D string at time t = 0.1 s.

T A B L E 1 Simulation time and steps of different method in Test 2.

Critical time
step formula

Total simulation
time for physical
simulation time 0.1 s

Total steps for
physical simulation
time 0.1 s

Original 1.013 s 4002

2-cell formula 0.619 s 2668

100-cell 2.761 s 1202

T A B L E 2 Simulation time and steps of different method in Test 3.

Critical time
step formula

Total simulation
time for physical
simulation time 0.1 s

Total steps for
physical simulation
time 0.1 s

Original Unstable Unstable

2-cell formula 0.738 s 3179

100-cell 5.007 s 2075



ZENG et al. 2701

to the critical time step determined by the system eigenvalue in the high stain energy level. This will lead to the less
simulation step difference.

In summary, the time step determined by the 2-cell formula is an efficient and relatively accurate estimation of the
precise critical time step, which is worth employed in numerical applications. In the next three section, the 2-cell formula
is used to determine the time step.

4.3 Dynamic crack branching

In this section, a dynamic crack branching process of a central crack in a plate under transient tensile loading is studied.
As shown in Figure 18, the specimen’s length L1 = 100 mm, width L2 = 40 mm and thickness t = 1 mm. The length of the
initial crack equals to 50 mm. The tensile stress of 1.0 MPa is applied continuously on the top and bottom surfaces of the
plate. The material density is 2450 kg∕m3, Young’s modulus and Poisson’s ratios are 32.0 GPa and 0.2, respectively, and
the energy release rate Gc = 3.0 J∕m2. The specimen is discretized by a set of particles with a spacing of Δ = 0.25 mm,
and the side length of the background grid cell for MPM is chosen as l = 0.5 mm. The critical length lc = 2l = 1 mm, and
the viscous dissipation parameter 𝜂 = 0.01. The total number of particles and the backgroud cells are 256,000 and 172,800,
respectively. During the simulation, the minimum time step size Δt = 1.20 × 10−8 s, and the total number of time steps
Nstep = 8076. This problem has been experimentally investigated by Sharon et al.43 and Fliss et al.44 and numerically
studied by Belytschko et al.45 by XFEM and Borden et al.10 by phase field method. These experimental and numerical
studies have shown that the crack will branch in the process of rapid propagation.

To test the influence of history field in the ex-PFMPM, the dynamic crack branching problem is simulated with and
without considering the history field H, respectively. The evolution of the phase field without considering the history field
is presented in Figure 19. The occurrence of a branched crack is observed at approximately t = 35 𝜇s and the crack tip
reaches at the material boundary at approximately t = 80 𝜇s, which agree well with the reported simulation results.10,29

F I G U R E 18 A plate with a central crack under transient tensile loading.

(A) (B) (C) (D)

F I G U R E 19 Evolution of the phase field through time in original configuration.
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Furthermore, the crack branching path and the distance between two crack tips near the material boundary is similar to
the reported results.10,29 Besides the evolution of the phase field considering the history field is presented in Figure 20.
The occurrence of the crack branching and the crack path is similar to the results shown in Figure 19, but the crack area
is slightly wider. This is because of the overestimation of the crack driving force with the use of history field, and a more
detailed comparison will be raised in the next section. The total strain energy and fracture energy during the simulation
process are shown in Figure 21A,B. The fracture energy is calculated by the particle integration of the following equation

Ef = Gc ∫Ω
(

1
2lc

d2 + lc

2
d
,id,i

)

dΩ. (95)

The total elastic strain energies plotted in Figure 21A demonstrate good agreement to Bordon’s Result, and the result
of the ex-PFMPM is more precise than the PFMPM with implicit time integration29 after t > 30 𝜇s, and the result between
the ex-PFMPM with and without considering the history field H is minor. The total fracture energy results shown in
Figure 21B are in perfect agreement with the results reported by Borden et al.10 Minor differences are observed in the
PFMPM with implicit time integration especially for time t > 40 𝜇s, but the results of the ex-PFMPM shows perfect
agreement.

4.4 Plate with a pre-existing crack under velocity boundary conditions

In this section, the crack growth is simulated. As shown in Figure 22A, an isotropic plate with a pre-existing crack in the
center is subjected to a velocity boundary condition on its horizontal edges. The initial length of the crack 2a0 = 10 mm,

(A) (B) (C) (D)

F I G U R E 20 Evolution of the phase field through time in original configuration with history field.

(A) (B)

F I G U R E 21 Plate under impact loading: (A) Total elastic strain energy; (B) Total fracture energy.
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F I G U R E 22 Plate with a pre-existing crack under velocity boundary conditions.

