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ABSTRACT: Based on our previous study, the accuracy of derivatives of interpolating functions are

usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions

(CSRBFs) are used, so that it could result in significant error in solving partial differential equations

with Neumann boundary conditions. To overcome this drawback, the Consistent Compactly Supported

Radial Basis Functions (CCSRBFs) are developed, which satisfy the predetermined consistency con-

ditions. Meshless method based on point collocation with CCSRBFs is developed for solving partial

differential equations. Numerical studies show that the proposed method improves the accuracy of

approximation significantly.
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1 INTRODUCTION

During recent years, much attention has been
paid to the development of meshless methods, and
about 10 different meshless methods have been de-
veloped, such as the Smooth Particle Hydrodynam-
ics (SPH)!Y, the Diffuse Element Method (DEM)2],
the Element Free Galerkin Method (EFG)El, the
Reproducing Kernel Particle Method (RKPM)¥,
the Finite Point Method (FP)®! the hp Clouds
Method (HP)!®!, the Meshless Local Petrov-Galerkin
method (MLPG)I"l| the Local Boundary Integral
Equation method (LBIE)®! the Radial Basis Func-
tions method (RBF)®!, RBF-type meshfree boundary
techniques!'®'! Least Square Collocation Meshless
method (LSCM)12], and several others.

In those meshless methods, there are mainly four
different ways to construct approximation functions
entirely in terms of points, namely, smooth particle
hydrodynamics method (SPH), moving least square
method(MLS), partition of unity method, and radial
basis functions (RBF). All of them discretize the do-
main of interest by using a set of scattered points,
and establish the shape functions at the global level
without the requirement of any mesh.
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The multivariate functions ¢(-) : R — R can
be efficiently evaluated if they are expressible as uni-
variate functions ¢(-) = ¢(||-1|) of the Euclidean norm
|-l in R%, and such functions are called Radial Basis
Functions (RBFs). The RBFs have been successfully
developed for interpolation, and a typical construc-
tion of interpolations with a set of scattered points
x;,1 <1< N, is given by

N
u' () ZZW-@S(H%—%H) (1)

Point collocation method with RBFs to solve
PDEs is a truly mesh-free method, and possesses
many advantages. However, RBFs are generally glob-
Although

there are several remedies for these problems, such

ally supported and poorly conditioned.

as domain decomposition, preconditioning, and fine
tuning of the variable parameter of RBFs, the com-
pactly supported RBFs (CSRBFs) provide a promis-
ing approach!'~15l If CSRBFs are used, the evalua-
tion of (1) will not run over whole set of N summands
and the coefficient matrix will be sparse. Wul*3! pro-
vided criteria for positive definiteness of CSRBF's and
produced a series of positive definite and compactly
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supported radial basis functions. Wendland'¥ and
Buhmann!*® also proposed several CSRBFs. Two
classes of compactly supported positive definite RBFs
will be studied in this paper, namely

CSRBF1: ¢(r) = (1 — )% (6 + 367 4 8212+

7213 4+ 30r* + 5r°) € C* N PD;
(2)

CSRBF2!' : ¢(r) = (1 — 7)3.(32r° + 250°+

8+ 1) € C®NPDs

where 7 = |j@ —@¢||/ R, in which @q is the center of the
CSRBF, R is the radius of the compactly supported
domain. PDy represents the fact that the radial func-
and (1 —7)4

tion is positive definite in R?, is given

by
(1-r) if0<r<1
(1—T)+={ (3)

0 otherwise

The meshless methods based on point collo-
cation with CSRBFs were studied in our previous
work(®. It was shown that the accuracy of deriva-
tives of the interpolating functions are usually very
poor near the boundary of domain, therefore, it will
result in significant error in solving a PDE with Neu-
mann boundary conditions. The method of Hermit
type collocation was proposed, which can improve the
accuracy significantly. However, the numerical studies
also demonstrated some shortcomings of the CSRBFs.
The accuracy of the solutions is much lower than those
using globally supported RBFs, and the acceptable
accuracy can only be obtained by using large sup-
port size. To overcome these shortcomings, the consis-
tent compactly supported radius basis functions (CC-
SRBFs) are proposed in this paper, which are not
only compactly supported but also satisfy the prede-
termined consistency conditions. Based on the point
collocation with CCSRBF's, the meshless method is
then developed. As a test on the proposed method,
the interpolation, Poisson equation, and some prob-
lemns in elasto-statics are studied in detail. Numerical
examples show that the present method improves the
accuracy significantly.

