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ABSTRACT The meshless weighted least-square (MWLS) method was developed based on the
weighted least-square method. The method possesses several advantages, such as high accuracy,
high stability and high efliciency. Moreover, the coefficient matrix obtained is symmetric and semi-
positive definite. In this paper, the method is further examined critically. The effects of several
parameters on the results of MWLS are investigated systematically by using a cantilever beam
and an infinite plate with a central circular hole. The numerical results are compared with those
obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless
method (GBMM). The investigated parameters include the type of approximations, the type of
weight functions, the number of neighbors of an evaluation point, as well as the manner in which
the neighbors of an evaluation point are determined. This study shows that the displacement
accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while
the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM.
Furthermore, MWLS is much more efficient than GBMM.

This study also shows that the instability of CBMM is mainly due to the neglect of the equi-
librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are
minimized in a weighted least-square scnse.

KEY WORDS meshless, meshfree, lcast-square, weighted residual

I. INTRODUCTION

The finite element method (FEM) has been the most frequently used and powerful numerical method
for engincering analysis for the last thirty years. However, mesh generation required in FEM can be
a very time-consuming and expensive task. Furthermore, mesh-based methods are not well suited to
the problems associated with severe deformation which requires frequent remeshing. In recent years,
considerable effort has been devoted to the development of the so-called meshless methods and more than
10 different versions have been proposed! =31, Meshless methods have been successful in solving high
velocity impact!®9!, dynamic fracturel®, metal forming!™, localization!® and jointed rock structures!?,
just to mention a few.

Two discretization methods, the collocation method and Galerkin method, have been dominant
in the existing meshless methods. In fact, all meshless methods could be obtained from the weighted
residual method. In the Galerkin method, derivatives in domain integrals are lowered by using the
divergence theorern to establish the weak form. The inaccuracy in integrating the weak form will result
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in significant error in the solution. However, the shape functions in meshless method are very complex.
Delicate background integration cells and a large number of quadrature points must generally be
employed to evaluate the weak form as accurately as possiblel'?!. As a consequence, the Galerkin-based
meshless methods are much more expensive than FEM. In contrast, collocation-based meshless methods
are truly meshless and very eflicient. Equilibrium conditions are satisfied only at the nodes within the
problem domain neither than at the boundary nodes. Hence, significant error can result. These methods
also suffer from instability. Recently, Zhang et al. have proposed a Least-Square Collocation Meshless
(LSCM) method!*!I, In addition to the nodes used to construct the trial functions, a number of auxiliary
points are also used in LSCM. Unlike the conventional collocation method, the equilibrium equations
are taken not only at the nodes within the domain but also at the boundary nodes. Together with the
equations arising from the boundary conditions, the total number of equations exceeds the number of
unknowns and the system of equations was solved in the least-square sense. Numerical studies showed
that LSCM are stable, efficient and highly accurate. Similar to the conventional collocation method,
the coefficient matrix detailing the system of equations is unsymmetric.

The Least-square method is a well-known weighted residual method!'?. In the least-squares method,
integration is only used to average the residual of the governing equations. The solution accuracy in
the least-square method is less sensitive to the integration accuracy than in the Galerkin method.
Consequently, it is possible to use a very simple integration scheme in a least-square-based meshless
method to improve the efficiency of the related meshless method. Based on the least-square method, a
very efficient truly meshless method, meshless weighted least-square method, was proposed in Ref.[13].
MWLS possesses several advantages. The residual of the governing equations is averaged in MWLS so
that it is much more accurate and stable than collocation-based methods. No integration is involved in
MWLS so that it is much more efficient than Galerkin-based meshless methods. The coefficient matrix
of the resulting equations is semi-definite and symmetric. Like all collocation methods, MWLS requires
the calculation of second order derivatives that would typically not be required in a Galerkin-based
meshless method.

MWLS is critically examined in this paper. Many parameters have pronounced effects on the results
of meshless methods such as the type of approximation, the type of the weight function and the manner
in which the neighbors of an evaluation point are determined. The effects of these parameters on the
MWLS, CBMM and GBMM are investigated carefully. Numerical studies show that the displacement
accuracy obtained by MWLS is comparable to that of GBMM yet the stress accuracy yielded by MWLS
is even higher than that of GBMM. In MWLS, the accuracy of displacement and stress appears to be
in the same order of magnitude. However, the accuracy of displacement seems to be one order lower
than that of stress in GBMM. Evidently, MWLS is much more efficient than GBMM and is a promising
truly meshless method.

