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Abstract Collocation method and Galerkin method
have been dominant in the existing meshless methods.
Galerkin-based meshless methods are computational
intensive, whereas collocation-based meshless methods
suffer from instability. A new efficient meshless method,
meshless Galerkin lest-squares method (MGLS), is
proposed in this paper to combine the advantages of
Galerkin method and collocation method. The problem
domain is divided into two subdomains, the interior
domain and boundary domain. Galerkin method is ap-
plied in the boundary domain, whereas the least-squares
method is applied in the interior domain.The proposed
scheme elliminates the posibilities of spurious solutions
as that in the least-square method if an incorrect
boundary conditions are used. To investigate the accu-
racy and efficiency of the proposed method, a cantile-
vered beam and an infinite plate with a central circular
hole are analyzed in detail and numerical results are
compared with those obtained by Galerkin-based
meshless method (GBMM), collocation-based meshless
method (CBMM) and meshless weighted least squares
method (MWLS). Numerical studies show that the
accuracy of the proposed MGLS is much higher than
that of CBMM and is close to, even better than, that of
GBMM, while the computational cost is much less than
that of GBMM.

Keywords Meshless - Meshfree - Least-squares -
Galerkin method

1 Introduction

Two methods of discretization, namely collocation
method and Galerkin method [1-9], have been dominant
in the existing meshless methods. Although Galerkin
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method possesses several advantages, one of the major
difficulties in the implementation of Galerkin-based
meshless method (GBMM) is how to evaluate integrals
in the weak form. Nodal integration, cell or octree
quadrature, and background finite element mesh quad-
rature [1] have been used. The first of these is the fastest,
but appears to suffer from instability and several sta-
bilization schemes have been developed [10-11]. The
second and third have the disadvantage that the result-
ing method is not truly meshless. In GBMM, derivatives
in domain integrals are lowered by using the divergence
theorem to establish the weak form. The inaccuracy in
integration will result in significant error in the solution.
However, the shape functions in meshless method are
very complex. Delicate background cells and a large
number of quadrature points must generally be em-
ployed to integrate the weak form as accurate as possi-
ble. As a consequence, the GBMM is much more
expensive than FEM.

In contrast, collocation-based meshless methods
(CBMM) are truly meshless and very efficient [4-9].
However, equilibrium conditions are satisfied only at
nodes within the problem domain but not at the
boundary nodes. Hence significant error can be resulted.
These methods also suffer from instability. For instance,
the collocation methods based on the radial basis func-
tion (RBF) have attracted a great deal of attention in
recent decades. The traditional domain-type Kansa
method has less accuracy in the surface-adjacent region
since the governing equations are not satisfied there. By
using the Green second identity, Chen [7] developed a
modified Kansa method (MKM) to meet equilibrium
conditions both on boundary and domain nodes, and
the solution accuracy of the boundary region is thus
greatly improved. In addition, the MKM holds sym-
metricity for the self-adjoint equations. On the other
hand, for boundary-type RBF-based meshfree methods,
Chen [8] and Chen and Hon [9] introduce the boundary
knot method (BKM), which is truly meshfree, spectral
convergent, symmetric, integration-free (collocation),
and very easy to learn and implement. However, all



these collocation RBF techniques still encounter ill-
conditioning full matrix, and thus can not be effectively
applied to practical large-size problems.

The Least-squares method has been successfully used
in the finite element method, and several least-squares
finite element method (LSFEM) have been established
[12—13]. In the least-squares method, integration is only
used to average the residual of the governing equations.
The solution accuracy in the least-squares method is less
sensitive to the integration accuracy than in the Galerkin
method [15]. A new efficient meshless method, meshless
weighted least-square (MWLS) method, was proposed
in [14] based on the weighted least-squares method.
Unlike Galerkin method, the Euler equations which
obtained from the least-squares variational principle no
longer give the original differential equations, but give
higher order derivatives of these equations. This intro-
duces the possibility of spurious solutions if incorrect
boundary conditions are used [12].

In this paper, MGLS method is proposed by com-
bining the advantages of Galerkin method and colloca-
tion method to overcome the disadvantages of MWLS.
The problem domain is divided into two subdomains:
the boundary domain and interior domain. The Galer-
kin method is applied in the boundary domain, whereas
the least-squares method is applied in the interior
domain. The moving least-square (MLS) approximation
is used to construct the trial functions in both boundary
domain and interior domain. The Euler equations
obtained from the proposed method give the original
differential equations in the boundary domain, while
give higher order derivatives of these equations in the
interior domain. No boundary conditions are applied on
the boundary of the interior domain, so the proposed
method eliminates the possibility of spurious solutions,
while preserves the efficiency of collocation methods.

Compared with CBMM and GBMM, the new
method possesses several advantages. It is much more
accurate and stable than CBMM, and is much more
efficient than GBMM. Same as all collocation methods,
MGLS requires the calculation of second order deriva-
tives in the interior domain that would typically not
required in GBMM.