2 CONSISTENT COMPACTLY SUPPORT-
ED RADIAL BASIS FUNCTIONS

In general, with a set of scattered nodes ;, (i =
1,2,---,N), the original CSRBFs ¢(x) do not satisfy
the Oth-order consistency, namely

N
Z@(w) #1 (4)

which means that it is even unable to reproduce con-
stant function exactly by using Eq.(1). Tt can also
be shown that the CSRBFs do not satisfy the kth-
order consistency, so that it is unable to reproduce
kth-order polynomials exactly.

Let q~5§0), (j;(-l) and ¢~>§2) denote CCSRBFs that

K
satisfy the Oth-order, 1st-order and 2nd-order consis-

tency, respectively, namely

N
> ¢@) =1 (5)

=1

N
>z (@) =

>3 () =
=1

for a 2D problem. Equations (6) and (7) can also be
rewritten as

N ~

> 4@ =1

N

> () o) () =0 (8)
Z(y — i) d () =0

T
=
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N
S 6P (x) =1
i=1

N -~
(2 —2:)$7 (@) =0

s
il
—

N

Y w-v)dP () =0
=1

(9)

The CCSRBF 6" (z) can be derived from ¢;(z)
given in Eq.(2) by

3" (2) = su(2)pf (@) - blx) (10)

where b' () is a vector of coefficients to be evalu-

ated, which as indicated, are functions of the spatial
coordinates @, and

(1] for k=0
T 1,z — 2 y—yi for k=1
p; (x) = 9
[1, =Ty, Y —Yi, (33—:[:2) )
(@ —2:)(y — i), (y—wi)?] for k=2
(11)
Substituting Eq.(10) into Eq.(8) or Eq.(9) yields
M-b=gq (12)
where
N
M =" ¢:i(x)p;()p] ()
=1

q=11,0,0,0,0,0]"
Solving Eq.(12) for b, and substituting it into
Eq.(10), one obtains
7" (@) = si(e)pl (2)M g (13)
The function u(2) can be approximated by using
CCSRBF ¢ () as

N
w@) mu(@) =Y w-gM@)  (14)
i=1
Clearly, the CCSRBFs ¢\ (z) are identical to
the well-known Shepard functions, namely
3Oy = 2L (15)
; pi(x)
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In the following sections, prefix of “C0.7, “C1.
and “C2.” will be used to denote the Oth-order, 1st-
order and 2nd-order consistency, respectively. For ex-
ample, “C2_.CSRBF1” denotes the CCSRBF which is
derived from CSRBF1 given in Eq.(2) and satisfies
the 2nd-order consistency.

To show the difference between CSRBFs and
CCSRBFs, the domain x € [0,20] is discretized by
21 regular nodes, and the CSRBF'1 defined in Eq.(2)
with the support size B = 2.5 is chosen as the original
radial basis function. Figure 1 shows the shape of the
CSRBF1, C1_CSRBF1 and C2_CSRBF1 for the node
at x = 10, while Fig.2 shows their derivatives.
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Fig.1 The shape of basis function at z = 10
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Fig.2 The derivative of basis function at = 10

3 MESHLESS METHOD BASED ON POINT
COLLOCATION WITH CCSRBFS FOR
LINEAR ELASTICITY

Consider the 2D linear elasto-statics governed by
a differential equation

A-o(x)+ fl&)=0 xecf (16)
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u(x) = u(x) zel, (17)

n-o(z)=1t(z) xely (18)

where @ is the prescribed displacement on the essen-
tial boundary I',, and % is the prescribed traction on
the natural boundary I%,