(A) (B) (C)

(D) (E) (F)

F I G U R E 23 Evolution of the phase field in the original configuration with history field.

the material density, Young’s modulus and Poisson’s ratios are 8000 kg∕m3, 192 GPa, and 1∕3, respectively. The length
and thickness of the square plate are 50 and 0.1 mm, respectively. The specimen is discretized by a set of particles with
a spacing of Δ = 0.1 mm, and the side length of the background grid cell for MPM is chosen as l = 0.2 mm. The critical
length lc = 2l = 0.4 mm, and the viscous dissipation parameter 𝜂 = 10. The total number of particles and the backgroud
cells are 250,000 and 90,000, respectively. During the simulation, the minimum time step sizeΔt = 1.47 × 10−9 s, and the
total number of time steps Nstep = 13,044. The critical energy release rate Gc = 8.8 × 104 J∕m2, and the velocity boundary
conditions are applied as shown in Figure 22B. The degradation function in this problem is taken as

gd(d) = [1 + (2 − s)d](1 − d)2, (96)

where s ∈ [0, 2] is a positive constant. Compared to the quadratic degrade function Equation (12), the degrade function
(96) can make the material keep elastic before the phase field reaches a higher value because s → 0 gives (𝜕gd(d)∕𝜕d)d=0 →
0. When s → 2, the degradation function degrades to the quadratic function. This degradation function is employed to
reduce the fake phase field update in the nonfracture area.

This numerical example is designed to show the difference of the solution of ex-PFMPM with and without considering
the history field H. The plate is loaded when 0 𝜇s < t < 5 𝜇s and unloaded when 5 𝜇s < t < 10 𝜇s, as shown in Figure 22B.
When considering the history field H, the crack driving force will not decrease during the unloading process, which may
lead to fake phase field increase as aforementioned. To verify this hypothesis, the evolution of the phase field obtained with
and without considering the history field are presented in Figures 23 and 24, respectively. This problem was numerically
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studied by Silling and Askari46 with Peridynamics (PD), and the crack growth distance and the fracture energy obtained
by the ex-PFMPM and PD are shown in Figure 25A,B.

As shown in Figures 23 and 24, both solutions can simulate the crack growth process which starts at about t = 6 𝜇s
and stops at about t = 10 𝜇s. And the crack growth distance also shows good agreement with the PD result.46 However,
comparing the results of two solutions of ex-PFMPM, the crack area is obviously wider in the solution considering the
history field at all time instants. And the phase field value in the nonfracture area obtained with considering the history
field is obviously larger than that without considering the history field, which means the fake phase field update happens.
Furthermore, the fake phase field update also leads to a fake crack growth at about t = 15 𝜇s, which indicates that in some
extreme conditions considering the history field may cause poor prediction of the crack growth path. A more distinct
evidence of the fake phase field update can be seen in Figure 25B. The total fracture energy obtained with considering
the history field is obviously larger than that without considering the history field and PD. In the theory of fracture
dynamics, the fracture energy will not change after the crack growth process stops at t = 10 𝜇s as shown by the PD results
in Figure 25B. However, the fracture energy of the two solutions of ex-PFMPM keeps increasing after the the crack growth
process stops, because the phase field is still updating, which is a fundamental characteristic of the phase field method.
And the fracture energy obtained by the ex-PFMPM with considering the history field have much larger deviation to

(A) (B) (C)

(D) (E) (F)

F I G U R E 24 Evolution of the phase field in the original configuration without history field.

(A) (B)

F I G U R E 25 Crack growth distance and total fracture energy of different solution.
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the PD, compared to the results without considering the history field, which is because of the fake phase field update.
Besides, the fracture energy obtained by the ex-PFMPM has a little decrease at t = 10 𝜇s, which is counterintuitive. It is
because of that only the monotonic increasing condition of the phase field d is guaranteed, but the monotonic increasing
condition of its gradient in Equation (95) can not be guaranteed, so the monotonic increasing of the fracture energy can
not be guaranteed.

4.5 Three-point bending

As shown in Figure 26, a three-point bending specimen with an edge crack is subjected to an eccentric impact. The
specimen’s length L1 = 400 mm, width L2 = 100 mm, thickness t = 10 mm. The length of the initial crack equals to 50 mm.
The material density is 1190 kg∕m3, Young’s modulus and Poisson’s ratios are 2.94 GPa and 0.3, respectively, and the
energy release rate Gc = 4.9 × 102 J∕m2. The impactor is a cylindrical body, which has a mass of m = 5.05 kg and an initial
velocity of v0 = 5 m∕s. The material of the stiff impactor is modeled with Ei = 200 GPa and vi = 0.25. The impact loading
eccentricity is defined as e = 2l∕L1. Nishioka and his co-workers studied this eccentric impact fracture experiments with
different loading eccentricity. This problem has been simulated by Guo and Nairn using CRAMP,47 and by Liang et al.
using XMPM48 with different crack incremental length.

