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ABSTRACT: According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth- 
od (RFEM) is applied to structural limit analysis and the linear programmings for limit analysis are deduced 
in this ~aper. Moreover, the Thermo-Parameter Method (TPM) and Parametric Variational principles (PVP) 
are used to reduce the computational effort while mailftaining the accuracy of solutions. A better solution is 
also obtained in this paper. 
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I. INTRODUCTION 

Finite Element Method(FEM ) is a well-known powerful method in the structural analysis, 
but the computational amount is very large when using linear FEM incrementally to deal with a 
nonlinear problem. So it is necessary to study a special approach for each special problem ac- 
cording to its characteristics. 

In some plastic problems such as the Prandtl solution of  the punch problem Ill a structure 
will become a number of pieces which can slide with respect to each other when it is loaded to 
its limit state. The elastic deformation Can be ignored in the state of  plastic flow, so these 
pieces can be considered approximately as  rigid bodies. In addition the limit solutions are exact- 
ly the same for both the ideal rigid plastic model and the ideal elastic plastic model. As  a con- 
clusion of the above discussion, it is reasonable and feasible to adopt RFEM TM in structural 
limit analysis. 

RFEM gives a better solution for nonlinear problem and its computational effort is also less 
than that of FEM [3'41. 

For these reasons some basic ideas of RFEM, such as considering elements as rigid bodies 
in their limit state, are adopted .and the linear programmings for limit analysis are deduced from 
the lower bound theorem by adopting RFEM. In addition TPM Is] and PVP [61 are used to fur- 
ther reduce the computational effort and to improve the accuracy of solution. In this way a bet- 
ter solution is obtained and a large scale problem can be solved with micro-computer such as 
IBM PC/AT. 

II. BASIC ASSUMPTIONS AND RIGID FINITE ELEMENT METHOD 

According to the traditional limit analysis theory the following basic assumptions are used 
(1) Ideal rigid plastic assumption: material is considered as rigid before yield but elements 

moved rigidly with respect to each other after yield. 
( 2 )  Rigid movement assumption: every element is assumed as a rigid b o d y ,  so the 

displacement u of  point P (  x, y)within  element can be completely described by the rigid 
movement (Ug, Vg, O) of the corresponding centroid G (Xg, yg). That is 

i1 0 
u= 0 1 x g - x  (1) 
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aj=Bj u'G 

[ --ll --m 1 ml(X-Xgl)- l t (y-yg l) ll ml ' l(Y-Yg2)-ml(X-Xg2)] 

B= -12 -m2 m2(X-Xgl)--12~,yg l) 12 m2 12(y-yg2)-m2(X-Xg2)A 

UJG= [Ugl 1)gl 01 Ug2 Vg2 02 ] T 

where 

is the strain field of RFEM. 

y4 

(2) 

l l ,  ml ,  12, m2 are the normal and tangential direction cosines of the element seam flj .Eq.(3) 
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(3)  Strain and stress field: the relative displacement aj =[3d 5s] TOf a point on element 
seams shown in Fig.1 can be expressed as TM (shown in Fig. 2 ) 

\ 
\ 

1 

i/' 

/ 
/ 

\ /  

Fig. 2 Relative displacement between elements Fig. I Rigid elements 

The normal stress trn and tangential stress zs on element seam flj are taken as the stress field 
Rj of RFEM,  such as 

Rj=[a,, Zs] "r (3) 

The relation between stress field Rj and strain field a is given in Ref. [2], namely 
Rj = Day (4) 

where D is the elastic matrix, which is 

D =  m 

E ( 1 - - v )  0 
1 [ ( l + v ) ( 1 - 2 v )  1 (5) 

hi + hE 0 2-(1E+ v ) 

in plane strain problem, in which h 1 and h 2 are the perpendicular distance from centroids of two 
adjacent rigid elements to their contact line. 

