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ABSTRACT: Based on our previous study, the accuracy of derivatives of interpolating functions are 
usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions 
(CSRBFs) are used, so that it could result in significant error in solving partial differential equations 
with Neumann boundary conditions. To overcome this drawback, the Consistent Compactly Supported 
Radial Basis Functions (CCSRBFs) are developed, which satisfy the predetermined consistency con- 
ditions. Meshless method based on point collocation with CCSRBFs is developed for solving partial 
differential equations. Numerical studies show that the proposed method improves the accuracy of 
approximation significantly. 
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1 I N T R O D U C T I O N  

During recent years, much attention has been 

paid to the development of meshless methods, and 

about 10 different meshless methods have been de- 

veloped, such as the Smooth Particle Hydrodynam- 
ics (SPH)[ 1], the Diffuse Element Method (DEM)[ 2], 

the Element Free Galerkin Method (EFG)[ 31, the 

Reproducing Kernel Particle Method (RKPM)[4], 

the Finite Point Method (FP)[ 5], the hp Clouds 

Method (HP)[ 6], the Meshless Local Petrov-Galerkin 
method (MLPG) [71, the Local Boundary Integral 

Equation method (LBIE)[ s], the Radial Basis Func- 
tions method (RBF) [9], RBF-type  meshfree boundary 

techniques [1~ Least Square Collocation Meshless 

method (LSCM)[ 1~], and several others. 

In those meshless methods, there are mainly four 

different ways to construct approximation functions 

entirely in terms of points, namely, smooth particle 

hydrodynamics method (SPH), moving least square 
method(MLS),  parti t ion of unity method,  and radial 

basis functions (RBF). All of them discretize the do- 

main of interest by using a set of scattered points, 

and establish the shape functions at the global level 

without the requirement of any mesh. 
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The multivariate functions ~(-) : /~d _~ _B can 

be efficiently evaluated if they are expressible as uni- 

variate functions ~(.) = ~(11" II) of the Euclidean norm 

I1' II in R", and such functions are called Radial Basis 
Functions (RBFs). The RBFs have been successfully 

developed for interpolation, and a typical construc- 

tion of interpolations with a set of scattered points 
xi,  1 < i < N, is given by 

N 
- -  - ( 1 )  

i = 1  

Point collocation method with RBFs to solve 
PDEs is a truly mesh-free method,  and possesses 

many advantages. However, RBFs are generally glob- 

ally supported and poorly conditioned. Although 

there are several remedies for these problems, such 
as domain decomposition, preconditioning, and fine 

tuning of the variable parameter  of RBFs, the com- 

pactly supported RBFs (CSRBFs) provide a promis- 

ing approach[la~15]. If CSRBFs are used, the evalua- 

tion of (1) will not run over whole set of N summands  
and the coefficient matr ix  will be sparse. Wu [lal pro- 

vided criteria for positive definiteness of CSRBFs and 

produced a series of positive definite and compactly 
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supported radial basis functions. Wendland [14] and 

Buhmann [la] also proposed several CSRBFs. Two 

classes of compactly supported positive definite RBFs 
will be studied in this paper, namely 

CSRBF1 [13] : r  = (1 - r )~(6 -F 36r + 82r2-F 

72r 3 + 3 0 r  4 + 5 r  5) E C 4 A P D 3  
(2 )  

CSRBF2114] : r  = (1 -- r)~_(32r 3 + 25r2+ 

which means that  it is even unable to reproduce con- 
stant function exactly by using Eq.(1). It can also 
be shown that  the CSRBFs do not satisfy the kth- 
order consistency, so that  it is unable to reproduce 
kth-order polynomials exactly. 

