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Abstract
The standard material point method (MPM) encounters severe numerical
difficulties in simulating shell structures. In order to overcome the shortcom-
ings of locking effects, the discretization size of background grid should be
small enough, usually smaller than 1/5 of the shell thickness, which however
will lead to prohibitive computational cost. A novel solid shell material point
method (SSMPM) is proposed to efficiently model the large deformation of thin
structures. The SSMPM describes the material domain of shell structures by
shell particles with hexahedral particle domains. The locking treatments of solid
shell element are then introduced in SSMPM, which results in the correction of
strain field throughout the shell thickness. Namely, the assumed natural strain
(ANS) method is adopted to eliminate the shear locking and trapezoidal lock-
ing, while the enhanced assumed strain (EAS) method is employed to eliminate
the thickness locking. With the precise description of bending modes, a single
layer of particles and a coarse background grid could be used in shell structure
simulations with the SSMPM, which dramatically increases the computational
efficiency. A local multi-mesh contact method is presented to naturally couple
SSMPM and MPM for the contact situations of shells with other objects. Several
numerical examples, including beam vibration, pinched cylinder with free edges
and full hemispherical shell, are performed to verify and validate the SSMPM,
which shows that the SSMPM considerably outperforms the standard MPM in
these situations. A fluid–structure interaction problem and the penetration of a
thin plate are investigated based on the contact method and the results are in
good agreement with those in the literature.
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1 INTRODUCTION

Shell structures have a wide range of applications in engineering practice, and always play a significant role in large-span
situations, such as the wings of airplanes and the hulls of ships. For safety and security, large deformation and destruction
of shell structures under extreme load conditions have attracted great attention. With the large span of shell struc-
tures and inhomogeneous material distribution, experiments of equal proportion are ordinarily expensive, while the
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results corresponding to scaled models under the same experimental conditions may vary from each other. Therefore, the
development of efficient and powerful algorithms to simulate complicated responses of shell structures remains an active
field of research.

Solid shell elements1-10 in finite element method (FEM) have been successfully applied in the moderate and mild
deformation of shell structures. However when simulating extreme deformation and fragmentation of shell structures,
traditional mesh-based methods suffer from mesh distortion and violate the law of mass conservation with erosion algo-
rithms, while mesh-free methods demonstrate outstanding advantages. As a typical representative of mesh-free methods,
the material point method (MPM)11,12 adopts a set of Lagrangian particles moving through Eulerian background grid to
surmount the challenges in simulations of extreme deformation. The MPM has shown its success in simulating various
kinds of extreme deformation events during these decades, such as hyper velocity impact,13-16 penetration,17,18 fracture
evolution19-22 and fluid–structure interaction.23-26 And plenty of variants have been proposed to improve the accuracy
and stability of MPM.27-33 Bardenhagen et al.27 developed the generalized interpolation material point (GIMP) method
by accounting for spatial volume of each particle to reduce the cell crossing noise caused by the discontinuity in the gra-
dient of linear shape function. Sadeghirad et al.31 presented the convected particle domain interpolation (CPDI) method
with parallelogram particle domains to track the material motion, which is more accurate and efficient than GIMP.
And the particle domains have been further extended to quadrilaterals in 2-D (hexahedra in 3-D) by tracking their cor-
ner positions in the second-order convected particle domain interpolation (CPDI2) method.32 Steffen et al.29 adopted
smoother basis functions including the quadratic and cubic B-spline as background grid basis function to decrease
the integration errors. Liang et al.33 proposed the staggered grid material point (SGMP) method with the volume inte-
grals in the weak form evaluated by cell center quadrature instead of particle quadrature to eliminate the cell crossing
noise.

Formulations for shell structures have been established in various mesh-free methods, such as the smoothed particle
hydrodynamics (SPH),34,35 element-free Galerkin (EFG) method,36-38 reproducing kernel particle method (RKPM)39-42

and peridynamics (PD).43,44 Krysl and Belytschko37 introduced the Kirchhoff–Love theory in EFG method to carry
out the static analysis of thin shells, where the C1 continuity was easily achieved by moving least-squares approxi-
mation. Wang and Chen38 proposed a meshfree Mindlin–Reissner plate formulation and eliminated the shear locking
by imposing Kirchhoff mode reproducing conditions. For the dynamic responses, Maurel and Combescure35 pre-
sented a SPH shell formulation based on the Mindlin–Reissner’s thick shell theory for the simulation of shell fracture
under impact. Peng et al. introduced the shell formulation in RKPM for the large deformation of curved shells41

and further studied the dynamic fracture.42 It is attractive that these formulations can discretize shell structures
with a single layer of particles and can be implemented naturally in the framework of corresponding mesh-free
methods.

The standard MPM has been used to simulate beam and shell structures in different situations.45-49 With both explicit
and implicit MPM, Chen et al.46 investigated the vibration of a cantilever beam. De Vaucorbeil and Nguyen47 employed
the total Lagrangian MPM to simulate a collision with large deformation of two hollow cylindrical shells. Ni et al.49

applied MPM to study the fragmentation of a cylindrical shell under blast loading. Although satisfactory results were
obtained by the MPM in their simulations, the discretization size of background grid was all taken as 1/8 of the shell
thickness, which would lead to prohibitive computational cost. Several locking phenomena induced by the trilinear
shape function will result in an overestimation of stress state and an underestimation of deformation when adopting
a coarse background grid. And thus, the discretization size of background grid should be small enough for shell sim-
ulations with the standard MPM, usually smaller than 1/5 of the shell thickness.50 Similar to the standard MPM, the
CPDI2 also needs a fine background grid for shell structures. In order to obtain an accurate result of a cantilever beam,
Nguyen et al.51 set the size of grid cell as 1/8 of the thickness in CPDI-T4 which is a version of CPDI2 with tetrahe-
dral particle domains. However to our best knowledge, there is a handful of literature about MPM shell formulations
which can effectively surmount these numerical difficulties. Guo et al.52 combined MPM and subdivision finite ele-
ments for thin-shell simulations with frictional contact, which provided a powerful tool for contact scenarios. With the
Kirchhoff–Love theory, C1 continuous interpolating functions were required over the shell mid-surface and the range of
applications was limited to thin shells. Kang et al.53 presented a MPM beam formulation by introducing the rotational
degrees of freedom (DOFs) for dynamic responses under frictional contacts, which so far has not been extended to a shell
formulation.

A novel solid shell material point method (SSMPM) is put forward in this paper by introducing solid shell formu-
lation, which incorporates the bending modes of solid shell element in the MPM. The SSMPM describes the material
domain of shell structures by shell particles with hexahedral particle domains. The locking treatments of solid shell
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LI et al. 3

element are then introduced in SSMPM, which results in the correction of strain field throughout the shell thickness.
The assumed natural strain (ANS) method54,55 is adopted to eliminate the shear locking and trapezoidal locking,56,57

while the enhanced assumed strain (EAS) method58,59 is employed to eliminate the thickness locking. With the precise
description of bending modes, a coarse background grid could be used in shell structure simulations with SSMPM, which
dramatically increases the computational efficiency. The SSMPM and MPM share the same nodal DOFs, so that the
local multi-mesh contact method18,60 is presented to naturally couple them for the contact situations of shells with other
objects. Furthermore, adaptively converting the SSMPM shell particles into the standard MPM particles is readily, which
makes SSMPM a promising method to simulate the extreme deformation and fragmentation of shell structures. Several
numerical examples, including pinched cylinder with end diaphragms, beam vibration, pinched cylinder with free edges
and full hemispherical shell are performed to verify and validate the proposed method, and numerical results show that
the SSMPM considerably outperforms the standard MPM in these situations. A fluid–structure interaction problem and
the penetration of a thin plate are investigated based on the contact method and the results are in good agreement with
those in the literature.

The rest of this article is organized as follows. In Section 2, the basic idea of MPM and its shortcomings in shell
simulations are briefly reviewed. Then, Section 3 presents the detailed methodology of the proposed SSMPM in terms
of the shell particle and locking treatments. And a local multi-mesh contact method for coupling SSMPM and MPM is
presented in Section 4. The algorithm summary and remark of SSMPM are given in Section 5. Validations and benchmark
simulations are presented in Section 6. Finally Section 7 gives the conclusion.

2 MATERIAL POINT METHOD

The weak form equivalent to momentum equations and traction boundary condition in updated Lagrangian formulation
is given as

∫Ω 𝜌ü ⋅ 𝛿udV + ∫Ω 𝝈 ∶ 𝛿𝜺dV − ∫Ω 𝜌b ⋅ 𝛿udV − ∫Γt

t ⋅ 𝛿udA = 0, (1)

where Γt denotes the traction boundary of material domain Ω, 𝜌 is the current density, u is the displacement, 𝛿u is the
virtual displacement, 𝝈 is the Cauchy stress in the current configuration, 𝜺 is the Cauchy strain, b is the body force per
unit mass and t is the traction on the boundary.

2.1 Standard MPM

The standard MPM adopts Lagrangian particles and an Eulerian background grid for spatial discretization. And leapfrog
central difference integration scheme can be used for temporal discretization in the explicit MPM. Its computational
process in each time step consists of four steps: (1) particle-to-grid projection, (2) background grid momentum updating,
(3) grid-to-particle mapping and particle updating, and (4) resetting the background grid.

2.1.1 Spatial discretization

The standard MPM discretizes the material domain Ω into a set of Lagrangian particles moving through an Eulerian
background grid, as shown in Figure 1. The particles act as quadrature points in calculating the integration of weak form
equation, and material density can be given by

𝜌(x) =
np∑

p=1
mp𝛿(x − xp), (2)

where the subscript p denotes the variables associated with particle p, np is the total number of particles, mp is the mass
of particle p, 𝛿 is the Dirac delta function with dimension of the inverse of particle volume, x is the spatial coordinates in
the current configuration, and xp is the coordinates of particle p.
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4 LI et al.

