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Abstract

A meshless approach based on Moving Least Square Method is developed for the

elasto-plastic analysis, in which the incremental formulation is used. In this approach,

the displacement shape functions are constructed by using the moving least square ap-

proximation, and the discrete governing equations of elasto-plastic material are con-

structed by using direct collocation method. The boundary conditions are also imposed

by collocation. The method established is a truly meshless method, as it does not need

any mesh, either for purpose of interpolation of the solution variables, or for purpose

of construction of the discrete equations. It is simply formulated and very efficient,

and no post-processing procedure is required to compute the derivatives of the unknown

variables, since the solution from this method based on the moving least square approx-

imation is already smooth enough. Numerical examples are given to verify the accuracy

of the proposed meshless method for elasto-plastic analysis.

1 Introduction

During recent years, much attention in computational mechanics has been paid to the devel-

opment of meshless methods. In these methods, the domain of interest is described by a set

of scattered points. Every point has an associated sub-domain and a local approximation is

achieved. Thus, in these meshless methods, the establishment of shape functions does not

require mesh because the interpolation of field variables is accomplished at the global level

and built with the information provided by points in its sub-domain.
∗Supported by the National Natural Science Foundation of China with grant number 10172052.
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In the finite element method, the elements are used to discrete the domain of the

problem. In each element, approximation polynomials are used for the test and trial functions.

The integrals in the weak form are evaluated by dividing the domains into subdomains which

correspond exactly to the elements, and the quadrature scheme chosed is employed over each

element subdomain.

Meshless methods offer considerable promise in areas where the traditional finite el-

ement approximations have encountered difficulties due to the need to continually remesh

the domain. These methods can avoid the difficult task of generating 3D mesh, and are

ideal for problems which need remeshing, such as adaptivity, fracture problems, and large

deformation problems. Several meshless methods have been developed, including Smooth

Particle Hydrodynamics(SPH)[1], Diffuse Element Method(DEM)[2], Element Free Galerkin

Method(EFG)[3], Reproducing Kernel Particle Method(RKPM)[4], Finite Point Method(FP)[5],

hp Clouds Method(HP)[6], Meshless Local Petrov-Galerkin method(MLPG)[7]−[8], Local Bound-

ary Integral Equation method(LBIE)[9]−[10], Radial Basis Functions Method (RBF)[11], and

several others[12].

In these meshless methods, there are mainly four different ways to establish approxima-

tion, namely, smooth particle hydrodynamics method (SPH), moving least square method(MLS),

partition of unity method, and radial basis function. They construct approximation entirely

in terms of points.

To construct the discrete equations, two methods are mainly used in existing meshless

methods, collocation method and Galerkin method. For Galekin-based meshless methods,

two major difficulties exist. First, the imposition of essential boundary conditions is quite

awkward because of the non-interpolatory character of the meshless approximation, and sev-

eral approaches have been developed [13]−[15]. Second, background mesh is always required

in these methods for purpose of calculating the quadrature of the weak form, so they are not

truly meshless methods. In contrast, collocation-based methods are truly meshless methods,

and they are very simple and efficient.

Although the first meshless method was developed years ago, the more important the-

oretical research works and their applications in computational mechanics have been recently

performed, and many research works are only starting. In this paper, a meshless approach
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for elasto-plastic problem is presented based on the moving least square method and direct

collocation, in which the incremental formulation is used. The increments of the displacement

are constructed by using the MLS approximation, and the governing equations of the elasto-

plastic material are discretized by the direct collocation method. The incremental boundary

conditions are also imposed by collocation. Not needing any mesh, either for purpose of in-

terpolation of the solution variables, or for purpose of construction of the discrete equations,

the method established here is a truly meshless method. It is simply formulated and very ef-

ficient, and no post-processing procedure is required. Numerical examples are given to verify

the accuracy of the proposed meshless method for elasto-plastic analysis.