Let $I ~ rig(l) and $I 2) denote CCSRBFs that  
satisfy the 0th-order, 1st-order and 2nd-order consis- 
tency, respectively, namely 

8/" -t- 1)  E C 6 N P D 3  

where r = H x - x o  I I / R ,  in which x0 is the center of the 
CSRBF, R is the radius of the compactly supported 
domain. P D d  represents the fact that  the radial func- 
tion is positive definite in R d, and (1 - r)+ is given 

by 
( l - r )  if 0 < r  < 1 

(1 - r)+ = 0 otherwise (3) 

The meshless methods based on point collo- 
cation with CSRBFs were studied in our previous 
work[9]. It was shown that the accuracy of deriva- 

tives of the interpolating functions are usually very 
poor near the boundary of domain, therefore, it will 
result in significant error in solving a PDE with Neu- 
mann boundary conditions. The method of Hermit 

type collocation was proposed, which can improve the 
accuracy significantly. However, the numerical studies 
also demonstrated some shortcomings of the CSRBFs. 
The accuracy of the solutions is much lower than those 
using globally supported RBFs, and the acceptable 
accuracy can only be obtained by using large sup- 
port  size. To overcome these shortcomings, the consis- 
tent compactly supported radius basis functions (CC- 
SRBFs) are proposed in this paper, which are not 
only compactly supported but  also satisfy the prede- 
termined consistency conditions. Based on the point 
collocation with CCSRBFs, the meshless method is 
then developed. As a test on the proposed method, 
the interpolation, Poisson equation, and some prob- 
lems in elasto-statics are studied in detail. Numerical 
examples show that  the present method improves the 
accuracy significantly. 

2 C O N S I S T E N T  C O M P A C T L Y  S U P P O R T -  

E D  R A D I A L  B A S I S  F U N C T I O N S  

In general, with a set of scattered nodes xi, (i = 
1, 2 , - - - ,  N),  the original CSRBFs r  do not satisfy 
the 0th-order consistency, namely 

N 

E r  r 1 (4) 
i = 1  

N 

E r176  1 (5) 
i = 1  

N 

i=1 

N 

EXi'~I)(w) ~-- X 

i = 1  

N 
-(1) 

i - -1  

N 

E -(e) 

i - -1  

N 

i=1 

N 

i--1 

N 

2 v;!2) = x 2 
i=1 

N 

i = 1  

N 

i = 1  

(6) 

(7) 

for a 2D prob]em. Equations (6) and (7) can also be 
rewritten as 

N 

i = 1  

N 

i = 1  

N 

i = 1  

( s )  
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N 

E (~12)(w) : 1 
i = 1  

N 

i = 1  

N 

i = 1  

N 
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= 0  

= 0  

Z ( x  - x ~ ) ~ ) ( ~ )  = o 
i = 1  

N 

~ ( x  - ~ ) ( y  - y~)$1 ~) (~) 
i = 1  

N 

(9) 

= 0  

~ ( y  - y~ )~ l~ ) (~ )  = 0 
i - - 1  

The C C S R B F  ~ k ) ( x )  can be derived from r  

given in Eq.(2) by 

~I~)(~) = r  b(~)  (10) 

where bT(x)  is a vector of coefficients to be evalu- 

ated, which as indicated, are functions of the spatial  

coordinates  r  and 

[1] for k = 0 

T [1, X - - X ~ , y - - y i ]  for k = l  

P~ (~) = [1, ~ -  x~, y -  y~, ( ~ -  x d  ~, 

( x - x i ) ( y - y i ) ,  (Y-Yi )2 ]  for k = 2  
(11) 

Subst i tut ing Eq.(10) into Eq.(8) or Eq.(9) yields 

M .  b = q (12) 

where 
N 

M = ~ r  
i = 1  

q = [1 ,0 ,0 ,0 ,0 ,0]  T 

Solving Eq.(12) for b, and subs t i tu t ing  it into 

Eq.(10), one obtains 

r ( x ) p T ( x ) M - l q  (13) i ~ / ~ i  

The function u(x)  can be approximated  by using 

C C S R B F  r as 

N 

~(~) ~ ~ (~ )  = ~ ~I~)(~) 0 4 )  
i = 1  

Clearly, the C C S R B F s  $1~ are identical to 

the well-known Shepard functions, namely  

r (15) 

i = 1  

In  the following sections, prefix of "C0_", "CI_" 

and "C2_" will be used to denote  the 0th-order,  ls t -  

order and 2nd-order  consistency, respectively. For ex- 

ample, "C2_CSRBFI"  denotes the C C S R B F  which is 

derived from CSRBF1  given in Eq.(2) and  satisfies 

the 2nd-order  consistency. 