A brief description of the moving least-square (MLS) approximation and standard least-square (LSQ)
approximation is presented in §I1. In §1II, the formulation of MWLS is briefly reviewed, and attention
is paid to the difference between the meshless weighted least-square method and collocation-based
meshless method. MWLS, CBMM and GBMM are examined critically in §IV by using two numerical
examples which are a cantilever beam and the infinite plate with a central circular hole. The paper
ends with the concluding remarks made in §V.

II. MOVING LEAST-SQUARE APPROXIMATION AND
LEAST-SQUARE APPROXIMATION

In MLS approximation, the function u(x) is approximated in domain §2 by %(x), namely,

u(@) =) =Y pi(x) aiz) = p" (2) - a(z) (1)

i1
where p;(x) are monomial basis functions, a;(x) are their coefficients and m is the number of terms in
the basis. The coeflicients a;(x) are obtained by minimizing the functional J(z) given by

2

k m
J(x) = Zw;(w) . Zp,—(w;) cai(@) —ug (2)
I=1

i=1
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where u; = u(xy) is the nodal value of u(z) at node =y, w;(x) = w(x — x;) is a non-negative weight
function with compact support associated with node z; and maximum at node ;. Moreover, k is the
total number of nodes at which the weight function wy(x) does not vanish. Minimizing Eq.(2) for a;(x),
and then substituting a;(2) into Eq.(1) lead to

u(z) = U(x) = ¢ (x) - u 3)
where the shape function matrix ¢(x) is given by
¢ (z) =p'(z) A7} (z) B(x) (4)
and
k
A@) = S wi@pl@)p” (@) (5)
I=1
B(z) = [wi(z)p(z1), wa(@)p(w2), « -, wi(T)p(wk)] (6)
w={uy, ug, -, up}’ (7

The first and second order of derivatives of the shape function can be obtained as
¢,=15-B+r"-B;

Gi=Ti Btri-Bji+r-Bi+r B
where 7T (x) = pT(x) - A~!(x), subscript i denotes the derivative with respect to coordinate x;. The
derivatives of r are given by

Ti= A—l(p,i - Ayi’l‘)

_ A-1 (9)
T4 = A (p,ij — A‘i’l‘,j — ij’l"i — A,ij’l‘)

If the weight function, w;(x), together with its first | derivatives are continuous, the MLS shape
functions in ¢(x) and their first | derivatives are also continuous. Hence, the weight function plays an
important role in the performance of the MLS approximation. The effects of the following 8 weight
functions on the results of meshless methods will be investigated. In all functions, r = ||@; — || /dm1
and d,,; is the support radius of node 1.

1. WF1 (Gaussian)

wr) = Toew - <Y (10)
0 (otherwise)
where 3 is a constant.
2. WF2 (exponential)

—(r/e)? (g<r<1
w(r) = ¢ (O<rs<1) (11)
0 (otherwise)
where « is a constant.
3. WF3
1—-6r2+8 -3 (0<r<1
wip) = { L eI ==l 12)
0 (otherwise)
4. WF4
1-10r% + 157t —6r° (0<r<1)
w 1‘) = . (13)
0 (otherwise)
5. WF5 9
§—4r2+47‘3 (0 <r<0.5)
=724
w(r) = 3 4r + 4r% — %7‘3 (05<r<1) (14)
0 (otherwise)
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6. WF6 s
1-3r2+42 0<r<i1
wr) =4 7T 0T (19
0 (otherwise)
7. WF7
1-2r2  (0<7r<0.5)
wr)=4¢2(1-r?% (05<r<1) (16)
0 (otherwise)
8. WE8
1-r?)" (0<r<1)
w(r) = ] (17)
0 (otherwise)

where n > 2 and is set to 2 in this paper.