0 0
adl 0 il
ox 19}
A= 8 ay
0 I il
dy Or
l 0 m
—
0 m l

O =0 Oyy Twy]T

wu=1[u v

and [, m are the direction cosines of the outward nor-

mal direction of boundary I. Equations (16)~(18)
can be expressed in displacement vector u as

u(z,y) = u(z,y) on I, (20)
T u(z,y) = t(z,y) on Iy (21)
where
E
po B
1 -
82 ].—I/O 82 1+l/0 82
Oz? 2 9y? 2 Oz0y
1+ 1) 82 8_2 + 1-— 144} 8_2
2 Oz0y Oy? 2 Ozx?
E
T="25.
1 -5
8 1-— 140 o} 0 1-— o 5]
= i T — il
l8w+m 2 Oy V08y+m 2 O
3] 1—1y 0 0 1—1y O
4 il Z I
0 B + 2y may + 2 Oz
in which By = F, vp = v for plane stress, and
Ey = L = for plane strain
0_1—V2’V0_1—1/ plane .

Using the consistent compactly supported ra-
dial basis functions, the displacement vector u(z,y)
can be approximated by a set of scattered nodes
x;,1=1,2,---,N, as

u(ey) = 3w (e
= (22)
o) =Y vi (@)

where ¢(x) is a CCSRBF satisfying kth-order con-
sistency, and u;, v; are coeflicients to be determined.

Two methods of discretization, namely, the col-
location method and Galerkin method, have been
dominant in the existing meshless methods. Although
Galerkin method possesses several advantages, one
of the major difficulties in the implementation of
Galerkin-based meshless methods is how to evaluate
integrals in the weak form. Nodal integration, cell
or octree quadrature, and background finite element
mesh quadrature1®! have been used. The first of these
is the fastest, but appears to suffer from instability
and several stabilization schemes have been devel-
oped. The second and third have the disadvantage
that the resulting method is not truely meshless. In
Galerkin method, derivatives in domain integrals are
lowered by using the divergence theorem to establish
the weak form. The inaccuracy in integration will re-
sult in significant error in the solution. However, the
shape functions in meshless method are very compli-
cated. Delicate background cells and a large num-
ber of quadrature points must generally be employed
to integrate the weak form as accurate as possible.
As a consequence, the Galerkin-based meshless meth-
ods are much more expensive than FEM. In contrast,
collocation-based meshless methods are truly mesh-
less and very efficient.

In a point collocation approach, Eqs.(19)~(21)
are satisfied at every point or node. For a node that is
in the interior and is not constrained, the collocation
approach satisfies the equation

Bu(wz):—f(wz) T = 1,2,"‘,]\79 (23)

For points that are constrained by a Dirichlet
boundary condition, the point collocation technique
satisfies

u(wz) = ’EL(CBZ) i=1,2,---, N, (24)
and for points with Neumann boundary conditions,
the following equation is satisfied

T -u(z;)=tx;) i=12,---,N, (25)

In Eqgs.(23)~(25), Ny is the total number of
nodes located in the domain £, N, is the total num-
ber of nodes located on the Dirichlet boundary I,
and N, is the total number of nodes located on the
Neumann boundary I3, and N = Ny + N, + N;.
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2N linear equations are obtained from Eqs.(23)~(25)
which will be used to solve w; and v; (¢ =1,2,---,N).

Note that the prescribed traction conditions (25)
must be explicitly implemented even on traction-free
boundaries. This is quite different to the Galerkin
method, in which traction-free boundaries require no
calculation of boundary integrals.

The application of a point collocation method
is very straightforward when compared to a Galerkin
method. The Galerkin method requires the construc-
tion of a weak form and the evaluation of the inte-
grals arising in the weak-form is typically expensive.
Since a weak form is not constructed in a point col-
location approach, the issue of a background mesh
does not arise. The imposition of boundary condi-
tions in a Galerkin-based meshless method is consid-
ered as a major challenge. The imposition of bound-
ary conditions is, however, very straightforward with-
out any difficulty when a point collocation method is
applied. But, the coefficient matrix in a point collo-
cation method is generally non-symmetric, and also
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requires the calculation of second order derivatives,
which are, typically, not required in a Galerkin-based
meshless method.

