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Effect of defects on resonance of carbon nanotubes as mass sensors
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The mass sensors based on carbon nanotubes (CNTs), especially one with uniform structure, have
ultrahigh sensitivities. However, in application the CNTs’ properties will be affected by many
factors such as volume defects or uneven mass repartition. In this letter, modified beam models are
presented based on the Euler—Bernoulli beam theory to analyze the effect of the unideal structure on
resonance frequency of CNTs themselves and as mass sensors. It can be found that the resonance
frequency shift due to the defect is sensitive to the defect’s relative position on the CNT. © 2006
American Institute of Physics. [DOI: 10.1063/1.2186048]

Carbon nanotubes (CNTs) have been suggested as the
basic elements of nanoelectromechanical systems, such as
nanobalance,1 nano oscillator,2 and nanotweezers.’ Recently,
the CNT-based mass sensors, whose basic principle is the
resonance frequency shift subjected to the attached mass,
have attracted many focuses owing to their high sensitivities.
Poncharal, Wang, and Ugaxrte,l through electromechanical
resonance, detected a tiny mass of 22 fg attached at the free
end of the cantilevered multi-walled carbon nanotube
(MWNT). Li and Chou,’ using a molecular mechanics
method, reported that the mass sensitivity of single-walled
carbon nanotube (SWNT) nanobalances can reach 107° fg.
The structures of CNTs examined in Li’s analysis are all
perfect, however, the CNTs’ properties may be affected by
many factors in application. Poncharal and co-workers'
found that the bending modulus of CNTs decreased greatly
with the increase of the diameter due to a rippling mode. Liu,
Zheng, and Jiangs’6 analyzed the effect of the rippling mode
on resonance and explained the fantastic phenomena using a
bilinear beam model. It was reported7 that CNTs produced
by chemical synthesis usually contain a high density of point
defects (pentagons and/or heptagons) or even volume defects
(neck-like structures), which greatly weakened the bending
stiffness of CNTs. To the best knowledge of the authors,
there is no suitable theory that can be used to calculate the
resonance frequency of CNTs with volume defects. More-
over, the leftover such as catalyzer used in production may
lead to an uneven mass repartition. Since it is difficult to
guarantee the perfect structure of CNTs, the effect of the
defects should be analyzed carefully.

Generally speaking, it is appropriate for using the linear
beam theory (LBT) to analyze the resonance phenomena of
thick MWNTSs with the large ratio between length and diam-
eter. Furthermore, a uniformity beam model can be used ow-
ing to the CNT’s perfect structure. Poncharal and
co-workers' measured the fundamental resonance frequency
of cantilevered MWNTs and calculated the elastic bending
modulus E using the equation from the LBT®
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with B,=1.875, B,=4.694, where p is the density, € is the
length, A and [ are the area and the moment of inertia of the
cross section, respectively. For convenience, F; stand for the
ith resonance frequency and M =pA< is the mass of the can-
tilevered beam without any defects or attached masses in the
following discussions.

When cantilevered CNTs are working as mass sensors,
the boundary condition at x=¢ is changed due to the effect of
the attached mass, and B; in Eq. (1) are altered correspond-
ingly. Solving the eigenvalue problem, the characteristic
equation can be obtained as’

cos Bcosh B+ 1=§&B[sin Bcosh B—cos Bsinh 8], (2)

where é&=m/M is the mass ratio, m is the attached mass at
the free end. The roots B3; can be solved numerically for any
given value &.

The assumption of the uniformity of stiffness or mass
along the tube is not valid when CNTs have volume defects
or attached point masses. The effect of these unideal condi-
tions can be considered using the similar models with slight
modification. The volume defect, which results in the abrupt
change of the flexural rigidity, is modeled as a rotational
spring, as shown in Fig. 1(a). The stiffness of the spring is
defined as k=(EI),/ A€, where (EI), and A{ are the flexural
rigidity and the length of the volume defect, respectively.
Here A€ is supposed to be small enough so that the total
length of the beam is constant. If a point mass m, is attached
at x=a before mass detection, the CNT can be analyzed by
the model shown in Fig. 1(b). Actually more tiny masses
may be attached along the tube in application, thus a more
complex model can be established to examine the uneven
mass repartition on resonance in a similar way. In Fig. 1, the
beams are divided into two uniform ones, which are interact-
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FIG. 1. Sketch of modified models for CNTs with unideal structures: (a) the
spring-connected beam model for CNT with a volume defect at x=a; (b) the
cantilevered beam with a tiny mass at x=a.
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FIG. 2. The changes of the frequency ratio corresponding to the mass ratios
obtained by the membrane-spring model for SWNTs samples, and compared
with the result of LBT. The data of SWNTs with length larger than 4 nm
agree well with the one of LBT.

ing at the interface position x=a. The analysis of the eigen-
value problem is similar; a detailed explanation can be found
in Ref. 10.