It is trivial to show that all the functions are at least first oder continuous. In this paper, the support
radius dmy of node I is determined by x - s[k], where s[k] is the distance between node I and its k-th
closest nodes and x a scale. There are usually more than k nodes whose supports cover point «, i.e.
wy(x) > 0, but only the first k nodes closest to point & are used to construct the MLS approximation
at point x. In other words, the domain 2, of definition of point x is the union of the k overlapping
circles, each centered at &; (I = 1,2,---, k) and of radius d,,;. Parameter x controls the span of weight
function!3),

The approximation of function u(z) can also be established by using the least-square (LSQ) ap-
proximation. The LSQ approximation is constructed by minimizing the functional J(x) given by

k 2

J@)=> 1Y piler) - ai@) —w (18)
1 Li=1

I=

Minimizing Eq.(18) for a;(x), and then, substituting a;(z) into Eq.(1), we obtain the LSQ shape
function matrix in the same form as (4) with

k
A=Y p)p" (=) (19)
I=1
B = [p(®1), p(x2), -+, plwr)] (20)
The first and second order of derivatives of the shape function can be obtained as
¢ =7: B, L=ri B (21)

where the derivatives of r are given by
r.=A"'p;,, r,=Alp, (22)

It should be noted that the computational effort required for evaluating the LSQ shape functions
and their derivatives is much less than that of the MLS shape functions and their derivatives. However,
meshless methods using LSQ approximation is very sensitive to the neighbors of the evaluation point!!4,
In applications such as high velocity impact and explosion, a large number of nodes are usually required
to model the wave propagation properly and, thus, LSQ is a sensible approximation to reduce the
computational cost.

I11. MESHLESS WEIGHTED LEAST-SQUARES AND
COLLOCATION BASED MESHLESS METHOD
Consider the 2D static elasticity problem
Liu(z)]+ f(x) =0 (xeN)
u(z) = a(x) (x € I) (23)
Tu@) =ix) (zel)
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where u(x) is the displacement field to be solved. f(z), u(x), and t(z) are prescribed functions defined
in domain {2, boundary I, and boundary [}, respectively. The differential operators L and T are given
by '

[ 92 1—v H? 1+v 02
_E | a2 2 0y2 2 Oxdy
L= |1+v & 52 +1_,/3‘2 (24)
| 2 Ozdy Oy? 2 Ox?
'](9+nl1—1/8 lya+m1—ua
E \|'or "2 oy dy 2 ar
Tzl_,ﬁ 1/84—1141/'0 5+11—V(9 (25)
™ar T T2 Ay may 2 Oz

where [ and m are the direction cosines of the outward normal to the boundary I3. E and v are the
Young’s modulus and Poisson’s ratio, respectively.

MWLS was developed('® based on the least-square variational principles!!®!, The functional was
established in a simplified discrete form for the 2D static elasticity problem as!'3!

7= (L) + )" (i) + )

+ 3 Aula(a;) - a(z;)]" - [alz;) — alx;)] ‘ (26)

i=1

+ L«g; M{T ()] — ()} - {T[a(ey)] — EHak)}

where 4 (x;) is the trial function, N the total number of nodes, N, the total number of nodes located on
boundary I, and N; the total number of nodes located on boundary I';. Moreover, A, and A; are penalty
functions for imposing the boundary conditions. In this paper, A; = 10% and A\, = M [E/(1 — v?)]%

Substituting the MLS approximation (3) into Eq.(26) and then minimizing the functional IT with
respect to u result in

KU=P (27)
where
N N N,
K= HTH +> MNTN;+> \QIQx (28)
i=1 j=1 k=1
N N, N,
P=-> HIf+> MNja+> MQit (29)
i=1 j=1 k=1
U= {Ul, Uy =0y UN}T (30)

In Eqgs.(28) and (29),

P10 20 oon 0

N, = 0 0 0 (31)
a1 w2 N (zi,y4)
H, = L(N,)
o1 1 —vd%e 14+ v 9%
—E dx? 2 Oy? 2 Jz0y
1+ v 0%p 0o 1 —vd%p
2 Oxdy dy? 2 Ox?
Fon 1 —vdpn 14+v&pn
Ox? 2 Oy? 2 0zdy
14+ v &N on 1 -1y (32)
2 Jrdy 0y? 2977 |0
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Qi =T(N;)
1§ _
[% +m/___l/()_90]_ ly%+m1 V%
g | Oz 2 Oy oy 2 Oz
2P lovde O 1 vy
dxr 2 Oy " Oy 2 Oz
N 1—vden OoN 1—vdpn
{ m lv m
oz 2 Oy dy 2 Oz (33)
my ooy + ll —v 9N m O¢n + l1 — v 9on
" Oz 2 Oy Oy 2 Oz 1,0

where B = E/(1 — ?).