To show the difference between C S R B F s  and  

CCSRBFs ,  the domain  x E [0,20] is discretized by 

21 regular nodes, and the CSRBF1  defined in Eq.(2) 

with the suppor t  size R = 2.5 is chosen as the  original 

radial  basis function. Figure 1 shows the shape of the 

CSRBF1,  C I _ C S R B F 1  and C2_CSRBF1 for the node 

at x = 10, while Fig.2 shows their derivatives. 
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Fig.1 The shape of basis function at x = 10 
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Fig.2 The derivative of basis function at x = 10 

3 M E S H L E S S  M E T H O D  B A S E D  O N  P O I N T  

C O L L O C A T I O N  W I T H  C C S R B F S  F O R  

L I N E A R  E L A S T I C I T Y  

Consider  the 2D linear elasto-statics governed by 

a differential equat ion 

A .  o'(x) + f ( x )  = 0 x C f2 (16) 
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u (x )  = u (x )  x �9 F~ (17) 

~. ~(~) = ~(~) ~ �9 r,  ( i s )  

where g is the prescribed displacement on the essen- 

tial boundary  F~, and t is the prescribed tract ion on 

the natural  boundary  It ,  
0 

Ox 
A =  

0 

o=[' 
0 

0 
0 

Oy 

0 0 
Oy Ox 

0 T] 
~TZ 

u - - E u  v] T 

and l, m are the direction cosines of the outward nor- 

mal direction of boundary It .  Equations (16)~(18) 

can be expressed in displacement vector u as 

B .  u(x, y) = - f ( x ,  y) in Y2 (19) 

u(x ,  y) = u(~,  y) on F~ (20) 

T .  u(x, y) = t(x, y) on Ft (21) 

where 

E0 
B =  1 - v g  

I 0 1 - ~ 0  0 2 l + v 0  0 2 
~ x  2 4- 2 Oy 2 2 OxOy 

L l + v o  02 02 1 - v o  02 
2 OxO~ Oy 2 + ~ O x  2 

Eo 
T ~ 

1 - vg 

r'o 0 

2 Oy 
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where r  is a CCSRBF satisfying kth-order con- 
sistency, and ui, vi are coefficients to be determined�9 

Two methods of discretization, namely, the col- 

location method and Galerkin method,  have been 

dominant in the existing meshless methods. Although 

Galerkin method possesses several advantages, one 

of the major  difficulties in the implementation of 
Calerkin-based meshless methods is how to evaluate 

integrals in the weak form. Nodal integration, cell 

or octree quadrature,  and background finite element 
mesh quadrature [16] have been used. The first of these 

is the fastest, but appears  to suffer from instability 

and several stabilization schemes have been devel- 
oped. The second and third have the disadvantage 

that  the resulting method is not truely meshless. In 

Galerkin method, derivatives in domain integrals are 

lowered by using the divergence theorem to establish 

the weak form. The inaccuracy in integration will re- 

sult in significant error in the solution�9 However, the 

shape functions in meshless method are very compli- 

cated. Delicate background cells and a large num- 

ber of quadrature points must generally be employed 

to integrate the weak form as accurate as possible. 

As a consequence, the Galerkin-based meshless meth- 

ods are much more expensive than FEM. In contrast, 

collocation-based meshless methods are truly mesh- 

less and very efficient. 

In a point collocation approach, Eqs.(19)~(21) 

are satisfied at every point or node. For a node that  is 

in the interior and is not constrained, the collocation 

approach satisfies the equation 

0 1 - V o  0 
lYo ~ + m ~ Ox 

0 1 - V o  0 

, ~  + l ~ -  0~ 
in which Eo = E,  ~0 = v for plane stress, and 

E 
. . . .  for plane strain. E0 1 - v 2 '  Vo 1 - v  

Using the consistent compactly supported ra- 

dial basis functions, the displacement vector u(x, y) 
can be approximated by a set of scattered nodes 

x i , i = l , 2 , ' " , N ,  as 

N 

~t(x, y) = E ui ~k 
�9 ~i (~) 

i--1 
(22) 