Dividing a structure into a number of arbitrary convex polygon elements and analyzing the 
forces of  every element, we obtain the global equilibrium equation as 

K U=P (6) 

in which K = ~  IBi BTDBds 

U=[ugl Vgl ... ug N VgN ] T 

P is the external load vector. 

The rigid displacement U of every element's centroid under the external load P can be de- 
duced from Eq. (6) and then the displacement of any point within elements can be obtained 
from Eq. (1). 
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III. LIMIT ANALYSIS BASED ON THE LOWER BOUND THEOREM 

"lhe lower- bound theorem points out that the limit load corresponding to any 
statical admissible stress field, which satisfies the equilibrium equation with the force boundary 
condition and doesn't violate the yield condition, isn't greater than the real limit load. In this 
paper the normal stress an and tangential stress z~ are taken to establish the statical admissible 
stress field. 

Statical admissible stress field Rj should satisfy the equilibrium condition with the force 
boundary condition, so the stress field Rj must satisfy the following virtual displacement equation 
if it equilibrates with the external load P in an arbitrary virtual displacement field u. 

f f f  ,rodV+ ~j f#.ySfRjds-;tfffuTpdV=O (7) 

V V 

where r is the strain within element and o is the stress tensor of element. Because elements ar 
rigid bodies, the strain �9 within elements is equal to zero, so that the first item of Eq. (7) is 
equal to zero too. The substitution of Eq. ~2) into Eq. (7) gives 

- E  UjaT B f R j / j + 2 2  UreP'=O ( 8 )  
J e 

in which y '  means summing up over all element s e a m s ,  ~ means summing up over all elements 
1 

and /y is the length of the element seam ~ . Writing Eq. (8) in vector form and considering the 
arbitrarity of virtual displacement vector we will get 

-BT R+ 2P=O (9) 
where B is formed by /j Bj coming from element seam flj, R is formed by Rj from element seam 
flj. and P is the external load vector formed by Pe from element e. 

The linear programming for limit analysis can be deduced from the lower bound theorem 
and Eq. (9). That is 

Find R = ? 
max 2 (R)  

- B T R + 2 P = O  

s. t . {  f ~ < 0  
2~>0 

(10) 

Eq. (10) is a nonlinear mathematical programming for a nonlinear problem such as Mises 
yield condition, so it will take a large amount of computational time. For the convenience of 
solving, the yield condition is linearized t41 That is 

f(R)=NR-Ks~O (11) 

in which N =  diag (Nj), K ,=  [K1, K 2 , ' " ,  Kj , . . . ,  ] T . The coefficients N and Ks in Eq. (1 1 ) wi il 
take different forms for different yield conditions,Mises condition, which represents a ellipse re- 
gion in a , - z s  space, can be approximated by six lines. Such as 

1 x/-~/2 -x/~-/2 - 1 - ~ ; 2 / 2  ,]~'/2_1 

K j = [ 0 . 5  x/-2-/2 x / ~ / 2  0.5 x/~/2 X / ~ - / 2 ] T a 0  

(12) 

I n  view ot-the nontension condition of soil material the Coulomb condition, which is com- 
posed of two lines, will lead to 
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Nj = tgq~ - 1 
1 0 

K: =[ C C 01T (13) 

so that the linear programming for limit analysis is expressed as 
Find R = ? 
max 2 (R)  

- B T R + ~ L P = 0  f 
s. t. ~ NR<~K, (14)  

( 2>~0 

~here R is a free variable. T h u s  Eq. (14) is a linear programming with free variables and has 
been discussed in Ref. [7]. 

The total number of constraints is greater than that of variables in Eq. (14). To reduce the 
computational effort, the following dual linear programming should be solved instead of Eq. (14) 

Find /~, ~1 
min 2 = K ~  { Bb-:a=0 
s.t. U T p = I  (15) 

Eq. (15) is also a linear programming with free variables and can be solved using the 
algorithm proposed in Ref. [7]. 