F I G U R E 1 Spatial discretization of the standard MPM.

The displacement field u(x) of the computational domain is interpolated from the grid nodal displacement uI by the
shape function NI(x) of each grid node I, namely

u(x) =
n g∑

I=1
NI(x)uI , (3)

where the subscript I denotes the variables associated with the grid node I, n g is the total number of background grid
nodes, NI(x) is the linear/bilinear/trilinear shape function in 1D/2D/3D as that used in the FEM.

Substituting Equations (2) and (3) into the weak form Equation (1) and invoking the arbitrariness of the virtual
displacement 𝛿uI lead to the discretized momentum equations at each grid node

ṗI = f int
I + f ext

I , ∀xI ∉ Γu (4)

in which Γu is the displacement boundary of the material domain,

pI = mIu̇I (5)

is the momentum at grid node I,

mI =
np∑

p=1
mpNI(xp) (6)

is the lumped grid mass matrix,

f int
I = −

np∑

p=1
∇NIp ⋅ 𝝈pVp (7)

and

f ext
I =

np∑

p=1
mpNIpbp +

np∑

p=1
NIptph−1Vp (8)

are the internal and external nodal forces, respectively. In Equation (7), NIp = NI(xp) is the shape function of the node I
evaluated at the position of particle p, 𝝈p is the stress of particle p and Vp is the volume of particle p. In Equation (8), bp is
the body force per unit mass of particle p, tp is the traction of particle p and h is the thickness of the fictitious layer used
to convert the surface integral into a volume integral. Here, the strain rate 𝜺̇p and vorticity rate 𝜴̇p for calculating 𝝈p are
given as

𝜺̇p =
1
2
(

vI ⊗ ∇NIp + ∇NIp ⊗ vI
)
, (9)

𝜴̇p =
1
2
(

vI ⊗ ∇NIp − ∇NIp ⊗ vI
)
, (10)

where vI is the grid nodal velocity.
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LI et al. 5

2.1.2 Temporal discretization

The leapfrog central difference integration scheme61 is used in the present work. The velocity vn+1∕2
I at time tn+1∕2 and the

displacement un+1
I at time tn+1 can be updated as

vn+1∕2
I = vn−1∕2

I + an
IΔtn

, (11)

un+1
I = un

I + vn+1∕2
I Δtn+1∕2

, (12)

where

Δtn = 1
2
(
Δtn−1∕2 + Δtn+1∕2) (13)

is the time step at time tn and Δtn+1∕2 = tn+1 − tn, and an
I is the acceleration at time tn calculated by Equation (4). For the

stability requirement of central difference method, the critical time step12 is given as

Δtcr =
d g

max
p

(
cp + ||vp||

) , (14)

where d g is the grid cell size, cp is the sound speed of particle p and vp is the velocity of particle p.
After updating the background grid momentum, physical variables of particles are updated by grid-to-particle

mapping

vn+1∕2
p = vn−1∕2

p +
n g∑

I=1
NIpan

IΔtn
, (15)

xn+1
p = xn

p +
n g∑

I=1
NIpvn+1∕2

I Δtn+1∕2
, (16)

The process of updating the stress can be carried out at the beginning of each time step or at the end of each time
step, which are referred to the update-stress-first (USF) scheme and the update-stress-last (USL) scheme, respectively.
In the modified update-stress-last (MUSL) scheme, the grid nodal velocity obtained by projecting the updated particle
momentum back to the grid nodes is used to update the stress. The USL scheme is highly dissipative. Ni and Zhang62

proved that the USL scheme suffers from an extremely small critical time step when cell-crossing phenomenon occurs.
Thus, the USF scheme is used in this work.

2.2 Shortcomings of the standard MPM in shell simulations

The MPM suffers from several locking phenomena when modeling shell structures with a coarse background grid.
For the sake of clarity, the pure bending deformation of a shell is studied. A coarse background grid whose cell
size equals the shell thickness is adopted as shown in Figure 2A. In the thickness direction, only one layer of grid
cells with trilinear shape function is involved in calculating the strain of particles. As one of the cells shown in
Figure 2B, the initial configuration is represented by black dashed lines. The trilinear shape function of its node I is
given as

NI(𝜉, 𝜂, 𝜁) =
1
8
(1 + 𝜉I𝜉)(1 + 𝜂I𝜂)(1 + 𝜁I𝜁), (17)

where (𝜉, 𝜂, 𝜁) are the natural coordinates. A trilinear displacement field u(x) in the cell is obtained after substituting
the shape function into Equation (3). With this displacement field, the deformed configuration of the cell in Figure 2B is
different from the correct bending configuration (blue solid lines) in Figure 2C, which leads to shear locking, trapezoidal
locking56 and thickness locking1 in the cell.
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6 LI et al.

F I G U R E 2 Bending process of MPM with a coarse background grid.

F I G U R E 3 Discretized model of MPM with a fine background grid.

(1) Shear locking appears with the spurious transverse shear strains at particles. The transverse shear strains of correct
bending configuration are zero, while non-zero values at particles will be obtained by the trilinear shape function.

(2) Trapezoidal locking56,57 occurs with the geometry of the cell becoming trapezoidal, which is inevitable. As shown in
Figure 2B, the edge directors (the vectors from the lower node to the upper node of the edges) are not perpendicular
to the mid-surface (red dashed line), which means the fibers along the thickness direction are stretched. That is, the
trilinear shape function results in spurious transverse normal strain at particles.

(3) Thickness locking1 happens with the artificial normal stress in the thickness direction. For simplicity, the elastic
constitutive model is considered, in which the stress 𝜎𝜁𝜁 is given as

𝜎𝜁𝜁 = 𝜆
(
𝜀𝜉𝜉 + 𝜀𝜂𝜂

)
+ (𝜆 + 2𝜇)𝜀𝜁𝜁 , (18)

where 𝜆 and 𝜇 are Lame constants, and 𝜀𝜁𝜁 , 𝜀𝜉𝜉 , and 𝜀𝜂𝜂 are the normal strains. In the pure bending configuration of
the cell, 𝜀𝜁𝜁 is constant in the thickness direction, while 𝜀𝜉𝜉 and 𝜀𝜂𝜂 vary linearly in the thickness direction, so that a
linear 𝜎𝜁𝜁 stress distribution is obtained. However, this artificial normal stress in the thickness direction contradicts
the plane stress assumption, 𝜎𝜁𝜁 = 0, in shell theory.

The locking phenomena lead to an overestimation of the strain and stress of particles and an underestimation of the
deformation, which means an over stiff behavior of shell structures. In Section 6.2, this behavior is shown by the example
of beam vibration. If the cell size of background grid is 1∕2 of the shell thickness, the upper cells will be stretched and the
lower cells will be compressed to describe bending deformation, which could alleviate the locking phenomena. However
for the shell structure with large curvature in Section 6.4, the results of MPM are still wrong although taking the grid cell
size as 1∕2 of the shell thickness.

In order to eliminate the locking phenomena, the discretization size of background grid should be small enough, usu-
ally smaller than 1/5 of the shell thickness,50 which however will lead to prohibitive computational cost. The discretized
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LI et al. 7

model of the shell with a fine background grid is shown in Figure 3, where only the particles at the boundary are depicted
for clarity. Compared with the coarse background grid in Figure 2, the length of each side of hexahedron cell is shortened
to 1∕5 and the number of grid cells increases by a factor of 53 = 125. Besides, the time step is reduced to 1∕5 with the
critical time step in Equation (14). Hence, the computational cost becomes 54 = 625 times that of the coarse background
grid, which is undesirable and further illustrated in Section 6.2.

3 SOLID SHELL MATERIAL POINT METHOD

In the present work, to simulate the deformation of shell structures with high computational efficiency, a novel solid
shell material point method (SSMPM) is proposed by introducing the concept of shell particle and bending modes of solid
shell element in material point method. In Section 3.1, the shell particle of SSMPM is presented. In order to describe the
difference of strain field throughout the shell thickness, quadrature points are set on the shell particle domain. With the
locking treatments in Section 3.2, a single layer of shell particles on a coarse background grid is able to correctly and
efficiently simulate the deformation of shell structures.

3.1 Shell particle

Figure 4 shows how the SSMPM represents the deformation of shell structures. In order to accurately describe the material
domain in the framework of MPM, a single layer of shell particles with hexahedral particle domains is employed. The
positions of the particle corners are also updated after integrating momentum equations on the background grid nodes to
track the geometry of the particle domain. And in the present work, particle corners have only displacement DOFs which
significantly facilitates the coupling with standard MPM particles. To calculate the correct strain field throughout the
shell thickness, Gauss quadrature points (marked as “ ×” in Figure 4) are introduced into the shell particle. That means,
the variation of strain field over the particle domain is considered, which is different from the CPDI2.32

Based on the concept of the shell particle, after projecting the grid nodal displacement uI to particle corners with the
shape function NI(x) of each grid node I, the displacement field u(x) of the computational domain is interpolated from
the particle corner displacement uc by the shape function Sc(x) of each particle corner c, namely

u(x) =
nc∑

c=1
Sc(x)uc, (19)

F I G U R E 4 Computational process of the SSMPM.
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8 LI et al.

uc =
n g∑

I=1
NIcuI , (20)

where the subscript c denotes the variables associated with particle corner c, nc is the total number of particle corners,
Sc(x) is the trilinear shape function as that used in the FEM and NIc = NI(xc) is the shape function of the node I evaluated
at the position of particle corner c.