4 NUMERICAL EXAMPLES
4.1 Poisson Equation

The Poisson equation

Aufz,y) = =2(z +y - 2? —y?)
y € [0,1] (26)
on 812

in 2:2¢€(0,1],
u(z,y) = 0.0

is studied first. The exact solution of this equation is
given by
u(z,y) = (z - 2%)(y — v°)

This problem is analyzed for a 15x15 regular
and an irregular node discretization as shown in Fig.3,
respectively. To evaluate the accuracy of the solution
uh(z,y), two kinds of relative error norm are defined
as

\/:2::1 [uh(:ck) - u(mk)] . [uh(wk) — u(wk)]

Uy x 100% (27)
N
. u(we) - u(w)
k=1
N
T
\/Z [du”(zy) — du(zy)] - [dul(z, — du(es)]
k=1
B, = x 100% (28)
N T
Z [du(wk)] . [du(wk)]
k=1
where du = [u g, u,]", dut = [uf W ]T. C2_CSRBF are listed in Tables 1 and 2. The results
obtained by using CSRBF!®! are also included for the
Z 0,00 ,® ° "o o °O°O° O" °© o; ° purpose of comparison. This study shows that the
< o o]
o ooo 68026 %90 4 00 L4 CCSRBFs perform much better than CSRBFs, and
S o o . . .
292 %% o >, 8% o %o : &2 even CCSRBF with Oth-order consistency can give
© %% "o ° 5% 2" g results with satisfactory accuracy.
o ©o 200 00 5 no @ o o
6 0° 000000000 oo Q@ ©
e voo fc OL’ o0 _© oaq ° Oc ° Table 1 Relative error of the Poisson equation
o] - @ . . . .
6% %00 0 900 500 o ; @ ° o with regular nodes discretization (%)
° o ° o ° ° [e] o [ o Qqa o i
¢ o % 00 © g0 0 ° 2% . . ° R CSRBF1 CO_CSRBF1 C1.CSRBF1 C2_CSRBF1
o 0 ] o o4
°0 T oot o 2% 88 U, 02 281 4.82 5.02 0.056 5
o,
68 b0 9o o6 600 eoo o 0.25 121 1.24 0.04 0.0198
. 1 o 0.3 449 0.827 0.191 0.0318
Fig.3 Ran 01.nly.dlscr1buted 256 nodes 035 2.66 0.489 0.247 0.0553
discretization By 02 414 19.9 5.61 0.435
0.25 27.5 9.48 0.394 0.0874
The numerical results obtained for the regu- 0.3 195 4.85 0.781 0.308
0.35 153 2.59 0.578 0.398

lar and irregular node discretization by using the
point collocation with CO_.CSRBF, C1_CSRBF and
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Table 2 Relative error of the Poisson equation

with irregular nodes discretization (%)

R CSRBF1 CO_.CSRBF1 C1_.CSRBF1 C2_.CSRBF1

Us 0.2 54.5 3.18 8.81 9.12
0.25 215 0.93 2.90 0.967
0.3 7.44 0.43 1.54 0.722
0.35 3.75 0.328 0.653 0.429
By 0.2 61.4 22.0 10.7 22.9
0.25 321 10.0 4.45 3.20
0.3 19.4 5.02 2.69 3.43
0.35 14.6 2.89 1.48 4.48

4.2 Cantilever Beam

Consider a Cantilever beam subject to end load
as shown in Fig.4. The analytical solution is given by
Timoshenko and Goodier'”. This problem is solved
for elastic modulus E = 1.0 x 10%, the Poisson’s ra-
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tiov = -, D =2and L = 12. The exact displace-
ments are prescribed as essential boundary conditions
at © = 0, 0 <y < D, and the rest of the boundaries

are treated as prescribed traction boundaries.