IV. T H E R M O - P A R A M E T R I C  M E T H O D  Esl 

The well-known Melan's theory for plastic shakedown analysis states that if such a 
self-equilibrating residual stress field R0 whose composite stress field with the elastic stress RE 
corresPonding to the complex loading satisfies the yield condition f(Re+Ro)<~O can be found, 
then the structure will be shakedown: The structural limit analysis can be treated similarly as 
the shakedown analysis by considering it as a special case of shakedown analysis. The key to 
the problem is how to find a time independent self-equilibrating residual stress field. In TPM a 
thermo stress field is selected as the self equilibrating residual stress field and then the tempera- 
ture parameters are adjusted to maximize the load multiplier factor under the condition of satis- 
fying the yield condition (11). That is 

Fin T = ? 
max 2 (T) 

2NRe + N  R0 (T)~<K, 
s.t.~ 2>10 (16) 

The self-equilibrating residual stress field R0 which uses temperature parameters as variables 
has been set up for RFEM in Ref. [4]. Such as 

R/0 = (DBK -1GJ-H j )TY (17) 
where 

[G~I G J21 G J31 G J41 GJs1 GYrl] 
G J= 

L G~2 G~2 G~2 G~2 G~2 G~2 

GJl=-~ LDlloth (1 - r/) B1 i (r/) dr/ 
1 

G~2~--- ~ LDlloth (1 + r/)Bt i (t/)cb/ 
1 
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H j = [  Hll H I 2 ]  

0 0 
l 1 

H I I = ~  - DllO~h(1-r/) H12= -~-Dll o~h(l+r/) 

TJ=[T1 T2] j 
i= 1,..., 6; j= I , . . . ,NJ  

~,  the coefficient of heat expansion which has no effect on the computational results, is only 
used to establish the selfequilibrating residual stress field and has nothing to do with the real 
material being used, so it can be taken as 1.0. NJ is the total number of element seams, T~ 
and T2 are the temperature parameters of two ends of an elasto-plastic seam. 

Summing up Eq. (17) for all element seams we can obtain the self-equilibrating residual 
stress field R0. That is 

R0= (DB K -~ G-  H)T (18) 

It is easy to verify that the residual stress field R0 satisfies the self-equilibrating condition. 
Introducing Eq. (18) into Eq. (16) we can get the linear programming for limit analysis, such 
a s  

Find T -  ? 
max 2 (T) 

t.S 2NRe+ N (DBK-1G- H)T <<,K~ (19) 
S. 

2>_.0 

In Eq. (19) the total number of variables and constraints are all smaller than those of Eqs. 
(14) and (15), so the computational effort should be less than that of Eqs. (14) and (15). But 
the accuracy of Eq. (19) is no better than that of Eqs. (-14) and (15.) because it uses the nodal 
temperature parameters as variables to set up the self equilibrating residual stress field instead of 
adjusting the stress field directly. 

V. PARAMETRIC VARIATIONAL PRINCIPLES 

The structure's plastic limits can also be obtained from the elasto-plastic analysis, but the 
computational amount of the elasto-plastic analysis with the incremental method is too large to 
be used in some complex structures. PVP is proposed recently to solve a problem with indefinite 
boundary in mathematical physics. Iterations are avoided in each incremental step and a great 
step can be adopted as well, so PVP can reduce the computational effort significantly and will 
expand the problem scale for limit analysis using the elasto-plastic analysis method. The 
quadratic programming for elasto-plastic analysis was deduced in Ref. [3] for RFEM. That is 

1 U ~ Min I-I= -~ d KdU-dU(q92t§  

Cd U - M 2 - d + ~ = O  
c ' b ' ~ Y T ~ = 0 ,  ~0/>0, ~/>0 

(20) 

where K is the assembled stiffness matrix of structures, dU is the incremental displacement vector, 
q is the incremental load vector, and 2 is the plastic flow factor vector. The matrices ~p, C and 
M are concerned with the plastic potential and yield function respectively. 