2 MLS Approximation

In moving least square approximation scheme, the function u(x) in domain Ω is approximated

by uh(x), as

uh(x) = pT (x) · a(x) =
mX
i=1

pi(x) · ai(x), ∀x ∈ Ω (1)

where Ω is the domain of definition of x, a(x) is the vector containing coefficients ai(x), which

are functions of the spatial coordinates. p(x) is vector of basis containing complete monomial

functions, and m is the number of terms in the basis, such as m = 6 in 2D:

pT (x) = [1, x, y, x2, xy, y2] (2)

It is also possible to use any other functions in the basis. For example, in problems

with singular solutions, singular functions can be included.

The coefficients ai(x) is determined by minimizing a weighted discrete L2 norm,

R =
NX
I=1

wI(x) · [pT (xI) · a(x)− uI ]
2 (3)

whereN is the total number of nodes scattered in the domainΩ to construct the approximation

of the function u(x), wI(x) is the weight function associated with node xI , and uI is the value

of function u(x) at xI .
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Solving a(x) by minimizing R in (3) and substitute it into (1) lead to

uh(x) =
NX
I=1

φI(x) · uI , ∀x ∈ Ω (4)

where,

φI(x) =
mX
j=1

pj(x) · [A−1(x) ·B(x)]jI (5)

A(x) =
NX
I=1

wI(x) · p(xI) · pT (xI) (6)

B(x) = [w1(x)p(x1), w2(x)p(x2), · · ·wN(x)p(xN), ] (7)

Function φI(x) is usually called the shape function of MLS approximation correspond-

ing to node xI . Note that,

φI(xJ) 6= δIJ , uh(xI) 6= uI (8)

This non-interpolatory character makes the imposition of essential boundary conditions

difficulty.

The weight function wI(x) is compactly supported, which takes its maximum value at

the node xI and vanishes outside a surrounding region, so φI(x) = 0 for x not in the support

of node xI . Thus, the moving least square approximation possesses local characteristics. That

is, for a given point, the approximate value is only based on the information provided by the

closest points in its sub-domain.

The commonly used weight functions are the exponential and spline functions with

compact support. The exponential weight function corresponding to node xI may be written

as

wI(x) =

(
exp [−( r

I

hIcI
)2] 0 ≤ rI ≤ hI

0 rI > hI
(9)
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where rI = kx− xIk is the distance from node xI to point x, cI is a constant, and hI is the

size of the support for the weight function wI(x).

The cubic spline weight function corresponding to node xI is

wI(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3
− 4( rI

hI
)2 + 4(

r
I

hI
)3 0 ≤ r

I

hI
≤ 1

2

4
3
− 4( rI

hI
) + 4(

r
I

hI
)2 − 4

3
(
r
I

hI
)3 1

2
≤ r

I

hI
≤ 1

0
r
I

hI
> 1

(10)

Consider a function given by the linear combination of the basis functions, namely

u(x) =
mX
i=1

pi(x) · αi (11)

Then if ai(x) = αi, R in (3) will vanish and it will be the minimum. Thus

uh(x) =
mX
i=1

pi(x) · αi = u(x) (12)

so any function in the basis can be reproduced exactly. Therefore, if the basis includes all

constant and linear monomials, linear consistency is satisfied; and any singular functions

included in the basis can also be reproduced exactly.

3 Governing Equations

For the elasto-plastic problem, the incremental formulation is frequently used[16]. The gov-

erning equations for elasto-plastic problem are given by

B(σ(x))− f(x) = 0, x ∈Ω (13)

u(x) = ū(x), x ∈Γu (14)

n · σ(x) = t̄(x), x ∈Γt (15)

5



where B is a differential operator, n is the outward normal direction of boundary Γt,

f(x) is the body force vector, ū(x) is the prescribed displacement on Γu, and t̄(x) is the

prescribed traction on Γt.

Using MLS method, the incremental displacement is approximated by

du(x) =
NP
I=1

φI(x) · duI

dv(x) =
NP
I=1

φI(x) · dvI
(16)

where φI(x) is the MLS shape function as shown in (5), duI and dvI are incremental unknown

quantities associated with node xI , N is the number of the total nodes.