Substituting Equations (19) and (20) into the weak form Equation (1) and invoking the arbitrariness of the virtual
displacement 𝛿uI lead to the same discretized momentum equations at each grid node as Equation (4). For the SSMPM,
the lumped grid mass matrix is given by

mI =
nc∑

c=1
NIcmc, (21)

where

mc =
np∑

p=1

nq∑

q=1
Sp

cq𝜌V p
q (22)

is the mass of particle corner c. In Equation (22), Sp
cq = Sp

c (𝝃q) is the shape function related to the cth corner of shell
particle p evaluated at the qth quadrature point, V p

q is the volume at the qth quadrature point of shell particle p and nq is
the number of quadrature points in a shell particle. The internal nodal force is

f int
I =

nc∑

c=1
NIcf int

c , (23)

where

f int
c = −

np∑

p=1

nq∑

q=1
∇Sp

cq ⋅ 𝝈
p
qV p

q (24)

is the internal force of particle corner c, and 𝝈p
q is the stress at the qth quadrature point of shell particle p. The external

nodal force is

f ext
I =

nc∑

c=1
NIcf ext

c , (25)

where

f ext
c =

np∑

p=1

nq∑

q=1
Sp

cq𝜌bp
qV p

q (26)

is the external force of particle corner c with the traction term omitted for simplicity, and bp
q is the body force per

unit mass of particle p at its qth quadrature point. Here, the strain rate and vorticity rate for calculating 𝝈p
q are

given as

𝜺̇
p
q =

1
2
(

vc ⊗ ∇Sp
cq + ∇Sp

cq ⊗ vc
)
, (27)

𝜴̇

p
q =

1
2
(

vc ⊗ ∇Sp
cq − ∇Sp

cq ⊗ vc
)
, (28)

where vc is the velocity of particle corner c, 𝜺̇p
q and 𝜴̇p

q are the strain rate and vorticity rate at the qth quadrature point of
shell particle p respectively.
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LI et al. 9

For the computational process of SSMPM in Figure 4A, the grid nodal mass and forces are calculated by Equations
(21)–(26), and the nodal momentum is given by

pI =
nc∑

c=1
NIcmcvc. (29)

In Figure 4B, after updating the grid nodal acceleration an
I at time tn and velocity vn+1∕2

I at time tn+1∕2 by the same method
as MPM, the velocities and positions of shell particle corners are updated by

vn+1∕2
c = vn−1∕2

c +
n g∑

I=1
NIcan

IΔtn
, (30)

xn+1
c = xn

c +
n g∑

I=1
NIcvn+1∕2

I Δtn+1∕2
, (31)

so that the updated geometry of shell particles can be obtained in Figure 4C.

3.2 Locking treatments

The shear locking, trapezoidal locking and thickness locking would cause an over stiff behavior of shell structures when
using the shell particles in Section 3.1. The SSMPM avoids the locking effects by applying the assumed natural strain
(ANS) method and enhanced assumed strain (EAS) method to the shell particles.

3.2.1 Assumed natural strain (ANS) method

The assumed natural strain method54,55,57 is a successful tool to eliminate the shear locking and trapezoidal locking. The
transverse normal strain 𝜀𝜁𝜁 and transverse shear strains 𝜀𝜂𝜁 , 𝜀𝜁𝜉 at the quadrature points of shell particles are spurious
due to the trilinear shape function of particle corners, which is detailed in Section 2.2. However, the above strain com-
ponents can be correctly represented at suitable locations where required kinematic constraints for shell structures are
satisfied.57

In the natural coordinate system of the shell particle shown in Figure 5, the suitable locations called sampling points
are located at the midpoints of the edges. Among these points, 𝜀𝜁𝜁 is correct at sampling points S1, S2, S3, S4, 𝜀𝜂𝜁 , and
𝜀𝜁𝜉 are respectively correct at sampling points S5, S6, S7, S8, and S9, S10, S11, S12. In the ANS method, the respective strain
components are evaluated at sampling points. Afterwards, the following interpolation schemes are conducted to calculate
the values at quadrature points:

𝜀
p
𝜁𝜁q =

1
4

S4∑

I=S1

(
1 + 𝜉I𝜉q

)(
1 + 𝜂I𝜂q

)
𝜀

p
𝜁𝜁I , (32)

F I G U R E 5 Diagram of the ANS method.
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10 LI et al.

𝜀
p
𝜂𝜁q =

1
4

S8∑

I=S5

(
1 + 𝜉I𝜉q

)(
1 + 𝜁I𝜁q

)
𝜀

p
𝜂𝜁I , (33)

𝜀
p
𝜁𝜉q =

1
4

S12∑

I=S9

(
1 + 𝜂I𝜂q

)(
1 + 𝜁I𝜁q

)
𝜀

p
𝜁𝜉I , (34)

where 𝜀p
𝜁𝜁q, 𝜀p

𝜂𝜁q, and 𝜀p
𝜁𝜉q are the strain components at the quadrature point q of shell particle p, and 𝜀p

𝜁𝜁I , 𝜀
p
𝜂𝜁I , and 𝜀p

𝜁𝜉I
are the strain components at the sampling point I of shell particle p.

3.2.2 Enhanced assumed strain (EAS) method

For the sake of clarity in this section, the variables with overbar or subscript 𝜉, 𝜂, 𝜁 represent those in the natural coor-
dinate system (𝜉, 𝜂, 𝜁) and the others denote those in the global coordinate system (x, y, z). For instance, the strains
in the natural and global coordinate system are 𝜺 and 𝜺 respectively. The strain and stress are written in the vec-
tor form in this section, which means 𝜺 =

[
𝜀𝜉𝜉 𝜀𝜂𝜂 𝜀𝜁𝜁 𝜀𝜉𝜂 𝜀𝜂𝜁 𝜀𝜁𝜉

]T, 𝜺 =
[
𝜀xx 𝜀yy 𝜀zz 𝜀xy 𝜀yz 𝜀zx

]T, and
𝝈 =

[
𝜎xx 𝜎yy 𝜎zz 𝜎xy 𝜎yz 𝜎zx

]T.
As illustrated in Section 2.2, the thickness locking will occur in shell particles due to the trilinear shape function of

particle corners. In order to prevent thickness locking, the enhanced assumed strain method58,59 is adopted in this work.
Its core idea is to enhance the constant normal strain in the thickness direction by a linear extension. That is, in the
natural coordinate system of the shell particle in Figure 5, the total strain field 𝜺 is split into the compatible strain field 𝜺c
and enhanced assumed strain field 𝜺e as follows

𝜺 = 𝜺c + 𝜺e, (35)

where 𝜺c = Bcu, Bc is the strain operator, u is the displacement of particle corners, and the enhanced assumed strain field
is interpolated in the shell particle by

𝜺e = Be𝜶, (36)

where Be is the enhanced assumed strain operator and 𝜶 is the enhanced degrees of freedom set at the particle centroid.
To obtain a linear distribution of the normal strain in the thickness direction 𝜀𝜁𝜁 , there are three options1,3,9,10 for Be and𝜶

Be =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0
0
𝜁

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0
0 0 0
𝜁 𝜉𝜁 𝜂𝜁

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0
0 0 0 0
𝜁 𝜉𝜁 𝜂𝜁 𝜉𝜂𝜁

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (37)

𝜶 = [𝛼1] ,
⎡
⎢
⎢
⎢⎣

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥⎦
, or

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝛼1

𝛼2

𝛼3

𝛼4

⎤
⎥
⎥
⎥
⎥
⎥⎦

. (38)

The second type is adopted in the examples of Section 6. The thickness locking deficiency is then avoided by employing the
enhanced assumed strain field 𝜺e. In the global coordinate system, the compatible strain field 𝜺c and enhanced assumed
strain field 𝜺e are given by

𝜺c = T𝜺c, (39)

𝜺e = Te𝜺e, (40)

where T is the transformation matrix as defined in Klinkel et al.5 and the transformation matrix Te will be given later.
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LI et al. 11

With the definition of the enhanced assumed strain 𝜺e = 𝜺 − 𝜺c, the approximate integral of the relation between strain
and displacement

∫Ω 𝛿𝝈
T(𝜺 − 𝜺c)dV = 0 (41)

becomes

∫Ω 𝛿𝝈
T
𝜺edV = 0 (42)

which is called the orthogonality condition. In order to enforce Equation (42) to satisfy the patch test over each shell
particle, the transformation matrix Te for the enhanced assumed strain field58 is taken as

Te =
|J0|
|J| T0, (43)

where J0 and T0 are the Jacobian matrix and transformation matrix at the particle centroid.
Substituting Equations (35), (39) and (40) into the weak form Equation (1), the second term of the weak form can be

given as

∫Ω (𝛿𝜺c + 𝛿𝜺e)T𝝈dV = 0, (44)

where 𝛿𝜺e = Be𝛿𝜶 and the enhanced degrees of freedom 𝜶 are the mean values in each particle. Then, invoking the
arbitrariness of 𝛿𝜶, a discretized equation over each shell particle is given as

f EAS
p = 0, (45)

where

f EAS
p =

nq∑

q=1
BT

e,q𝝈
p
qV p

q . (46)

In each shell particle, Equation (45) can be solved by Newton iteration algorithm. In each iteration, the stress field is
calculated by

𝝈
n+1
q,i = 𝝈n

q +Dep,qi

(
Δ𝜺n

c,q + Δ𝜺n
e,qi

)
, (47)

where Dep,qi is the elastic–plastic constitutive matrix at the qth quadrature point and i is the number of iterations. For
Δ𝜺n

c,q in Equation (47), the modification applied to the compatible strain by ANS method, Equations (32)–(34), is included
to eliminate shear locking and trapezoidal locking. Then Equation (46) is rewritten as

f EAS,n+1
p,i =

nq∑

q=1
BT

e,q
[
𝝈

n
q +Dep,qi

(
Bc,qΔun + Be,qΔ𝜶n

i
)]

V p
q . (48)

The tangent in Newton iteration algorithm is given as

𝜕f EAS,n+1
p,i

𝜕Δ𝜶n
i

= Ke,i =
nq∑

q=1
BT

e,qDep,qiBe,qV p
q . (49)

Therefore, the enhanced degrees of freedom at particle centroid can be updated by

Δ𝜶n
i+1 = Δ𝜶

n
i −

(
𝜕f EAS,n+1

p,i

𝜕Δ𝜶n
i

)−1

f EAS,n+1
p,i . (50)
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12 LI et al.