N 

v(x ,  y) ~ E vi ~k 
�9 r (~) 

i 1 

B .  u(xi) - f ( x i )  i = 1,2,... ,Nx? (23) 

For points tha t  are constrained by a Dirichlet 

boundary  condition, the point collocation technique 

satisfies 

u (x i )  = u (x i )  i = 1 , 2 , . . . , N u  (24) 

and for points with Neumann boundary  conditions, 

the following equation is satisfied 

T . u ( x i )  = ~(x~) i = 1 , 2 , . . . , X t  (2~) 

In Eqs.(23)N(25), N.e is the total number of 

nodes located in the domain Q, Nu is the total num- 

ber of nodes located on the Dirichlet boundary /7., 

and Nt is the total number of nodes located on the 

Neumann boundary I t ,  and N = N~ 4- Nu 4- Nt. 
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23/ l inear  equations are obtained from Eqs.(23)~(25) 

which will be used to solve ui and vi (i = 1, 2 , . . - ,  N) .  

Note that  the prescribed tract ion conditions (25) 
must be explicitly implemented even on traction-free 

boundaries. This is quite different to the Galerkin 

method,  in which traction-free boundaries require no 

calculation of boundary integrals. 

The application of a point collocation method 

is very straightforward when compared to a Galerkin 

method. The Galerkin method requires the construc- 

tion of a weak form and the evaluation of the inte- 
grals arising in the weak-form is typically expensive. 

Since a weak form is not constructed in a point col- 

location approach, the issue of a background mesh 

does not arise. The imposition of boundary condi- 

tions in a Galerkin-based meshless method is consid- 

ered as a major  challenge. The imposition of bound- 

ary conditions is, however, very straightforward with- 

out any difficulty when a point collocation method is 

applied. But, the coefficient matr ix  in a point collo- 
cation method is generally non-symmetric,  and also 

requires the calculation of second order derivatives, 

which are, typically, not required in a Galerkin-based 

meshless method.  

4 N U M E R I C A L  E X A M P L E S  
4.1 P o i s s o n  E q u a t i o n  

The Poisson equation 

Au(x ,y )  = - 2 ( x  + y -  x~ -- y~) 

in a?: x E [0,1], y E [0, 1] (26) 

u(x, y) = 0.0 on 0/2 

is studied first. The exact solution of this equation is 

given by 
y )  = ( x  - x ' ) ( y  - y 2 )  

This problem is analyzed for a 15x15 regular 

and an irregular node discretization as shown in Fig.3, 

respectively. To evaluate the accuracy of the solution 

uh(x, y), two kinds of relative error norm are defined 

as  

U2 = k=l x 100% 

@ ~  [ d u h ( x k ) [ d u h ( x k  ~ du~x~ T @ ~ du~x~ 

E2 = k= l  

~/k=~l [du(xk)] w. [du(wk)] 

(27) 

x 100% (28) 

where du 

0 

o 

0 

U x ,  U T ~h  = ,y] , d u "  = [ , . ,  

O O O  OC~ ~ O  O O O  O O O  O O 
O 0 0 

O O O O O O O O O O O 

OOO O O O O O O O O o (3 0 

0 0 0 0 0 0 0 
oo o o o0 0 oo o ~o 
0 0 0 0 ~ ~ 0 

00% ~ ~ o 0 0 0 0 O 0 0 O 0 
o oo Ooo ~o ~ Oo 0o 

00 0 
0 O0 0 0 0 0 0 0 C O0 O0 0 0 

O0 0 0 0 Oc 0 O0 
O0 000 0 

0 0 0 r) 0 0 0 0 0 
0 0 0 0 o 0 ~ OQ 0 

0 O O  0 0 0 0 0 Ct3 0 0 

0 0 0 0 0 o C  0 0 0 t~ 0 0 0 
O 0  0 0 

~0 0 O0 O0 0 O O0 0 0 $ 0 0 
O0 0 O~j 0 

o o oo ~ 
O0 0 O0 0 O 0 0 0 0 OC 

OO O O O O 0 O O O OO O O O O 

Fig.3 Randomly distributed 256 nodes 

d i s c r e t i z a t i on  

The numerical results obtained for the regu- 

lar and irregular node discretization by using the 

point collocation with C0_CSRBF, CI_CSRBF and 

C2_CSRBF are listed in Tables 1 and 2. The results 

obtained by using CSRBF [9] are also included for the 

purpose of comparison. This s tudy shows tha t  the 

CCSRBFs perform much bet ter  than  CSRBFs, and 

even CCSRBF with 0th-order consistency can give 
results with satisfactory accuracy. 