For problem with infinitesimally small displacements and strains, the incremental re-

lation between displacements and strains is linear, namely

dε(x) =

⎧⎪⎪⎨⎪⎪⎩
dεx

dεy

dγxy

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎨⎪⎩
P ∂φI(x)

∂x
·duIP ∂φI(x)

∂y
·dvIP ∂φI(x)

∂x
·dvI+

P ∂φI(x)
∂y

·duI

⎫⎪⎬⎪⎭ (17)

Using the Mises yield condition and isotropic hardening rule, the stress increments can

be obtained as

dσ(x) =

⎧⎨⎩ dσx
dσy
dτxy

⎫⎬⎭ = D · dε(x) (18)

where

D =

⎧⎨⎩ De

(De −Dp)

in elastic zone

in plastic zone

⎫⎬⎭ (19)

and

De =
E

1− ν2

⎡⎣ 1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ (20)

Dp =
E

B(1− ν2)

⎡⎢⎢⎢⎣
(sx + νsy)

2 (sx + νsy) · (sy + νsx) (1− ν) · (sx + νsy) · τxy

(sy + νsx)
2 (1− ν) · (sy + νsx) · τxy

Symmetry (1− ν)2 · τ 2xy

⎤⎥⎥⎥⎦ (21)
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in which, E is Young’s modulus , v is Poisson’s ratio, sx and sy are deviate stress, G = E
2(1+ν)

,

and

B = s2x + s2y + 2ν · sx · sy + 2(1− ν) · τ 2xy +
2(1− ν) ·Ep · σ2s

9G
(22)

in which, EP is plastic hardening modulus and σs is yield stress.

4 Elasto-plastic Properties

In addition to the elastic stress-strain relations, four properties characterize the material

behavior in numerical calculation: initial yield condition, harding rule, flow rule, and loading-

unloading rule([16]−[17]).

A initial yield condition, which specifies the state of multiaxial stresses correspond-

ing to the start of plastic flow. For isotropic material, Mises initial yield condition is:

F 0(σ) =
1

2
sijsij −

σ2s0
3
= 0 (23)

in which, σs0 is initial yield stress, sij is deviate stress.

A harding rule, which specifies how the yield condition is modified during plastic

flow. For isotropic hardening material, Mises harding rule is:

F (σ) =
1

2
sijsij −

σ2s(ε
p)

3
= 0 (24)

in which, σs is yield stress at current time, εp is the effective plastic strain which is related to

plastic strain increments dεpij by

εp =

Z
dεp =

Z
(
2

3
dεpijdε

p
ij)

1
2 (25)

A flow rule, which relates the plastic strain increments to the current stresses and

the stress increments subsequent to yielding. For isotropic hardening material, the Mises flow

rule,

7



f =
1

2
sijsij (26)

dεpij = dλ
∂F

∂σij
(27)

dεp = (
2

3
dεpijdε

p
ij)

1
2 =

2

3
dλ · σs (28)

dλ =
( ∂f
∂σ
)T ·De · dε

( ∂f
∂σ
)T ·De · ( ∂f

∂σ
) + 4

9
σ2s · Ep

(29)

in which De is defined as (20).

A loading-unloading rule, which specifies what will happen from a plastic state,

continue plastic loading or elastic unloading . This rule is used to select the true relation

between stress increments and strain increments.

If F = 0 and ∂f
∂σij

dσij > 0, then continue plastic loading;

If F = 0 and ∂f
∂σij

dσij < 0, then elastic unload from plastic state;

If F = 0 and ∂f
∂σij

dσij = 0, then for ideal-plastic material, plastic flow will continue.

But for material with harden, it will keep plastic state without any new plastic flow.

5 Direct Collocation

In the direct collocation, the discrete equations at loading step t+∆t are obtained by imposing

governing equations on the nodes used to construct approximation. The governing equations

are assumed to be satisfied at loading step t. For the nodes located inside the domain, (13)

must be satisfied, and for those located on boundary, (14) or (15) is satisfied. Thus, the

solution at loading step t+∆t can be obtained without using any mesh.