To simulate this problem by ex-PFMPM without considering the history field, the specimen is discretized into a set
of particles with a spacing of Δ = 1 mm, and the side length of the background grid cell for MPM is chosen as l = 2 mm.
The critical length lc = 2l = 4 mm, and the viscous dissipation parameter 𝜂 = 0.1. The total number of particles of the
specimen and the backgroud cells are 400,000 and 154,350, respectively. During the simulation, the minimum time
step size Δt = 7.59 × 10−8 s, and the total number of time steps Nstep = 4354. The impact between the specimen and the
impactor is modelled by the contact algorithm proposed by Ma et al.49

As shown in Figure 27A, the central impact with e = 0.0 is modeled first. Due to the symmetry of the problem, the
crack will grow along its initial crack plane as the stretch wave arrives the crack tips. Figure 28 gives the crack length
versus time obtained by the CRAMP, experiment, XMPM and ex-PFMPM. The results show that the ex-PFMPM and

F I G U R E 26 A three-point bending specimen subjected to the eccentric impact.

(A) (B) (C) (D)

F I G U R E 27 The evolution of the crack with different eccentricity.
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F I G U R E 28 Crack growth length of different simulation method with e = 0.0.

(A) (B)

F I G U R E 29 Crack growth length and crack propagation path of different solution with e = 0.1.

XMPM can accurately capture the crack’s initial propagation time which is approximately at t = 0.16 ms, but the CRAMP
results in a slight delay on the start of crack growth. Furthermore, compared to CRAMP and XMPM, ex-PFMPM has better
prediction to the propagation length as shown in Figure 28. Both CRAMP and XMPM overestimate the crack growth
length compared to the experimental results, especially in CRAMP.

As shown in Figure 27B–D, the eccentric impact with e = 0.1, 0.2, and 0.3 are also simulated using the ex-PFMPM.
The eccentric impact will lead to a change in the crack direction towards the impact point. The general direction of all
the eccentric impact with e = 0.1, 0.2, and 0.3 is similar to that obtained by the experiments. Because Nishioka et al.50

only gave the experimental data for the eccentric impact with e = 0.1, the numerical comparison will only be conducted
for this experiment. Figure 29A plots the crack length versus time obtained by the experiment and ex-PFMPM, which
show that the ex-PFMPM have good agreement with the experiment. And Figure 29B shows the evolution of the crack
propagation paths. Although, the general direction obtained by CRAMP, XMPM, and ex-PFMPM is the same, ex-PFMPM
gives better prediction.

5 CONCLUSION

In this work, we proposed an explicit phase field material point method (ex-PFMPM) for brittle dynamic fracture prob-
lems. The rate-independent phase field governing equation is discretized by a set of particles. Based on this idea, the
simulation procedure of ex-PFMPM is established, in which the phase field is updated by the explicit forward-difference
time integration directly. Furthermore, the stability of ex-PFMPM is studied. A novel 1D 2-cell formula to calculate the
critical time step is obtained using the Gerschgorin’s theorem, which take the effect of the particle position in the back-
ground grids into account. The 1D 2-cell formula can give an underestimated critical time step, which can guarantee the
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simulation stability. The 1D 2-cell formula is extended to the 2D and 3D formulae based on the orthogonality of struc-
tural Eulerian mesh, which can also be used in the PF-FEM. In the PF-FEM, the currently used estimated formula of
the critical time step ignores the effect of the strain energy and may severely overestimate the critical time step, which
will lead to instability during the simulation. On the contrary, our formulae can provide a satisfactory estimation for the
critical time step in the PF-FEM with single-point Gaussian quadrature and the lumped mass matrix.

The proposed ex-PFMPM is considered to be efficient for the analysis of the dynamic fracture problem, and has the
potential to model the dynamic fracture problem with large deformation. A 1D string with pre-existing crack is studied
with ex-PFMPM, which indicates that the time step determined by the 2-cell formula is an efficient and relatively accurate
estimation of the precise critical time step and is worth employed in numerical applications. To test the ex-PFMPM, three
complex numerical examples are studied in this work, including a dynamic crack branching, a plate with pre-existing
crack under velocity boundary conditions and a three point bending problem. And the use of the history field in the
explicit method is investigated, which shows that it will lead to the fake phase field update and overestimation of the
fracture energy in the unloading case. All of the numerical results show that the proposed ex-PFMPM has the capacity
of modeling the crack initiation and propagation problems with both accuracy and efficiency. However, the proposed
work focus on the dynamic fracture problem in the elastical material. To get a better application prospect, future work in
computational modeling of the ex-PFMPM must account for the ductile fracture in the elastoplastic material with large
deformation.
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