In CBMM, the equilibrium equation is satisfied at every node within the domain (2, the prescribed
displacement condition is satisfied at every node located on boundary I, and the prescribed traction
boundary condition is satisfied at every node located on boundary I}, namely

L[ﬁ((L‘L)]—Ff(:lh):O ((D;‘E.Q) (i=1,2,"',N—Nu*Nt)
’lAl,(:El) :1—1,(:131) ((l)i < Fu) (7: 1,2,~‘-,Nu) (34)
Tla(z;)] = Hz:) (wi€ly) (i=1,2,--+ N

Substituting Eq.(3) into Eqgs.(34) leads to

H f
N|lv=!a (35)
Q t

where H = [H’IT’ Hga "'sHI’—]\’u——)\’,]Ta N = [errv N;a T N%u]Ta Q:[ ’11", ng -‘.»Q%,,]T'

There are N equations with N unknowns in Eq.(35), and the coeflicient matrix is nonsymmetric.
Multiplying the second equation of Eq.(35) by /Ay, the third equation of Eq.(35) by /¢, and then
premultiplying Eq.(35) by [HT, VA,NT, VX;Q7T), results in a equation in the same form as Eq.(27)
with matrices K and P given by

N—N,—N, Ny Ny
K= S HTH +Y MNTN;+ 53 MQFQ: (36)
i=1 j=1 k=1
N—-N,—N,; Ny Ny
P=- > Hin+Z/\uN]Ta+Z/\tQEf (37)
i=1 j=1 k=1

If the residuals of equilibrium equations of boundary nodes are excluded from the functional IT given
in Eq.(26), the matrices K and P given in Egs.(28) and (29) are the same as those given in Eqs.(36)
and (37). That is to say, the essential difference between MWLS and CBMM is how to deal with the
residual of equilibrium equations at boundary nodes. In CBMM, equilibrium conditions are satisfied
exactly at the nodes within the domain 2 but are ignored at the nodes on boundary I, and boundary
Iy, In MWLS, the summation of weighted squared residuals of all governing equations at all nodes
is minimized. In other words, the equilibrium conditions are satisfied at all nodes in a weighted least
squares sense. If the residuals of equilibrium equations at the boundary nodes are ignored in Eq.(26),
MWLS should yield the same results as those given by CBMM.

IV. ASSESSMENT OF THE MESHLESS WEIGHTED
LEAST-SQUARE METHOD

When MLS is used to construct the meshless approximation function, the weight function plays a
important role. In this section, two numerical examples, a cantilever beam and an infinite plate with
a central circular hole, are used to investigate the effects of the following parameters on the results of
MWLS, CBMM and GBMM:

1. Type of meshless approximation: MLS and LSQ;
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. Number of nodes, &, used to construct the meshless approximation;
. Type of weighted functions used in MLS;

. Parameter 3 in the weight function WF1 and parameter o in WEF2.
. Parameter y, which controls the span of the weight function;

= o

ot

Quadratic basis is used in all analyses. For the purpose of error estimation and convergence studies,
the following error norms are calculated

N ~ T ~ N - T .
\V 2= (B —ug)* (f; — u;) 16 — o)1 - (6 — 09)
L, = Lozl , ) x 100%, L, = \/Z : x 100% (38)
Yl Yol o

where N is the total number of nodes, ; and w; are the approximation and exact displacement values
at point x;, &; and o; are the approximation and exact stress value at point x;.
4.1. Cantilever Beam

Consider a cantilever beam subject to end load P as shown in Fig. 1(a). The exact solution of this
problem is given by Timoshenko and Goodier!*6:1), In this analysis, dimensionless Young’s modulus
E = 10000, Poisson’sratio v = 1/3, P =6, D = 2, L = 12. 9 x 33 regular nodes, as shown in Fig. 1(b),
are used.