Since the stress depends nonlinearly on the nodal displacements in plastic state, it

is necessary to iterate in the solution of each step associated with plastic. The modified

Newton-Raphson iteration is used. For the numerical method, the load level when plastic
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state begining is first calculated, and this step is completly elastic. After that, plastic will

happen, and the solution step with iteration will be introduced.

The following procedure is used to obtain the solution for the plastic-loading step t+∆t.

(a) Let the starting condition of iteration be

⎧⎪⎪⎨⎪⎪⎩
t+∆tu(0) = tu
t+∆tε(0) = tε
t+∆tσ(0) = tσ
t+∆tD(0) =t D

(30)

Here, left-superscript t and t + ∆t specify the loading setp, right-superscript specifies the

iterating step of current loading step.

(b) Using MLS method, incremental displacement ∆u(i) is defined as (16), with un-

known incremental quantities ∆uI
(i)and ∆vI

(i), then

t+∆tu(i) =t+∆t u(i−1) +∆u(i) (31)

(c) For problem with infinitesimally small displacements and strains, the linear incre-

mental relation between displacement and strains is used. So incremental strains are

∆ε(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆ε

(i)
x

∆ε
(i)
y

∆γ
(i)
xy

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P ∂φI(x)

∂x
·∆uI

(i)P ∂φI(x)
∂y

·∆vI
(i)P ∂φI(x)

∂x
·∆v

(i)
I +

P ∂φI(x)
∂y

·∆uI
(i)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (32)

t+∆tε(i) =t+∆t ε(i−1) +∆ε(i) (33)

(d) According the state of iterating step (i−1) and (19-21), t+∆tD(i−1) can be calculated

by

t+∆tD(i−1) =

⎧⎨⎩ De

(De −Dp)

for elastic load/unload

for plastic flow

⎫⎬⎭ (34)
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(e) According to Euler method, using the stress-strain relation of iterating step (i−1),

the approximate incremental stress is calculated,(
∆σ(i)=t+∆tD(i−1) ·∆ε(i)
t+∆tσ(i) = t+∆tσ(i−1) +∆σ(i)

(35)

(f) Now, discrete equations can be obtained by using direct collocation

⎧⎪⎪⎨⎪⎪⎩
B(t+∆tσ(i))− t+∆tf = 0, for xI ∈ Ω

t+∆tu(i) − t+∆tū = 0, for xI ∈ Γu

n · t+∆tσ(i) = t+∆tt̄, for xI ∈ Γt

(36)

The unknown incremental quantities can be sloved from these equations, and then,

∆u(i)and ∆ε(i) can be obtained from (16).

(g) Because the ∆σ(i) calculated by step (e) is based on linear-approximate, the incre-

mental relation between stress and strain should be verified as

∆σ(i) =

Z ε(i)

ε(i−1)
D · dε (37)

The incremental stress and effective plastic strain ∆εp should be re-calculated. Let m identify

the portion of incremental strain taken elastically, then

(g.1) Calculate the stress incerment ∆eσ, assuming elastic behavior
⎧⎨⎩ ∆eσ= De ·∆ε(i)eσ = σ(i−1) +∆eσ (38)

(g.2) Calculate value of the yield-function F (σ(i−1), εp(i−1)) and F (eσ, εp(i−1)).
If F (eσ, εp(i−1)) < 0, elastic behavior assumption holds(loading elastically or unloading).