For elastic deformation, the tangent is independent of Δ𝜶n
i so that only one iteration is needed. For plastic deformation,

the convergence rate is fast because the deformation of particles is small in the small time steps of explicit algorithm. For
instance, the example in Section 6.4 achieves accurate results with no more than five iterations.

4 LOCAL MULTI-MESH CONTACT METHOD

Local multi-mesh contact method18 has been developed to couple two MPM bodies through the background grid. Fur-
thermore, it was put forward to couple a FEM body and a MPM body in the coupled finite element material point
(CFEMP) method.60 From Section 3, it can be found that the SSMPM and MPM share the same nodal DOFs and
they have a similar computational framework. Therefore, a local multi-mesh contact method is presented to naturally
couple the SSMPM and MPM for the contact situations of shells with other objects. The contact method is also appli-
cable to the contact situations of shell structures if the MPM body is replaced by SSMPM body, which will not be
repeated.

The coupling of body r modeled by MPM and body s modeled by SSMPM is shown in Figure 6. In each time step, the
velocities of two bodies at the same grid node can be obtained after independently updating body r and body s. And then,
the contact state of each grid node is detected by its velocities of two bodies. Contact forces should be imposed between
body r and body s to prevent penetration if contact occurs.

4.1 Contact detection

The contact detection is based on the velocity fields of two bodies at background grid nodes. After calculating grid nodal
mass and momentum by mapping those of MPM particles and SSMPM particle corners, the velocity of body b(b = r, s) at
grid node I is given as

vb,n−1∕2
iI =

pb,n−1∕2
iI

mb,n
I

. (51)

Contact may take place at grid node I if its velocity is contributed by the two bodies. Furthermore, body r and body s will
contact in the vicinity of grid node I if the following condition is satisfied

(
vr,n−1∕2

iI − vs,n−1∕2
iI

)
nr,n

iI > 0, (52)

where nr,n
iI is the unit outward normal on the surface of body r at grid node I. nr,n

iI of MPM body can be calculated by the
gradient of the mass63 as

nr,n
iI = 1

|||
∑np

p=1NIp,imp
|||

np∑

p=1
NIp,imp (53)

F I G U R E 6 Diagram of coupling SSMPM with MPM.
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LI et al. 13

or by nr,n
iI = −ns,n

iI , where ns,n
iI is the unit outward normal on the surface of SSMPM body at grid node I. With the surfaces

of shell particles, ns,n
iI can be obtained by normalizing the normal vectors on the surfaces in which contact particle corners

contributing to the grid node I are located.
Multiplied by mr,n

I ms,n
I , Equation (52) is rewritten in a momentum form as

(
ms,n

I pr,n−1∕2
iI −mr,n

I ps,n−1∕2
iI

)
nr,n

iI > 0. (54)

Contact between two bodies will be detected earlier than actual contact time with Equation (54), so that the improved
contact detection method18 is adopted here to avoid the earlier contact. The sizes of SSMPM particle domains should not
exceed three grid cell sizes for proper contact detection.

4.2 Contact force

Contact force f b,c,n
iI should be imposed on two bodies to prevent penetration if contact occurs at grid node I. After that,

the momentum pb
iI of body b(b = r, s) is updated by

pb,n+1∕2
iI = pb,n+1∕2

iI + Δtnf b,c,n
iI , (55)

where

pb,n+1∕2
iI = pb,n−1∕2

iI + Δtnf b,n
iI (56)

is the trial grid nodal momentum and f b,c,n
iI is the contact force applied on body b at time tn. And the updated momentum

should satisfy the impenetrability condition
(

ms,n
I pr,n+1∕2

iI −mr,n
I ps,n+1∕2

iI

)
nr,n

iI = 0. (57)

The normal contact force f nor,n
I = f r,c,n

iI nr,n
iI = −f s,c,n

iI nr,n
iI can be obtained by substituting Equation (55) into Equation

(57) as

f nor,n
I = −

(
ms,n

I pr,n+1∕2
iI −mr,n

I ps,n+1∕2
iI

)
nr,n

iI
(

mr,n
I +ms,n

I
)
Δtn

= f nor,n
I,1 + f nor,n

I,2 , (58)

where

f nor,n
I,1 = −

(
ms,n

I pr,n−1∕2
iI −mr,n

I ps,n−1∕2
iI

)
nr,n

iI
(

mr,n
I +ms,n

I
)
Δtn

, (59)

f nor,n
I,2 = −

(
ms,n

I f r,n
iI −mr,n

I f s,n
iI

)
nr,n

iI

mr,n
I +ms,n

I
. (60)

For stick contact, there is the non-slip condition
(

ms,n
I pr,n+1∕2

iI −mr,n
I ps,n+1∕2

iI

)
tr,n
iI = 0. (61)

Substituting Equation (55) into Equation (61), the tangential contact force f stick,n
I = f r,c,n

iI tr,n
iI = −f s,c,n

iI tr,n
iI is given as

f stick,n
I =

(
ms,n

I pr,n+1∕2
iI −mr,n

I ps,n+1∕2
iI

)
tr,n
iI

(
mr,n

I +ms,n
I
)
Δtn

=

(
ms,n

I pr,n−1∕2
iI −mr,n

I ps,n−1∕2
iI

)
tr,n
iI

(
mr,n

I +ms,n
I
)
Δtn

+
(

ms,n
I f r,n

iI −mr,n
I f s,n

iI

)
tr,n
iI

mr,n
I +ms,n

I
, (62)
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14 LI et al.

where

tr,n
iI =

(
vr,n−1∕2

iI − vs,n−1∕2
iI

)
−
(

vr,n−1∕2
jI − vs,n−1∕2

jI

)
nr,n

jI nr,n
iI

||||

(
vr,n−1∕2

iI − vs,n−1∕2
iI

)
−
(

vr,n−1∕2
jI − vs,n−1∕2

jI

)
nr,n

jI nr,n
iI

||||

(63)

is the unit tangent at grid node I.
For slip contact, the Coulomb friction model is employed. The friction force is limited to 𝜇‖‖f nor,n

I
‖‖, where 𝜇 is the

friction coefficient, namely

f tan,n
I = min

(
𝜇‖‖f nor,n

I
‖‖,
‖‖‖f stick,n

I
‖‖‖
)
. (64)

Therefore, the contact force for body b is calculated by

f b,c,n
iI = f nor,n

I nb,n
iI + f tan,n

I tb,n
iI . (65)

The new regular background grid at the beginning of each time step is different from the deformed grid at the end of
the previous time step. The impenetrability condition Equation (57) may not be satisfied at the beginning of each time
step if it is applied at the end of the previous time step and the f nor,n

I,1 in Equation (59) is nonzero. Then, the nodal velocity
vb,n−1∕2

iI for updating the stress may disobey the impenetrability condition Equation (57), which would lead to disturbance
to the system.17 In order to eliminate the artificial disturbance, after calculating grid nodal mass and momentum by
mapping those of particles, f nor,n

I,1 is imposed to adjust the grid nodal momentum pr,n−1∕2
iI to

p̃r,n−1∕2
iI = pr,n−1∕2

iI + Δtnf nor,n
I,1 nr,n

iI (66)

and the velocity of the contact particle corner in SSMPM body vs,n−1∕2
ic to

ṽs,n−1∕2
ic = vs,n−1∕2

ic + Δtn
n g∑

I=1
f nor,n
I,1 ns,n

iI NIc∕ms,n
I . (67)

5 ALGORITHM SUMMARY

The overall computational process of SSMPM is summarized as follows:

1. Calculate grid nodal mass and momentum by mapping those at particle corners, Equations (21) and (29); Impose
boundary conditions.

2. Detect contact state of each grid node. If Equation (54) is satisfied and the distance between two bodies is less than a
specified value, the two bodies contact at the grid node I.

3. Adjust the momenta of contact grid nodes by Equation (66) and the velocities of contact particle corners by
Equation (67).

4. Calculate the strain and vorticity increments on shell particles and modify the strain increment with the ANS and EAS
methods by the Newton iteration algorithm as follows:
(a) Assign the initial values i = 1, and Δ𝜶n

1 = Δ𝜶
n−1;

(b) Calculate the strain increment by Equations (35), (39), and (40), update fEAS
p by Equations (46) and (47).

(c) If fEAS
p > Tol, update Δ𝜶n

i+1 by Equations (49) and (50), let i = i + 1 and go back to step (b). Otherwise, terminate
the iteration.

5. Update the stress on shell particles by corresponding constitutive law. Calculate grid nodal force from particle corners
by Equations (23)–(26).

6. For contact grid nodes, calculate the second term of the normal contact force by Equation (60) and the tangential
contact force by Equation (64), and add the contact forces to nodal force.
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LI et al. 15

7. Integrate grid nodal momentum equations.
8. Update the velocity and geometry of shell particles based on the grid nodal acceleration and velocity, Equations (30)

and (31).