Table  1 Rela t ive  e r ro r  of  the  Poisson equa t ion  

wi th  regular  nodes  d iscre t iza t ion  (%) 

R CSRBF1 C0_CSRBF1 CI_CSRBF1 C2_CSRBF1 

U2 0,2 28.1 4.82 5.02 0.0565 

0.25 12.1 1.24 0.04 0,019 8 

0,3 4.49 0.827 0,191 0.031 8 

0.35 2.66 0.489 0.247 0.0553 

E2 0.2 41.4 19.9 5.61 0,435 

0.25 27.5 9.48 0,394 0.0874 

0.3 19.5 4.85 0.781 0.308 

0,35 15.3 2.59 0,578 0.398 
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T a b l e  2 R e l a t i v e  error o f  t h e  P o i s s o n  e q u a t i o n  

w i t h  i rregular  n o d e s  d i s c r e t i z a t i o n  (%) 

R CSRBF1 C0_CSRBF1 CI_CSRBF1 C2_CSRBF1 
U2 0.2 54.5 3.18 8.81 9.12 

0.25 21.5 0.93 2.90 0.967 
0.3 7.44 0.43 1.54 0.722 
0.35 3.75 0.328 0.653 0.429 

E2 0.2 61.4 22.0 10.7 22.9 
0.25 32.1 10.0 4.45 3.20 
0.3 19.4 5.02 2.69 3.43 
0.35 14.6 2.89 1.48 4.48 
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1 
rio u = ~, D = 2 and  L = 12. The exact displace- 

ments  are prescribed as essential  b o u n d a r y  condit ions 

at x = 0, 0 < y < D, and  the rest of the boundar ies  

are t r ea ted  as prescribed t r ac t ion  boundaries .  

4 . 2  C a n t i l e v e r  B e a m  

Consider  a Cant i lever  b e a m  subject  to end load 

as shown in Fig.4. The  analy t ica l  solut ion is given by 

Timoshenko and  Goodier  [17]. This  problem is solved 

for elastic modu lus  E = 1.0 x 104, the Poisson's  ra- 

F, 

D 

I. 
L 

P 

X 

Fig.4 Cantilever beam 

To verify the accuracy of the numerica l  solution, 

two kinds  of relative error no rm are evaluated in the 

form of displacements  and  stresses, namely  

L~  = 

Lo- = 

[ u , . ( x k ) -  �9 . 

- o - ( . , 0 ]  T �9 - o - ( . , 0 ]  

[ , , . ( , , , , ) IT.  [o-( ,k) ]  

x 100% (29) 

x 100% (30) 

Numerica l  solut ions are ob ta ined  by using reg- 

u lar  discret izat ion wi th  18x3, 24• 30x5  and  36•  

nodes, which are listed in Table 3. 

Tab le  3 R e l a t i v e  error n o r m  for 

C a n t i l e v e r  b e a m  (%) 

18x3 24• 30• 36:><6 

CSRBF1 L~ 99.464 100.06 100.03 100.12 
L~ 309.06 108.16 105.42 109.02 

CI_CSRBF1 L~ 45.904 24.019 21.040 6.8613 
L~ 53.475 22.278 22 .108 11.557 

C2_CSRBF1 L~ 16.821 14.405 9.219 2 1.389 4 
L~ 19.188 15.752 9.963 2 2.028 7 

4 . 3  P l a t e  w i t h  a H o l e  

Consider  the problem of an  infinite plate  with a 

central  circular hole of radius a centered at the origin, 

and  uniaxia l ly  loaded at infini ty by a t rac t ion  ao in 

the x direction.  Due to twofold symmetry ,  only the 

first quadran t  is modeled.  The  modeled region ex- 

tends  to the boundar ies  x = 5 and  y = 5, along which 

the exact t rac t ions  or displacements  are applied as 

prescr ibed b o u n d a r y  condit ions.  The  radius  of the 

circle is a = 1. 