/ 7 R P

L

Fig.4 Cantilever beam

To verify the accuracy of the numerical solution,
two kinds of relative error norm are evaluated in the
form of displacements and stresses, namely

\/éf:l [uh(wk) - “(mk>]T

. [uh(wk) — u(wk)]

L, = _ x 100% (29)
\/k; [w(z)] " - [u(es)]
\/]ZV: [Uh z)) — U(wk)]T ) [Uh(wk) - U(wk)]
L, =121 x 100% (30)

e

Numerical solutions are obtained by using reg-
ular discretization with 18x3, 24x4, 30x5 and 36x6
nodes, which are listed in Table 3.

Table 3 Relative error norm for

Cantilever beam (%)

18x3 24x4 30%5 36%6

CSRBF1 L, 99.464 100.06 100.03  100.12
L, 309.06 108.16 105.42 109.02

C1_.CSRBF1 L, 45904 24.019 21.040 6.8613
L, 53.475 22278 22.108  11.557

C2_CSRBF1 L, 16.821 14405 9.2192 1.3894
Ly 19.188 15.752 9.9632 2.0287

4.3 Plate with a Hole

Consider the problem of an infinite plate with a
central circular hole of radius a centered at the origin,
and uniaxially loaded at infinity by a traction oy in
the z direction. Due to twofold symmetry, only the
first quadrant is modeled. The modeled region ex-
tends to the boundaries = 5 and y = 5, along which
the exact tractions or displacements are applied as
prescribed boundary conditions. The radius of the

circleis a = 1.

. [a’(a:k)]

Two cases are analyzed here. In the first case,
the exact displacements are applied at all boundary
nodes, while in the second case, the displacements are
only applied at the left and lower edges, and the trac-
tions associated with the exact stress field are applied
at the upper and.right edges. In the second case,
the inner boundary is a traction free boundary. A
plane stress state is assumed with material properties
E =1000 and v = 1/3. The nodal arrangements used

in this example are illustrated in Fig.5.

oo oco ¢ ¢ © o O Q0
00p 00 o o © O @ O

P09 00 00 oo O O

2960 006 o 0o 0 O
20

0o o o o 0 Qa 2
2 o

o ¢ o o o o o 0 o]
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g 0D g o o o o Q [#]
a9

o oo e O O 0 Q o]
© g

0005 0 © © & ° 0
000 0 0 & a 0 ©
o0 9 O 0 &6 o O o

Fig.5 Nodal arrangement for the plate
with a central circular hole
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This problem is solved with C1_CSRBF1 and
C2_CSRBF1, and the relative error norms for cases
1 and 2 are shown in Tables 4 and 5, respectively, the
results obtained by using CSRBF1¥! are also included
for the purpose of comparison.

Table 4 Relative error norm for case 1 (%)

N =48 N =117 N =352 N =513
CSRBF1 L, 3589 42.96 44.71 50.33
L, 136.6 192.9 312.2 344.6
C1_CSRBF1 L, 1.59 1.312 0.489 0.086
Lo 22.46 14.63 5.973 3.338
C2_.CSRBF1 L, 1.167 0.346 0.0595 0.021
L, 27.88 15.17 3.914 1.703

Table 5 Relative error norm for case 2 (%)

N =48 N =117 N =352 N =513

CSRBF1 L, 280.47 501.67 332.62 115.27
L, 66859 12753 2188.1 675.48

C1_.CSRBF1 L, 88.24 14.855 5.7928 0.977
L, 31643 96.737 59.435 3.894

C2_.CSRBF1 L, 31.384 5.4818 0.8354 0.342
L, 103.69 15.498 4.138 1.670

5 CONCLUDING REMARKS

Much effort has been made in the development of
compactly supported radial basis functions in mathe-
matical communities. However, based on our previous
study, reasonable results can be obtained only when
the support size of CSRBFs is large enough. The con-
ception of the consistent compactly supported radial
basis functions is introduced in this paper, and the
method to develop consistent compactly supported
radial basis functions from existing CSRBF's to satisfy
the predetermined consistency is presented in detail.
Numerical studies show that the CCSRBFs can im-
prove the accuracy of approximation significantly.
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