Remark: In the MPM, the strain of particles is calculated by the trilinear shape function of background grid. It would
suffer from several locking phenomena when using a coarse grid for simulations of shell structures. And thus, a fine
background grid is needed to present the correct strain field throughout the shell thickness. In the CPDI2, the deformation
of material domain is exactly tracked by particle domains, so that the accuracy is relatively higher and numerical fracture
is prevented. With the strain field assumed to be constant over each particle domain, adequate grid cells and particles
through the thickness are also necessary to obtain the reasonable strain field. In the SSMPM, locking treatments of solid
shell element are introduced into the shell particle. With the precise description of bending modes, a single layer of shell
particles on a coarse background grid is enough for shell structures, which benefits the computational efficiency. The
SSMPM will suffer from mesh distortion under extreme deformation due to the particle domains. The distortion can be
avoided by modeling the parts with extreme deformation by MPM and other parts by SSMPM respectively. Furthermore,
in the process from structural failure to fragments formation, the failed and distorted shell particles of SSMPM could be
converted into the particles of standard MPM. The double interpolation process of particle domains and background grid
brings smoothing effects in SSMPM. The error caused by the smoothing effects is negligible as shown by the results in
the numerical examples in Section 6.

6 NUMERICAL EXAMPLES

In this section, the convergence study of SSMPM is accomplished by the example of pinched cylinder with end
diaphragms. The efficiency and capacity to circumvent locking phenomena are discussed by the vibration of a beam. And
then, the ability of SSMPM to simulate the large deformation of shell structures is illustrated by the problems of pinched
cylinder with free edges and full hemispherical shell. In addition, a contact situation of a shell structure with water is
carried out by the water column collapse simulation. The penetration of a thin plate by a ball is simulated to demonstrate
the advantage of SSMPM in extreme deformation and fragmentation of shell structures. Although the explicit SSMPM
is proposed to simulate the dynamic problems, the quasi-static problems are studied in Sections 6.1,6.3, and 6.4 by the
dynamic relaxation process with artificial damping to verify the explicit SSMPM.

6.1 Pinched cylinder with end diaphragms

Pinched cylinder with end diaphragms is a recognized benchmark example for shell structures in the literature. Alves
et al.4 and Cardoso et al.6 used this example to assess the convergence behavior of the solid shell elements in FEM. As
shown in Figure 7, the cylinder with length L = 600m, inner radius R = 300m and thickness t = 3m is constrained by two

F I G U R E 7 Diagram and discretization for pinched cylinder with end diaphragms.
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16 LI et al.

rigid end diaphragms. And it has a density of 𝜌 = 3 kg∕m3, a Young’s modulus of E = 3Pa and a Poisson’s ratio of v = 0.3.
As a pair of diametrically opposite concentrated loads F = 1N applied at the midpoints of the cylinder, the existence of
both inextensional bending and complex membrane deformations leads to a severe test for SSMPM.

Due to symmetry, one-eighth of the cylinder in Figure 7 is discretized into ns × ns shell particles, where ns denotes the
number of shell particles per side. For the study of convergence, ns is chosen as 4, 8, 12, 16, 20, 32, and 48, respectively.
The background grid cell size is generally equal to the shell thickness to guarantee the spatial resolution in the thickness
direction. And the results will not change much if the grid is further refined.

In order to validate the elimination of the three locking in SSMPM, the radial displacement at the loaded point is nor-
malized by the reference solution of 1.82488 × 10−5m. And then, Figure 8A plots the curves of normalized displacement
versus ns obtained by five testing methods named as SSMPM, SSMPM ANS𝛾 , SSMPM ANS𝛾𝜀, SSMPM ANS𝛾-EAS, and
SSMPM ANS𝛾𝜀-EAS. Figure 9 shows the configurations obtained by these schemes for ns = 48, where the deformation is
magnified 5 × 106 times for visibility. They have the same formulation of shell particle but different locking treatments:

(1) SSMPM: without locking treatments, suffers from shear locking, trapezoidal locking and thickness locking;
(2) SSMPM ANS𝛾 : with the ANS method for shear locking, suffers from trapezoidal locking and thickness locking;
(3) SSMPM ANS𝛾𝜀: with the ANS method for shear locking and trapezoidal locking, suffers from thickness locking;
(4) SSMPM ANS𝛾-EAS: with the ANS method for shear locking and the EAS method for thickness locking, suffers from

trapezoidal locking;
(5) SSMPM ANS𝛾𝜀-EAS: with the ANS method for shear locking and trapezoidal locking and the EAS method for

thickness locking.

F I G U R E 8 Plot of normalized displacement versus ns.

F I G U R E 9 Configurations obtained with different methods for ns = 48: (A) SSMPM, (B) SSMPM ANS𝛾𝜀, (C) SSMPM ANS𝛾𝜀-EAS.
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LI et al. 17

As shown in Figures 8A and 9A, the three locking mechanisms severely underestimate the displacement. In Figure 8A,
with the ANS method for shear locking, the results of SSMPM ANS𝛾 are significantly improved, which means shear
locking has the greatest negative effect. However, the accuracy is pretty poor when few shell particles are employed and
the displacement cannot converge to the reference solution when adequate shell particles are adopted. After introducing
the ANS method for trapezoidal locking, SSMPM ANS𝛾𝜀 performs better than SSMPM ANS𝛾 when ns is small. This is
because shell particles are trapezoidal and trapezoidal locking exists when ns is small. With adequate shell particles, the
shape of particles is close to rectangle so that trapezoidal locking is not obvious and the results of SSMPM ANS𝛾𝜀 are
close to SSMPM ANS𝛾 . And thus, the configuration of SSMPM ANS𝛾𝜀 is shown in Figure 9B, which is obvious but the
displacement is smaller than the reference solution. The EAS method helps the results of SSMPM ANS𝛾-EAS and SSMPM
ANS𝛾𝜀-EAS in Figure 8A converge to the reference solution, which shows the necessity to eliminate thickness locking.
The configuration of SSMPM ANS𝛾𝜀-EAS is shown in Figure 9C. Among the five testing methods, SSMPM ANS𝛾𝜀-EAS
is free from the three locking and gives the best results.

In order to compare the convergence behavior of SSMPM ANS𝛾𝜀-EAS with the data in the literature, Figure 8B plots
the curves obtained by SSMPM ANS𝛾𝜀-EAS, Alves et al.4 and Cardoso et al.6 When ns is small, there are too few shell
particles of SSMPM ANS𝛾𝜀-EAS and elements of FEM to accurately describe the cylinder, so that the results are poor
in accuracy. As ns increases, convergence to the reference solution is achieved by SSMPM ANS𝛾𝜀-EAS. In the first half
of the curves shown in Figure 8, the results of SSMPM ANS𝛾𝜀-EAS and Cardoso et al.6 are more precise than those of
Alves et al.,4 which indicates good convergence behavior of SSMPM ANS𝛾𝜀-EAS. For the sake of simplicity, the SSMPM
ANS𝛾𝜀-EAS is abbreviated as SSMPM and employed in the rest part of this article.

6.2 Beam vibration

In this section, the vibration of a cantilever beam53 is simulated to verify the elimination of locking phenomena and
the efficiency of SSMPM, compared to the standard MPM with different background grids. As shown in Figure 10, the
beam has a length of L = 100m and the square section with a width of b = 1m and a thickness of t = 1m. The material
parameters for the beam are density 𝜌 = 1 kg∕m3, Young’s modulus E = 1.0 × 108Pa and Poisson’s ratio 𝜈 = 0.0. A load
P = 10N applied at the center of the right end of the beam leads to the vibration.

In the case of static loading, the deflection at the center of the right end of the beam is dstat = FL3∕3EI =
4FL3∕Ebt3 = 0.4m. During the vibration, the maximum deflection is twice that in static loading, which is called dynamic
amplification. The lowest natural frequency of the beam is f = 1.8752

√
EI∕2𝜋L2

√
𝜌bt = 0.16152Hz, so that the period of

the vibration is T = 1∕f = 6.191s. As mentioned in Section 2.2, the maximum deflection and period of the beam will be
underestimated if locking phenomena appear.

In SSMPM, the beam is discretized into ns(ns = 5, 20, 50) shell particles. Background grid cell size is 1m, which means
the number of grid cells through the beam thickness nt = 1. Figure 11 depicts the time history of the deflection at the
right upper corner of the beam obtained by SSMPM. And the result of the ABAQUS with 50 S4R elements is adopted
as a reference solution. When ns = 5, a minor error between the SSMPM and reference solution is caused by the sparse
discretization, while the SSMPM predicts the consistent results compared with the reference solution when ns = 20, 50.
As listed in Table 1, the maximum deflection and period in the results of SSMPM and reference solution are in good
agreement with the theoretical values, which illustrates that locking effects are eliminated.

To investigate the locking effects in MPM and GIMP, four discretized models with nt = 1, 2, 4, 5 are employed. Namely,
the particle spaces are dp = 0.5, 0.25, 0.125, 0.1m and grid cell sizes are d g = 1, 0.5, 0.25, 0.2m. Figure 12 compares the time
history curves obtained by MPM, GIMP and the reference solution. Table 1 shows the maximum deflection and period of
MPM. For GIMP (nt = 1), the maximum deflection and period of are 0.15 m and 2.38 s, respectively. The values of GIMP

F I G U R E 10 Diagram for cantilever beam.
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18 LI et al.

F I G U R E 11 Time histories of the deflection at the right upper corner of the beam obtained by SSMPM and ABAQUS.

T A B L E 1 Maximum deflection, period of vibration and CPU time of different methods.