"1 T T T

Fig. 1. Cantilever beam.
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Fig. 2. Error norms obtained by using MWLS with weight function WF1.
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Fig. 4. Error norms obtained by using GBMM with weight function WF1.
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This problem is analyzed with different parameters, such as k, x, a and g3, type of weight function
and type of approximation. The exact analytical traction solution is prescribed on the right edge of the
beam and the exact analytical displacement solution is imposed on the left edge. The upper and lower
edges of the beam are traction-free.
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Fig. 5. Error norms obtained by using MWLS, CBMM and GBMM with weight function WF2.
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Fig. 6. Error norms obtained by using MWLS with weight function WEF3-WF8.

Figures 2-8 compare the displacement and stress error norms obtained by using MWLS, CBMM and
GBMM with different parameters. In all figures, (a) and (b) compare the error norms of displacement
for k = 9 and k = 12, respectively, while (c¢) and (d) compare the error norms of stress for k = 9 and
k = 12, respectively. In all GBMM computation, the 8 x 32 uniform background cell is used to integrate
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Fig. 7. Error norms obtained by using CBMM with weight function WF3-WF8.
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Fig. 8. Error norms obtained by using GBMM with weight function WF3-WF8.

the Galerkin weak form and the 3 x 3 Gauss quadrature is used in each cell. The essential boundary

conditions are imposed by using the penalty method.
Figures 2-4 compare the error norms obtained by using MWLS, CBMM and GBMM with weight

function WE1. It can be seen that the parameter 3 largely affects the results whereas y has little effect
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Table 1. Error norms obtained by using LSQ for the cantilever beam

MWLS CBMM GBMM

k 9 12 9 12 9 12
L.(%) 318 7.80 6.5 182 2.62 3.59
L,(%) 377 12.06 7.08 294 128 25.6

on the results. It appears that different meshless methods have different optimum values of parameter
s.

Figure 5 compares the error norms obtained by using MWLS, CBMM and GBMM with weight
function WF2. It can be seen that the parameter a has significant effects on the results.

As is well known, CBMM is unstable and its results largely depend on the parameter § in WF1 and
a - x in WF2. For example, excellent displacements are obtained by using parameter « - xy = 0.6, but
very poor displacements are obtained with « - x = 0.4. In contrast, MWLS is stable.

Figures 6-8 compare the error norms obtained by using MWLS, CBMM and GBMM for weight
functions WEF3-WF8. They indicate that the type of weight functions has significant effect on the
results of the meshless method. Consequently, the type of weight functions and parameters associated
with them must be carefully chosen. Weight functions WF3 and WF5 lead to the best results for MWLS
in this example. Parameter y also has a significant effect on the weight functions WF3-WF8. x = 2 is
recommended.

Table 1 compares the error norms obtained by using LSQ with different values of parameter k.
Although LSQ approximation is less accurate than MLS approximation, it yields reasonable results.
The accuracy of results obtained by using LSQ approximation can be improved by increasing the total
number of nodes. In the analysis of impact and explosion, a large number of nodes are required to
model the wave propagation properly. It is therefore sensible to use LSQ approximaiton to red‘uce the
computational effort required. ;

In this numerical example, the displacement accuracy obtained by GBMM is slightly higher than
that of MWLS, but the stress accuracy obtained by GBMM is lower than that of MWLS for £ = 9 and
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(c) displacement convergence rate for WF5 (d) stress convergence rate for WF5

Fig. 9. Convergence rate for weight functions WF3 and WFS with & = 9 and x = 2.0.
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k = 12. As shown in Ref.[13], all nodes which cover the evaluation point & should be used to construct
the MLS approximation to further improve the accuracy of stress in GBMM. However, the CPU time
will be increased significantly owing to the significant increase of the number of neighbors of point .

Figure 9 compares the convergence rate of MWLS, CBMM and GBMM. (a) and (b) show the
displacement and stress convergence rates for the weight function WF3, respectively, whereas (¢) and
(d) show the displacement and stress convergence rate for the weight function WF5, respectively. In
this example, the displacement convergence rate of MWLS is comparable to that of GBMM. However,
the stress convergence rate of MWLS is even higher than that of GBMM for k = 9.