Two cases are analyzed here. In the first case, 

the exact displacements are applied at all boundary 

nodes, while in the second case, the displacements  are 

only applied at the left and  lower edges, and the trac- 

t ions associated with the exact stress field are applied 

at the upper  and  right edges. In  the second case, 

the inner  b o u n d a r y  is a t r ac t ion  free boundary.  A 

plane stress s ta te  is assumed with mater ia l  properties 

E = 1 000 and  u = 1/3. The nodal  a r rangements  used 

in this example are i l lus t ra ted  in Fig.5. 

O' ,0 0 0 0 0 ~ 0 O O 0 

0 0 0 O. O 0 0 �9 0 O 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 
0 0 0 O 0 0 O O 0 

0 O 
O O O O O O O '~ 0 

O 0 
0 0 0 0 0 0 0 0 0 

0 0 
0 O 0 0 0 0 0 0 0 

o o 

0 0 0 0 O 0 O '0 0 

0 0 O 0 (~ 0 0 0 0 

0 0 0 0 0 O 0 0 0 

Fig.5 Nodal arrange:rant for the plate 

with a central circular hole 
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This  p r o b l e m  is solved wi th  C I _ C S R B F 1  and  

C2_CSRBF1,  and  the  re la t ive  error  norms  for cases 

1 and  2 are shown in Tables  4 and  5, respect ively ,  the  

resul ts  o b t a i n e d  by  using C S R B F 1  [9] are also inc luded  

for the  pu rpose  of compar ison .  

T a b l e  4 R e l a t i v e  e r r o r  n o r m  f o r  c a s e  1 (%) 

N = 4 8  N =  117 N = 3 5 2  N = 5 1 3  
CSRBF1 L~, 35.89 42.96 44.71 50.33 

Lo 136.6 192.9 312.2 344.6 
CI_CSRBF1 L~ 1.59 1.312 0.489 0.086 

L~ 22.46 14.63 5.973 3.338 
C2_CSRBF1 L~ 1.167 0.346 0.0595 0.021 

L~ 27.88 15.17 3.914 1.703 

T a b l e  5 R e l a t i v e  e r r o r  n o r m  f o r  c a s e  2 (%) 

N = 4 8  N = 1 1 7  N = 3 5 2  N = 5 1 3  
CSRBF1 L~ 280.47 501.67 332.62 115.27 

L~ 668.59 1 275.3 2 188.1 675.48 
CI_CSRBF1 L~ 88.24 14.855 5.7928 0.977 

L~ 316.43 96.737 59.435 3.894 
C2_CSRBF1 L~ 31.384 5.4818 0.8354 0.342 

L~ 103.69 15.498 4.138 1.670 

5 C O N C L U D I N G  R E M A R K S  

Much effort has  been  made  in the  deve lopmen t  of 

c o m p a c t l y  s u p p o r t e d  rad ia l  basis  funct ions  in m a t h e -  

ma t i ca l  communi t ies .  However,  based  on our  prev ious  

s tudy,  reasonable  resul ts  can be ob t a ined  only when 

the  suppor t  size of C S R B F s  is large enough.  The  con- 

cept ion  of the  consis tent  compac t ly  s u p p o r t e d  r ad ia l  

basis  funct ions  is i n t roduced  in this  pape r ,  and  the  

m e t h o d  to develop consis tent  c o m p a c t l y  s u p p o r t e d  

rad ia l  basis  funct ions  from exis t ing C S R B F s  to sa t i s fy  

the  p r e d e t e r m i n e d  consis tency is p resen ted  in detai l .  

Numer ica l  s tudies  show t h a t  the  C C S R B F s  can ira- 

prove the accuracy  of a p p r o x i m a t i o n  significantly.  
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