Based on the single-atom sheet structure of SWNT, a
membrane-spring model is proposed in our previous work, !
in which SWNT is modeled as a number of membranes con-
nected by rotational springs. Using this model, a series of
cantilevered CNTs with different length-to-diameter ratios
(€/d=12.5,10,7.5,5.0,3.75) are examined to validate the
LBT. As a result, the variations of the frequency f; due to the
attached mass m are in good agreement with those given by
the molecular mechanics method.* In addition, the corre-
sponding relationship between f,/F| and m/M can be calcu-
lated, as shown in Fig. 2. These data, especially the CNTs
with €/d>5, amazingly drop into the curve of the beam
theory according to Eq. (2). Fitting the numerical results of
Eq. (2), the approximate relation between f;/F,; and m/M in
some phases can be obtained as

10g(m/M) =A110g(fl/F1) +A2 if m/M > 10,

(mIM)=As(1 - £,/F,) if m/M < 0.001 (3)

with A;=-2.031, A,=-1.5316, and A;=0.5014. Similar re-
sults were proposed in Refs. 4 and 12, respectively. Note that
the easiest excited modes of cantilevered CNTs are generally
the first several bending modes, so the section properties
seems to be less important. It can be concluded that if the
length of the SWNT or thin MWNT is large enough com-
pared to its diameter, the lower resonance frequencies can be
determined using the beam model.

Using the modified beam model, the effect of unideal
stiffness or mass repartition on resonance can be considered.
Figure 3 illustrates the effect of the volume defect, including
the stiffness change and the relative position. The important
result here is that the resonance frequency shift is very sen-
sitive to the position of defect. If the defect is very close to
the clamped end, it can model a defective clamped end,
which may occur in application because of the small dimen-
sions of CNTs. It can be seen that the effect of defective
clamped end on resonance cannot be ignored. The authors’
reported that the effect bending modulus Eeff13 of CNTs with
point defect was about 30 GPa, while that of tubes with vol-
ume defect additionally was 2—3 GPa; concretely, the data
of 2.2 GPa and 5 Pa (the volume defect in the latter is rela-
tively close to the free end) were given. Let us consider a
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FIG. 3. The variation of the frequency ratio with the position ratio a/€ and
the stiffness ratio 7p=k<€/EI of the volume defect. It indicates that when the
position of the volume defect is closer to the clamped end, the influence is
more significant.

beam with a volume defect, the spring in the model has 7
=0.1. When the volume defect occurred at x=0.3¢ or 0.5¢,
the bending modulus was about 1/15 or 1/6 of the one with-
out volume defect. In the absence of detailed information in
experiments, more detailed comparison could not be ob-
tained. Furthermore, many other factors, such as curly shape
due to point defects, may contribute to the decrease of the
stiffness for CNTs with volume defects. Figure 4 displays the
variation of frequency ratios with the mass’ position for the
beam with the attached mass of m,=0.2 M. The variation of
fi/F, and f,/F, have the different trend, and the value of
f>/f1 up and down departures from the normal value 6.27
=(4.694/1.875)%. When the beam has a volume defect, there
is a similar phenomenon. By contrast, the value of f,/f; of
the tube with a rippling mode calculated by the bilinear
model is always larger than 6.27. In the f:xperiments,m’15
the authors gave two groups of data about the first two
harmonic resonance frequencies of bent CNTs, that is,
f1=1.226 MHz, f,=9.277 MHz; and f;=121 MHz,
f>=5.06 MHz. Thus f,/f;=7.567 and 4.182, respectively.
Since the volume defect would not been found, the leftover
in CNT-based sensors may arouse the difference of f,/f;.
The effect of any other more complex cases, such as
CNTs with two or more volume defects or attached point
masses, can be analyzed through extending the beam model
discussed above. Imaginably, it results in the complexity of
solving the characteristic equation. It is a natural way to
simplify the analysis for mass detection using the result of
LBT [Eq. (1) with the constance B obtained from Eq. (2)]
with E g, which is considering the effect of defects. In order
to examine the validation, the results of the LBT are com-
pared with those obtained by the modified beam models, for
the spring-connected beam as an example as shown in Fig. 5.
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FIG. 4. The resonance frequencies ratios change with the position of the
attached mass. It can be seen that the shift on f, is more significant than f;
when the mass is close to the clamped end of the beam while the frequency
shift on f} is more significant than f, when the mass is close to the free end.
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FIG. 5. The results of the LBT with E; compared with those obtained by
the spring-connected model during measuring a tiny mass m=M attached at
the free end of the cantilevered CNT. The error is defined by (f,—fu)/fu
where f; and f), are the fundamental frequency of the LBT and the modified
model, respectively.

It can be seen that the error is relatively evident when the
volume defect is close to the clamped end. However, in the
other position the difference seems to be small enough that
the LBT with E_; is applicable to the analysis of the reso-
nance property. For any kind of defect’s effect or any range
of mass detection concerned, the validation of LBT with E ¢
can be examined through comparison with the modified
models in a similar way.
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