In this numerical example, k = 9 leads to better results than k = 12 and, at the same time, reduces
the computational effort significantly.
4.2. Infinite Plate with a Central Circular Hole

Consider the problem of an infinite plate with a central

circular hole of radius a. The plate is subject to a uniform ey e *
. . . . . v . . + + + + + + +

tension, oq, in the z direction at infinity. The exact solution of * *

. . . + + 4+ o+ o+ + + + + +
this problem is available['!]. Because of the symmetry, only the e e e e e, .

. . +

upper right quadrant of the plate is modelled and the overall e e e e e, + .

dimension of the quadrant is 5a x 5a. A plane stress state is tEE e s +
. . . . + 4+ 44 + +
assumed with dimensionless elastic modulus £ = 1000 and teas :,‘* ” e PO
. . . . . + +
Poisson’s ratio v = 1/3. In this analysis, o¢ is taken to be 1. I,‘::;:: se Lt e et
. . . e + + +

The exact analytical displacements solution is imposed on the zs:.’:;x P MR R
. . *44 +, +

left and bottom edges, whereas the exact analytical traction %}{ap‘ Witet et et N
L. he ri . AR D PR

solution is imposed on the right and upper edges. The periphery LSS .
. . . . + + + + +

of the circular hole is traction-free. The nodal arrangement is 33 PORITIR ST
X E R EIE I I I + +

shown in Fig.10. Conclusions drawn from this numerical study

are sirr}ilar to those drzliwn from the previogs ex.ample, so the piz 10 Infinite plate discretized with 289
numerical results of this example are not given in detail. nodes.

V. CONCLUDING REMARKS

MWLS is critically examined with two numerical examples. With respect to the present numerical
studies, the following conclusions can be drawn:

1. CBMM is not stable and its accuracy largely depends on the type of weight function, paramter k and
x. Unlike CBMM, MWLS appears to be stable. From the weighted residual method’s point of view,
the essential difference between CBMM and MWLS is how to handle the residuals of equilibrium
equations at boundary nodes. The residuals of equilibrium equations at boundary nodes are simply
ignored in CBMM, but are minimized in a weighted least square sense in MWLS. As revealed in this
study, one of the possible reasons for the instability of CBMM is that the equilibrium conditions
are not satisfied at the boundary nodes.

2. Weight functions have a significant effect on the results of meshless methods and, thus, have to be
carefully chosen in an analysis. Although excellent results can be obtained by weight functions WF1
and WEF2 with properly determined parameters « and 3, it is difficult to determine the optimum
value of parameters a and 8. In the absence of undetermined parameters, weight functions WF3-
WE8 are convenient to use in an analysis. Based on this study, weight functions WF3 and WF5 are
recornmended.

3. Parameter x has a minor effect on the results of meshless methods for the weight functions WF1
and WF2, but has a significant effect for the weight functions WF3-WF8 in some cases. x = 2 is
recommended.

4. Results with reasonable accuracy can be obtained by LSQ approximation which is much more
efficient than MLS approximation. In the analysis of impact and explosion problems, a large number
of nodes are required to model wave propagation properly. LSQ may be used to obtain satisfactory
results at a much reduced computational effort.

5. Results obtained by using k = 9 are better than those by using k£ = 12 in most cases. Hence, £ = 9
is recommended for MWLS.

6. In the cases of k = 9 and k = 12, the displacement accuracy and convergence rate obtained by
MWLS is comparable to that obtained by GBMM. However, stress accuracy and convergence rate
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obtained by MWLS are even higher than those obtained by GBMM. In GBMM, all nodes which
cover the evaluation point @ have to be used to construct the MLS approximation to improve the
stress accuracy. The practice, however, increases the CPU time significantly.

. Although MWLS yields more accurate results than GBMM, it appears that the results of MWLS
are more sensitive than GBMM to the type of the weight function.

. As mentioned by Jiang!*?, Least-Square-based method has a unified formulation for the numerical
solution of all types of partial differential equations. As long as the equations have a unique solution,
the LS-based method always can determine a good approximate solution. LS-based method is able
to simulate fluid dynamics problems in all flight regimes, from incompressible/subsonic through
transonic, supersonic and hyper sonic.
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