SSMPM (nt = 1) MPM

Theoretical ABAQUS ns = 5 ns = 20 ns = 50 nt = 1 nt = 2 nt = 4 nt = 5

Maximum deflection (m) 0.80 0.80 0.79 0.80 0.80 0.42 0.77 0.79 0.79

Period of vibration (s) 6.19 6.06 6.12 6.06 6.06 4.19 5.95 6.02 6.03

CPU time (s) - - 43 77 191 51 812 15161 36816

F I G U R E 12 Time histories of the deflection at the right upper corner of the beam obtained by MPM and ABAQUS.
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LI et al. 19

(nt = 2, 4, 5) are same as those of MPM (nt = 2, 4, 5). When nt = 1, the results of MPM and GIMP are obviously smaller
than the reference solution, which is resulted from the severe locking phenomena. For nt = 2, bending deformation is
described by a layer of stretched cells and a layer of compressed cells, and there are three layers of grid cells through
the beam thickness due to the cell-crossing of particles. Therefore, the error from locking effects becomes small. With
nt = 4 and 5, background grid is fine enough to overcome the shortcomings of locking and the results are consistent with
the reference solution.

To study the efficiency of SSMPM compared to MPM and GIMP, Table 1 summarizes the CPU time of different
discretized models in SSMPM and MPM. For GIMP (nt = 1, 2, 4, 5), CPU times are 180, 2788, 45,728, and 112,721 s respec-
tively. For nt = 1, SSMPM costs a similar amount of CPU time as MPM, which indicates that the algorithm complexity
of SSMPM is close to that of MPM. With nt of MPM increasing, the number of background grid cells increases by n3

t
times and the time step reduces by 1∕nt, so that the total computational cost of MPM is proportional to n4

t . The compu-
tational cost of MPM (nt = 2) and MPM (nt ≥ 4) respectively reaches over 10 and 100 times those of MPM (nt = 1) and
SSMPM. This law also applies to GIMP and GIMP costs more than MPM due to the shape function with larger support
domain.

As a summary, in the vibration of this cantilever beam, locking effects result in the poor accuracy of the MPM with
a coarse background grid. As the grid refined, the shortcomings of MPM are overcomed, however its computational cost
increases rapidly. In contrast, without locking phenomena, the SSMPM can precisely and effectively simulate bending
deformation.

6.3 Pinched cylinder with free edges

Pinched cylinder with free edges7 is a classical case for testing the ability to simulate large bending and membrane defor-
mations and to capture buckling phenomena. As shown in Figure 13, the cylinder with a length of L = 10.35 mm, a radius
of R = 4.953 mm and a thickness of t = 0.094 mm is unconstrained. The material has a density of 𝜌 = 7.8 × 10−9 g∕mm3, a
Young’s modulus of E = 10.5 × 106 MPa and a Poisson’s ratio of 𝜈 = 0.3125. A pair of diametrically opposite concentrated
loads F are applied at the midpoints of the cylinder.

In SSMPM, one eighth of the cylinder is discretized into 16 × 24 shell particles (16 shell particles in the axial direction,
24 shell particles in the tangential direction and 1 shell particle in the thickness direction) as shown in Figure 13. And the
background grid cell size is 0.08 mm. For F = 40 kN, Figure 14 shows the dynamic relaxation process of SSMPM from
initial state (t = 0) to equilibrium state (t = te), in which the loads increase linearly from zero to maximum and artificial
damping is adopted to suppress oscillation. In the process from Figure 14A–C, the cylinder deformation is dominated
by bending. The buckling phenomenon takes place at Figure 14C and the subsequent deformation from Figure 14C,D is
mainly membrane stretching.

The radial displacements at points A, B, and C as shown in Figure 13 can be obtained after the cylinder is dynamic
relaxed to the equilibrium state. Figure 15 plots the curves of loads F versus the displacements at corresponding equi-
librium state obtained by SSMPM. And the results from published literature7 (represented as Sch10) and the FEM with

F I G U R E 13 Diagram and discretization for pinched cylinder with free edges.
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20 LI et al.

F I G U R E 14 Dynamic relaxation process under F = 40 kN obtained by SSMPM.

F I G U R E 15 Plot of load F versus displacements of the points A, B, and C.

F I G U R E 16 The middle cross sections in the dynamic relaxation process of SSMPM and MPM.

64 × 64 CSS8 elements in ABAQUS (denoted as Reference) are also given for comparison. When F < 20 kN, the loads are
not enough for the buckling of the cylinder and the radial displacements at the points increase as the F increases. Char-
acterized by the abrupt changes of the displacements, buckling takes place with the F reaching a critical value which
is about 20 kN. There are small changes of the displacements for the membrane deformation when F > 20 kN. SSMPM
is in good agreement with the reference data in the buckling critical value of loads and the displacements at different
load cases, which verifies the ability of SSMPM to simulate large bending and membrane deformations and buckling
phenomena of shell structures.
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LI et al. 21

F I G U R E 17 The cross sections at point C in the dynamic relaxation process of SSMPM and MPM.

F I G U R E 18 Numerical fracture of MPM.

Figure 15 also plots the results from the MPM with one layer of grid cells through the cylinder thickness, namely
nt = 1, the particle space dp = 0.047 mm and grid cell size d g = 0.094 mm. At the same loads, the displacements obtained
by MPM are far greater than the reference data. Taking F = 8 kN for example, the middle cross sections in the dynamic
relaxation process of SSMPM and MPM are compared in Figure 16 and the cross sections at point C of them are also illus-
trated in Figure 17. With the loads smaller than the buckling critical value, the cylinder is mainly subjected to bending
deformation. As shown in Figures 16 and 17, SSMPM (red lines) gives the correct bending deformation. However in the
results of MPM (blue lines), little bending deformation occurs at the upper and lower ends due to the locking phenom-
ena. And thus, the rest of the cylinder is straightened under the pinched loads. When F > 8 kN, shear locking will lead
to excessive local shear deformation at load points. And concentrated loads will directly cause the excessive local defor-
mation in the fine background grid (nt ≥ 2). In these cases, numerical fracture will take place as shown in Figure 18, so
that no results can be obtained.

For MPM (nt = 1) and SSMPM, CPU times are 5990 and 6125 s, respectively. The computational cost of MPM (nt = 4)
can be speculated by the law given at the end of Section 6.2, which could reach over 100 times those of MPM (nt = 1) and
SSMPM.

In conclusion, for this cylindrical shell, shear locking results in the poor accuracy of the MPM with a coarse back-
ground grid. If employing a fine background grid, the MPM would suffer from numerical fracture, and its computational
cost would be prohibitively high. For the SSMPM, large bending and membrane deformations and buckling phenomena
can be accurately simulated with high efficiency.

6.4 Full hemispherical shell

Full hemispherical shell5 is a test to the capacity for inextensible bending and rigid body modes. The shell with radius R =
10.0 mm and thickness t = 0.5 mm is unconstrained as shown in Figure 19. The strength model of the shell is described by
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22 LI et al.

F I G U R E 19 Diagram and discretization for the full hemispherical shell.

F I G U R E 20 Deformed configuration at F = 0.04 kN in SSMPM.

elasto–plastic constitutive law with linear isotropic hardening. The material parameters are density 𝜌 = 1 × 10−9 g∕mm3,
Young’s modulus E = 10 MPa, Poisson’s ratio 𝜈 = 0.2, initial yield stress 𝜎y0 = 0.2 MPa and plastic hardening modulus
Hiso = 9 MPa. Four central symmetry concentrated loads are applied to the shell.

In SSMPM, owing to symmetry, one quarter of the shell is divided into three parts and each part is discretized into 12 ×
12 shell particles as shown in Figure 19. And the background grid cell size is 0.4 mm. For F = 0.04 kN, the deformation
of the shell obtained by dynamic relaxation is shown in Figure 20, in which the equivalent plastic strain is also depicted.
The maximum of the equivalent plastic strain 5.83% appears at point A. And contact would occur at point B if larger loads
are adopted.

With the two surfaces of shell structures given explicitly, the radial displacements at the inner and outer points of
A and B shown in Figure 19 can be obtained after the shell is dynamically relaxed to the equilibrium state. As shown
in Figure 21, the curves of loads F versus the displacements obtained by SSMPM are depicted. The data from published
literature5 (denoted as Kli06) and the FEM with the CSS8 element in ABAQUS (represented as Reference) are also given
for comparison. The consistent curves of the displacements at different load cases demonstrate the good agreement of
SSMPM with these reference data, which verifies the capacity of SSMPM for simulating inextensible bending and rigid
body modes of shell structures.

In MPM, two discretized models with one and two layers of grid cells through the cylinder thickness are
employed. Namely, nt = 1, 2, particle spaces are dp = 0.25, 0.125 mm and grid cell sizes are d g = 0.5, 0.25 mm. As
shown in Figure 21, the results of MPM are larger than the reference data. For clarity, the cross sections at
point B obtained by SSMPM and MPM with F = 0.025 kN are illustrated in Figure 22, where the configuration of
SSMPM is reasonable, while that of MPM shows an over soft behavior. That is because the MPM with a coarse
grid lacks of the capacity for inextensible bending, and then excessive rigid body displacement appears to resist
loads.

As the results of MPM (nt = 1) shown in Figures 21 and 22, the premature occurrence of the contact at point
B when F = 0.025 kN causes the stop of deformation even though the loads increase, so that the results when F >

0.025 kN are same as those of F = 0.025 kN and not shown in Figure 21. For MPM (nt = 2) and F > 0.01 kN, numer-
ical fracture at point B will take place due to the concentrated loads as shown in Figure 23. And then, no data can
be obtained.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7359 by T
singhua U

niversity L
ibrary, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LI et al. 23

F I G U R E 21 Plot of load F versus displacements at the inner points and outer points of A, B.

F I G U R E 22 The cross sections at point B obtained by SSMPM and MPM.

F I G U R E 23 Numerical fracture of MPM.