So that m = 1.0;

If F (eσ, εp(i−1)) > 0 and F (σ(i−1), εp(i−1)) = 0, it is plastic loading in this step. So that

m = 0.0;

If F (eσ, εp(i−1)) > 0 and F (σ(i−1), εp(i−1)) < 0, it converts from elastic loading to plastic
loading in this step. So that m must be calculated from:

10



F (σ(i−1) +m ·∆eσ, εp(i−1)) = 0 (39)

By using the Mises yield condition, m is defined as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m =
−a1+
√

a21−4a0·a2
2a2

a0 = F (σ(i−1), εp(i−1))

a1 = (S
(i−1))T ·∆eS

a2 =
1
2
∆eST ·∆eS

(40)

in which, ∆eS is the deviate stress of ∆eσ, S(i−1) is the deviate stress of σ(i−1).
(g.3) Claculate the elastic-plastic strain increment

∆bε = (1−m) ·∆ε(i) (41)

(g.4) Claculate the elastic stress increment

∆σe = m ·∆eσ (42)

(g.5) Claculate the elastic-plastic stress increment

∆σep =

Z ε(i−1)+∆ε

ε(i−1)
D · dε ≈ D(σ(i−1) +∆σe, εp(i−1)) ·∆bε (43)

(g.6) Claculate the effective plastic strain increment

⎧⎨⎩ ∆εp = 2
3
∆λ · σs

∆λ =
( ∂f
∂σ
)T ·De·∆ε

( ∂f
∂σ
)T ·De·( ∂f

∂σ
)+4

9
σ2s·Ep

(44)

(g.7) Claculate the stress and effective plastic strain of current step(
t+∆tσ(i) = t+∆tσ(i−1) +∆σe +∆σep

t+∆tεp(i) = t+∆tεp(i−1) +∆εp
(45)

(h) If the solution of this step touches the convergence condition, go to next loading

step; else go to next iteration step of current loading step.
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Section a Section b

P

2L/3 L/3

a

Figure 1: A rigidly supported bar

6 Numerical examples

6.1 A simple bar

A bar rigidly supported at two ends is subjected to an axial load as shown in figure 1, whose

length is L = 0.15m, and width is a = 0.01m. The stress-strain relation in tension and

compression is given in figure 2, where E = 1010N/m2, ν = 0.2, σs0 = 2.0 × 108N/m2,

ET = 109N/m2. Assume that the displacement and strain are small, and the load is applied

slowly. Figure 3 presents the numerical result obtained by the present method at the point of

load application, which is in excellent agreement with the analytical solution. The analytical

solution of this problem is:

⎧⎪⎪⎨⎪⎪⎩
σa =

up
0.1
E σb =

up
0.05

E ( if up < 0.001m)

σa =
up
0.1
E σb = (

up
0.05
− 0.02)ET + σs0 ( if 0.001m < up < 0.002m)

σa = (
up
0.1
− 0.02)ET + σs0 σb = (

up
0.05
− 0.02)ET + σs0 ( if up > 0.002m)

When the displacement up is less than 0.001m, the whole plate is elastic; when up is

between 0.001m and 0.002m, section a is elastic while section b becomes plastic. And when

up is greater than 0.002m, the whole plate becomes plastic.

6.2 A Notched plate

A notched plate is subjected to the axial load as shown in Figure 4. The plate’s length is L =

0.04m, width is d = 0.02m, and the notch’s width is a = 0.01m, depth is h = 0.0025m. The

material is assumed to be ideal-plastic with E = 108N/m2, ν = 0.2 and σs0 = 3.0×107N/m2.

Assuming that the displacement and strain are small, and the load is applied slowly. The

numerical results show that plastic region initiates at notch, and then expands with the
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Figure 3: Stress-displacement relationship at the point of load application
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Figure 4: A notched plate
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Figure 5: Stress σxx at x = 0.0

increase of the load. The limit load obtained is 2316N , while the analytical solution is 2250N .

The numerical results obtained for P = 1876N by the present method are compared with

those obtained by FEM in Figures 5 and 6. Figure 7 illustrate the finite element mesh used

in the FEM analysis. ALGOR is used in the FEM analysis.

7 Concluding remarks

The truly meshless method based on MLS approximate and direct collocation presented in

this paper offers considerable promise for the solution of complicated materially-nonlinear

problems in continuum mechanics. The present method is very computationally efficient,

because only node is used to construct the discrete equations. Further work will be focused
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Figure 7: Finite element mesh
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on the application of this method to the complex problems with both material and geometrical

nonlinearity.
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