The above three methods for limit analysis have different advantages. For example, the accu- 
racy of  Eqs. (14), ( 1 5 ) a n d  (20) are better than that of Eq. (19), but their computational 
amount is also larger. How to choose these methods depends on the demand for accuracy and 
computational amount. For a complex structure Eq. (19)should be chosen tO reduce the 
computational work significantly while losing a little accuracy. 
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VI. NUMERICAL EXAMPLES 

1. A frictionless punch problem shown in Fig. 3 (a)can be solved by sliding line theory. The 
solution for Hill's and Prandtl,s sliding line field is q /2k=2.57l  and the upper bound solution is 
q/2k=2.89. This problem is analyzed here by using Mises yield condition and the results are ta- 
bled in Tab. 1. The sliding model obtained here is shown in Fig. 3(c) as well, These results 
are very close to the solutions of sliding line theory. 

/ I '  / 

q 

ilhh l 

/ / / / / 

(a) Punch problem (b) Finite element mesh 
Fig. 3 

Table  1 
The results of Mises condition 

(c) Sliding model 

h/b Eq. (14) 

1.0 
Eq. (19) 

1.0 
Eo. 20 

1.0 

Sliding, solution [1] 
1.0 1 

10 2.677 2.643 2.677 2.571 

2. A weightless slope with angle 135 o under a uniform pressure q is analyzed by using 
Coulomb condition anO the results are tabled in Tab. 2.Here the sliding line field presented in 
Ref. [1] is adopted as finite element mesh, so the results obtained here are very close to the 
sliding solution. In general it is difficult to coincide the finite element mesh with sliding line 
field in advance, but an arbitrary dense mesh can also be used to find a good limit solution as 
shown in the next example. 

Table 2 
Results comparison 

Eq. (]4i Eq. (19) Eq. (20) sliding solution 

3.5763 3.483 3.5775 3. 5708 

3. A fi'ictionless strip footing shown in Fig. 5 is analyzed using Coulomb condition with 
cohesion C=10kpa /m 2 and internal friction angle ~p=20 ~ . If  the finite element mesh is 
adopted in accordance with the sliding line filed, an excellent solution would be obtained. To il- 
lustrate the generality ofthesemethods,  an arbitrary mesh shown in Fig.5 i~ used and its results 
are tabled in Tab. 3. I t  can be found that the results obtained here are close to the upper 
bound. This is caused by adopting the rigid assumption which restricts the collapse model, so 
the limit solution will be greater than the exact one. 

Table 3 
Results comparison 

Eq. (14) Eq. (19) Eq. (20)  Lower bound TM Upper bound TM 

171.18 171.134 171.6 143.0 175.0 

4. A 90 ~ tension specimen shown in Fig. 6 is analyzed for Mises yield condition 
When loading the stress concentration will occur in the notch and it will be destroyed first. The 
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l imit load can  b e  got  f rom the equi l ibr ium equa t ion  as 

Plimit = 20 a0 = 60.0 

The  limit load ob ta ined  here is 60.0 too,  so the accuracy o f  the solut ions is excellent.  

i t t t l l i t l l  
~ x  C = 1.0kPa / 

\ /  

\ /  

~-. 24m 

Fig. 4 The limit solution of slope Fig. 5 Frictionlcss Strip footing 

1993 

12m 

(a) (b) 

Fig. 6 A 90 v notched tension specimen 

VII.  C O N C L U S I O N  

In this paper  three me thods  for l imit analysis are PrOposed by a d o p t i n g  the i deas  o f  rigid fi- 

ni te  e lement  m e t h o d  and  the computa t iona l  effort for l imit analysis is significantly reduced.  These 

me thods  have different advantages  a n d  should  be chosen according to different demands .  I t  can 
be found from numerical  examples tha t  the limit so lut ions  o f  Eq.  (14)  are very close t o  those  o f  

e las to-plas t ic  analysis,  so R F E M  is an  effective and  promis ing  m e t h o d  for l imit analysis.  
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