For MPM (nt = 2) and SSMPM, CPU times are 1788 and 1185s, respectively. The computational cost of MPM
(nt = 4) can be speculated by the law given at the end of Section 6.2, which could reach over 20 times that
of SSMPM.

This example shows that correct bending deformation of the spherical shell could not be produced by MPM with a
coarse background grid. Adopting the fine background grid in MPM would lead to numerical fracture and high compu-
tational cost. To overcome the shortcomings, the SSMPM is recommended to efficiently simulate deformation of shell
structures.
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24 LI et al.

6.5 Water column collapse simulation

The large deformation of a shell in the fluid–structure interaction problem is investigated by SSMPM, MPM and their
contact method. As shown in Figure 24, a water column will collapse through an elastic shell to the right wall due to the
gravity. The shell has a thickness of t = 12 mm and a height of 80 mm, and the water column has a width of L = 146 mm
and a height of 2L. The distance from shell to water column is L.

The material parameters of the shell are density 𝜌 = 2.5g∕mm3, Young’s modulus E = 1 MPa and Poisson’s ratio v = 0.
The water column is described by Mie–Gruneisen EOS, whose material parameters are 𝜌 = 1000 kg∕m3, c0 = 1647m∕s,
s = 1.921, and 𝛾0 = 0.1. The water column will collapse freely due to the downward gravity with g = 9.8mm∕ms2. The air
and the friction between water column and shell are neglected. The shell is simulated by 16 shell particles in SSMPM.
The water column is simulated by MPM in which particle space is 2 mm. The background grid size is 6 mm and the
contact distance is set to 1 mm. In order to keep the surface of water smoothed, the water is assumed to be able to sustain
maximum tension of 0.006 MPa. Plane strain is also assumed in the simulation.

As shown in Figure 25, both the deformation of the shell and the profile of the free surface obtained by SSMPM agree
well with those obtained by ICFEMP,64 CFEMP,60 and PFEM.65 The time history of the deflection at the left upper corner

F I G U R E 24 Diagram for the water column and elastic shell.

F I G U R E 25 Numerical results at different times: (A) SSMPM, (B) ICFEMP, (C) CFEMP, (D) PFEM.
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LI et al. 25

of the shell obtained by SSMPM also agrees well with other results60,64-66 in Figure 26. Among the different methods,
SSMPM, CFEMP and ICFEMP all use MPM to simulate the water. The CPU time of SSMPM, CFEMP and ICFEMP are
83, 128 and 552 min, respectively. The SSMPM uses a coarse background grid and becomes more efficient than CFEMP.
The ICFEMP is the least efficient due to the complex particle-to-surface contact method.

6.6 Penetration of a thin plate by a ball

In order to demonstrate the advantage of SSMPM in extreme deformation and fragmentation of shell structures, the
penetration of a thin circular plate with a thickness of 1 mm and a diameter of 178 mm by a ball with a diameter of 10 mm
is investigated. The speed of the ball is 200 m/s and the direction of impact is normal to the thin plate.

The material of the ball and plate is steel and is described by elasto–plastic constitutive law with isotropic hardening

𝜎y = A + B𝜀n
p, (68)

where A,B, and n are the material constants, 𝜎y is the flow stress and 𝜀p is the effective plastic strain. The material con-
stants of the steel are taken from the experiment67 and listed in Table 2. According to De Vuyst et al.,68 the failure of a
MPM particle can be taken into account by setting the deviatoric components of the stress tensor to zero when the effective
plastic strain reaches the failure strain. The failure strain 𝜀fail for steel is set equal to 0.57.

The treatment of particle failure allows MPM to easily simulate the penetration of the plate. The SSMPM can accurately
and effectively simulate the bending of the plate and is naturally coupled with MPM by the background grid. Therefore,
the failure part of the plate is simulated by MPM and other parts are simulated by SSMPM. As shown in Figure 27, one
quarter of the plate is discretized into 7296 shell particles of SSMPM (red) and 1008 particles of MPM (blue). The inner
and outer diameters of the MPM region are 2.75 and 5.25 mm, respectively. And the ball is discretized into 8388 particles.

F I G U R E 26 Time history of the deflection at the upper left corner of the shell obtained by different methods.

T A B L E 2 Material constants of steel.

𝝆

(
kg∕m3) E(GPa) v A( MPa) B( MPa) n 𝜺fail

7850 200.0 0.30 600.0 275.0 0.36 0.57

F I G U R E 27 Diagram for the plate and ball.
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26 LI et al.

F I G U R E 28 The configurations at various time step.

F I G U R E 29 Final deformed shape of the thin plate: (A) experimental graph; (B) obtained by simulation.

The background grid size is 0.5 mm to alleviate the locking effects of the MPM part. The friction is neglected and the
contact distance is set to 0.25 mm.

As shown in Figure 28, some MPM particles of the plate fail, allowing the plate to be perforated by the ball. None
of SSMPM shell particles fail because the maximum effective plastic strain is equal to 0.54. The ball’s residual velocities
obtained from simulation is 79.0 m/s. Figure 29 compares the final deformed thin plate obtained from the experiment67

and simulation. In Figure 29, h is the height of the final deformed plate and D is the diameter of penetrated hole. The
value of h∕D obtained in the experiment is 0.84, and that obtained from simulation is 0.87. The final deformed target plate
obtained by simulation appears to be consistent with the experimental result.

In this example, the location of the fragmentation is known in advance and discretized by MPM particles. The number
of grid cells through the thickness of MPM particles is 2. The MPM part still suffer from locking effects to a certain extent.
However, the advantage of MPM in simulating the fragmentation of the plate is critical.

7 CONCLUSION

In this article, a solid shell material point method (SSMPM) is proposed to efficiently model the large deformation of
thin structures. The SSMPM describes the material domain of shell structures by shell particles with hexahedral particle
domains. The locking treatments of solid shell element are then introduced in SSMPM, which results in the correction
of strain field throughout the shell thickness. Namely, with the ANS method to eliminate shear locking and trapezoidal
locking and the EAS method to eliminate thickness locking, a single layer of shell particles in the thickness direction is
enough to simulate shell structures. With the precise description of bending modes, a coarse background grid could be
used in SSMPM, which benefits the computational efficiency. With the same nodal DOFs of SSMPM and MPM, a local
multi-mesh contact method is presented to naturally couple them for the contact situations of shells with other objects.
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LI et al. 27

We carry out a benchmark example of pinched cylinder with end diaphragms to verify the convergence behavior
of SSMPM. The case of beam vibration is conducted to validate SSMPM. The curves of SSMPM are consistent with the
reference solution by FEM, which validates the elimination of locking effects. And SSMPM has a much smaller CPU time
cost than the MPM with correct results, which illustrates the high efficiency. In addition, SSMPM and MPM are used to
simulate the cases of pinched cylinder with free edges and full hemispherical shell. All the results of SSMPM are in great
agreement with the data in the literature and reference solution by FEM, which shows the advantage of SSMPM over
MPM in the shell structure simulations. Finally, with local multi-mesh contact method we apply SSMPM and MPM to
investigate the water column collapse simulation, in which SSMPM correctly simulate the large deformation of a shell in
the fluid–structure interaction problem.

In the simulation of penetration of a thin plate by a ball, the advantages of the MPM to simulate fragmentation and
the SSMPM to simulate bending deformation are combined. Furthermore, shell structures could be discretized by shell
particles only, and failed shell particles could be automatically converted into MPM particles. Therefore, the bending
deformation of whole shell structures could be accurately simulated by SSMPM, and MPM particles automatically appear
at fractures. The conversion scheme will be implemented in future work.

FUNDING INFORMATION
This work was supported by the National Natural Science Foundation of China with Grant Number 12172192.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Xiong Zhang https://orcid.org/0000-0001-9905-281X

REFERENCES
1. Hauptmann R, Schweizerhof K. A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses

employing only displacement degrees of freedom. Int J Numer Methods Eng. 1998;42(1):49-69.
2. Sze K, Zheng SJ. A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput

Methods Appl Mech Eng. 2002;191(17):1945-1966.
3. Vu-Quoc L, Tan X. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Eng.

2003;192(9):975-1016.
4. dRJ SA, Cardoso RP, Fontes Valente RA, Yoon JW, Gracio JJ, Natal Jorge RM. A new one-point quadrature enhanced assumed strain (EAS)

solid-shell element with multiple integration points along thickness: Part I – geometrically linear applications. Int J Numer Methods Eng.
2005;62(7):952-977.

5. Klinkel S, Gruttmann F, Wagner W. A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods
Appl Mech Eng. 2006;195(1):179-201.

6. Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa A, Fontes Valente RA. Enhanced assumed strain (EAS) and assumed
natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng. 2008;75(2):156-187.

7. Schwarze M, Reese S. A reduced integration solid-shell finite element based on the EAS and the ANS concept – Geometrically linear
problems. Int J Numer Methods Eng. 2009;80(10):1322-1355.

8. Schwarze M, Vladimirov IN, Reese S. Sheet metal forming and springback simulation by means of a new reduced integration solid-shell
finite element technology. Comput Methods Appl Mech Eng. 2011;200(5):454-476.

9. Mostafa M, Sivaselvan M, Felippa C. A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear
structural analysis. Int J Numer Methods Eng. 2013;95(2):145-180.

10. Paepegem WV, Habraken A, Degrieck J, Alves de Sousa RJ, Valente RAF, Rah KB. Optimal low-order fully integrated solid-shell elements.
Comput Mech. 2013;51(3):309-326.

11. Sulsky D, Chen Z, Schreyer H. A particle method for history-dependent materials. Comput Methods Appl Mech Eng. 1994;118(1):179-196.
12. Zhang X, Chen Z, Liu Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Academic Press; 2016.
13. Liu P, Liu Y, Zhang X. Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with

internal-structure model. Int J Mech Mater Des. 2016;12(2):241-254.
14. Ma S, Zhang X, Qiu X. Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng.

2009;36(2):272-282.
15. Gong W, Liu Y, Zhang X, Ma H. Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with

material point method. CMES Comput Model Eng Sci. 2012;83(5):527-545.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7359 by T
singhua U

niversity L
ibrary, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9905-281X
https://orcid.org/0000-0001-9905-281X


28 LI et al.

16. Huang P, Zhang X, Ma S, Wang H. Shared memory OpenMP parallelization of explicit MPM and its application to hypervelocity impact.
CMES Comput Model Eng Sci. 2008;38(2):119-148.

17. Huang P, Zhang X, Ma S, Huang X. Contact algorithms for the material point method in impact and penetration simulation. Int J Numer
Methods Eng. 2011;85(4):498-517.

18. Ma Z, Zhang X, Huang P. An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. CMES
Comput Model Eng Sci. 2010;55(1):61-87.

19. Tan H, Nairn JA. Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comput Methods Appl Mech
Eng. 2002;191(19-20):2123-2137.

20. Liang Y, Chandra B, Soga K. Shear band evolution and post-failure simulation by the extended material point method (XMPM) with
localization detection and frictional self-contact. Comput Methods Appl Mech Eng. 2022;390:114530.

21. Cheon YJ, Kim HG. An adaptive material point method coupled with a phase-field fracture model for brittle materials. Int J Numer Methods
Eng. 2019;120(8):987-1010.

22. Hu Z, Zhang H, Zheng Y, Ye H. Phase-field implicit material point method with the convected particle domain interpolation for
brittle-ductile failure transition in geomaterials involving finite deformation. Comput Methods Appl Mech Eng. 2022;390:114420.

23. York A, Sulsky D, Schreyer H. Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng.
2000;48(6):901-924.

24. Gilmanov A, Acharya S. A hybrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems.
Int J Numer Methods Fluids. 2008;56(12):2151-2177.

25. Li J, Hamamoto Y, Liu Y, Zhang X. Sloshing impact simulation with material point method and its experimental validations. Comput
Fluids. 2014;103:86-99.

26. Liu Y, Ye H, Zhang H, Zheng Y. Coupling lattice Boltzmann and material point method for fluid-solid interaction problems involving
massive deformation. Int J Numer Methods Eng. 2020;121(24):5546-5567.

27. Bardenhagen SG, Kober EM. The generalized interpolation material point method. CMES Comput Model Eng Sci. 2004;5(6):477-495.
28. Wallstedt PC, Guilkey J. An evaluation of explicit time integration schemes for use with the generalized interpolation material point

method. J Comput Phys. 2008;227(22):9628-9642.
29. Steffen M, Kirby RM, Berzins M. Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Methods

Eng. 2008;76(6):922-948.
30. Zhang DZ, Ma X, Giguere PT. Material point method enhanced by modified gradient of shape function. J Comput Phys.

2011;230(16):6379-6398.
31. Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation technique to extend applicability of the material point

method for problems involving massive deformations. Int J Numer Methods Eng. 2011;86(12):1435-1456.
32. Sadeghirad A, Brannon R, Guilkey J. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak disconti-

nuities at material interfaces. Int J Numer Methods Eng. 2013;95(11):928-952.
33. Liang Y, Zhang X, Liu Y. An efficient staggered grid material point method. Comput Methods Appl Mech Eng. 2019;352:85-109.
34. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon Not R Astron Soc.

1977;181(2):375-389.
35. Maurel B, Combescure A. An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Methods Eng.

2008;76(7):949-971.
36. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer Methods Eng. 1994;37(2):229-256.
37. Krysl P, Belytschko T. Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct. 1996;33(20):3057-3080.
38. Wang D, Chen JS. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput Methods

Appl Mech Eng. 2004;193(12):1065-1083.
39. Chen JS, Pan C, Wu CT, Liu WK. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput

Methods Appl Mech Eng. 1996;139(1–4):195-227.
40. Donning BM, Liu WK. Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng. 1998;152(1):47-71.
41. Peng YX, Zhang AM, Ming FR. A thick shell model based on reproducing kernel particle method and its application in geometrically

nonlinear analysis. Comput Mech. 2018;62(3):309-321.
42. Peng YX, Zhang AM, Ming FR. A 3D meshfree crack propagation algorithm for the dynamic fracture in arbitrary curved shell. Comput

Methods Appl Mech Eng. 2020;367:113139.
43. Silling S. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175-209.
44. Zhang Q, Li S, Zhang AM, Peng Y, Yan J. A peridynamic Reissner-Mindlin shell theory. Int J Numer Methods Eng. 2021;122(1):122-147.
45. Yang P, Liu Y, Zhang X, Zhou X, Zhao Y. Simulation of fragmentation with material point method based on Gurson model and random

failure. CMES Comput Model Eng Sci. 2012;85(3):207.
46. Chen ZP, Zhang X, Qiu XM, Liu Y. A frictional contact algorithm for implicit material point method. Comput Methods Appl Mech Eng.

2017;321:124-144.
47. de Vaucorbeil A, Nguyen VP. Modelling contacts with a total Lagrangian material point method. Comput Methods Appl Mech Eng.

2021;373:113503.
48. Kan L, Zhang X. An immersed MMALE material point method for FSI problems with structure fracturing. Comput Methods Appl Mech

Eng. 2022;396:115099.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7359 by T
singhua U

niversity L
ibrary, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LI et al. 29

49. Ni R, Li J, Zhang X, Zhou X, Cui X. An immersed boundary-material point method for shock-structure interaction and dynamic fracture.
J Comput Phys. 2022;470:111558.

50. Belytschko T, Liu W, Moran B. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons Ltd.; 2000.
51. Nguyen VP, Nguyen CT, Rabczuk T, Natarajan S. On a family of convected particle domain interpolations in the material point method.

Finite Elem Anal Des. 2017;126:50-64.
52. Guo Q, Han X, Fu C, Gast T, Tamstorf R, Teran J. A material point method for thin shells with frictional contact. ACM Trans Graph.

2018;37(4):1-15.
53. Kang J, Homel MA, Herbold EB. Beam elements with frictional contact in the material point method. Int J Numer Methods Eng.

2022;123(4):1013-1035.
54. Hughes T, Tezduyar T. Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric

element. J Appl Mech. 1981;48:587-596.
55. Dvorkin E, Bathe K. A Continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput. 1984;1:77-88.
56. Macneal RH. A theorem regarding the locking of tapered four-noded membrane elements. Int J Numer Methods Eng. 1987;24(9):1793-1799.
57. Sze KY, Yao LQ. A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I – solid-shell element

formulation. Int J Numer Methods Eng. 2000;48(4):545-564.
58. Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng.

1990;29(8):1595-1638.
59. Simo J, Armero F, Taylor R. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput

Methods Appl Mech Eng. 1993;110(3):359-386.
60. Lian YP, Zhang X, Liu Y. Coupling of finite element method with material point method by local multi-mesh contact method. Comput

Methods Appl Mech Eng. 2011;200:3482-3494.
61. Hut P, Makino J, Mcmillan S. Building a better leapfrog. Astrophys J. 1995;443(2):L93-L96.
62. Ni R, Zhang X. A precise critical time step formula for the explicit material point method. Int J Numer Methods Eng. 2020;121:4989-5016.
63. Bardenhagen SG, Brackbill JU, Sulsky D. The material-point method for granular materials. Comput Methods Appl Mech Eng.

2000;187(3-4):529-541.
64. Chen Z, Qiu X, Zhang X, Lian Y. Improved coupling of finite element method with material point method based on a particle-to-surface

contact algorithm. Comput Methods Appl Mech Eng. 2015;293:1-19.
65. Idelsohn SR, Marti J, Limache A, Onate E. Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to

fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng. 2008;197:1762-1776.
66. Walhorn E, Kolke A, Hubner B, Dinkler D. Fluid-structure coupling within a monolithic model involving free surface flows. Comput

Struct. 2005;83(25–26):2100-2111.
67. Seo S, Min O, Lee J. Application of an improved contact algorithm for penetration analysis in SPH. Int J Impact Eng. 2008;35(6):578-588.
68. De Vuyst T, Vignjevic R, Campbell J. Coupling between meshless and finite element methods. Int J Impact Eng. 2005;31(8):1054-1064.

How to cite this article: Li J, Ni R, Zeng Z, Zhang X. An efficient solid shell material point method for large
deformation of thin structures. Int J Numer Methods Eng. 2023;1-29. doi: 10.1002/nme.7359

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7359 by T
singhua U

niversity L
ibrary, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	An efficient solid shell material point method for large deformation of thin structures 
	1 INTRODUCTION
	2 MATERIAL POINT METHOD
	2.1 Standard MPM
	2.1.1 Spatial discretization
	2.1.2 Temporal discretization

	2.2 Shortcomings of the standard MPM in shell simulations

	3 SOLID SHELL MATERIAL POINT METHOD
	3.1 Shell particle
	3.2 Locking treatments
	3.2.1 Assumed natural strain (ANS) method
	3.2.2 Enhanced assumed strain (EAS) method


	4 LOCAL MULTI-MESH CONTACT METHOD
	4.1 Contact detection
	4.2 Contact force

	5 ALGORITHM SUMMARY
	6 NUMERICAL EXAMPLES
	6.1 Pinched cylinder with end diaphragms
	6.2 Beam vibration
	6.3 Pinched cylinder with free edges
	6.4 Full hemispherical shell
	6.5 Water column collapse simulation
	6.6 Penetration of a thin plate by a ball

	7 CONCLUSION

	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