2 Moving least-square approximation

In MLS approximation, the function u(x) is approxi-
mated in the domain by u(x), namely

u(x) ~ u(x) = Zm:pi(X) cai(x) = p' (x) -a(x) (1)

where m is the number of terms in the basis, p;(x) are
monomial basis functions and a;(x) are their coefficients,
which are functions of the spatial coordinates x. For 2D
problems, examples of commonly used basis are the
linear basis p’ =[l,x,y] and the quadratic basis
pT =[1,x,9,x*,xp,)*]. It is also possible to use other
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functions, such as singular functions, in a basis. The
coefficients a;(x) are obtained by minimizing the qua-
dratic functional J(x) given by

k m 2
J(x) =Y wi(x)- lZPi(XI) -ai(x) — u;} , (2)
=1 i1

where u; = u(x;) is the nodal value of u(x) at node
X7, wr(x) = w(x — X;) is a non-negative weight function
with compact support associated with node x; and
maximum at node X;. Moreover, k is the total number of
nodes at which the weight function w;(x) does not
vanish. Minimizing the functional J(x) results in

A(x)-a(x) =B(x) u, (3)

where

A(x) = ZWI(X)p(XI)pT(XI) ) (4)
=1

B(x) = [wi(x)p(x1) wa(X)p(x2), ..., we(X)p(xt)] ,  (5)

u:[ul,uz,...,uk]T (6)

Solve (3) for a(x) at x, and then substitute a(x) into
(1), the MLS approximation function is finally obtained
as

u(x) =o' (xu , (7)

or in indicial notation
u(x) = o, (X, I =1,2,...k (8)

where the index I is summed over its range, which de-
pends on the context. The shape function ¢(x) is given
by

¢'(x) =p"x- A7 (x) - B(x). ©)

In MLS approximation, the local values of the
approximation function u(x) do not fit the nodal
unknown values uIQ =1,2,...,N), namely,
ur = u(xy) # (x7). Indeed u(x) is the true approxima-
tion for which we shall seek the satisfaction of the
differential equation and boundary conditions and u,
are simply the unknown parameters sought.

If the weight function, wy(x), together with its first /
derivatives are continuous, the MLS shape function
¢(x) and its first / derivatives are also continuous.
Hence, the weight function plays an important role in
the performance of MLS approximation. The cubic
spline function

247447 ry
wy(r) = ‘5‘—4r—|-4r2—‘3—1r3 %<r1 ) (10)
0 r>1

is used in this paper, where r = ||x; — X||/dmax, dmax 1S
the radius of the domain of definition of point x. In
this paper, dm.x is determined by scale x s[k], where
s[k] is the distance between point x and its k — th
closest nodes.
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3 Meshless weighted least-squares method

Least-squares variational principles are applicable to
any set of differential equations including linear and
nonlinear equations. In this paper, the 2D static
elasticity problem is taken as an example. However, the
scheme proposed in this paper can be extended to any
problems.

Consider the 2D static elasticity problem

O-ij,j —‘r/?;:O il’l Q
=0 on T,

u,—u; =0 on T,

(11)
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where I, is the prescribed displacement boundary and
I', is the prescribe traction boundary. f;,u#; and ¢ are
prescribed functions defined in the domain Q, displace-
ment boundary I', and traction boundary I',, respec-
tively. n; are the direction cosines of the outward normal
to the boundary I',. In (11), indices repeated twice in a
term are summed over their range.

Several methods are available for solving (11). How-
ever, Galerkin and Collocation are the most frequently
used ones in the existing meshless methods. In this paper,
the least-squares method [12] [13] is used, namely

51_[ = /50,’/{71{(01']‘1]‘ +]_r,>dQ —+ / iuéui(ui — arui)dF
Ly

+//1t50','kl’lk(0'ijnj—;i)dr

I,

(12)

oIl = Z(So-lkk th]"‘ﬁ

s=1

N
+ Z/I,éaiknk(a,:/nj — ;,)

‘x:xs

T Zﬂuéul

s=1

up — u; |x:x5

s=1

=0, (13)

where N is the total number of nodes, N, is the total
number of nodes located on the boundary I', and N, is
the total number of nodes located on the boundary I;.
Substitution of the MLS approximation (8) into (13)
results in

N

N
oIl = ouyy lz b1, mk DikimDijpg by, gjthps + Z furdyuiy

s=1 s=1

N
+ E ;Ltqs[,mnlekilequ(zbJ, qnjup/

s=1

X=X;

N Ny
Z ¢I,mlekimfl - Z )vud)[ai

s=1 s=1

N
- Z Aer, mDikimli

s=1

+ Juyy

=0.

X =X

(14)

where u;; denotes the nodal displacement u; of node /.
Rewriting (14) in matrix form by using Voigt rule and
invoking the arbitrariness of the virtual displacements
give

o KU=P, (15)
where 7, and /, are the penalty functions for imposing
the boundary conditions. Like Galerkin method, inte- Where
grations are involved in (12), therefore, significant N Na N;
computational effort is required. In GBMM, the func- K= Z H'H + Z JuNTN + Z 2Q'Q , (16)
tional IT is the total potential energy of the system and i=1 j=1 k=1
must be integrated as accurate as possible. However, in N N N
the present method, the functional IT is the weighted T S, T N ATe
S oo . P=-) Hf N'U t 17
square of the residual of the equilibrium equation and ; + ZIA“ + ;/LIQ ’ (17)
boundary condition. Therefore, the integration is only a = -
used to average the residual of the governing equations, U = [u;, u,, ..., uy]". (18)
and the solution accuracy in the least-squares method is
much less sensitive to the integration accuracy than in 0 (16) and (17),
the Galerkm methoq [15]: To avoid 1nV01y1ng any inte- v o 0 ¢, 0 oy O (19)
gration, an alternative discrete formulation of (12) is 1o 0 o0 )
P (%) PN
used, namely
o) + 1-v0%9, 102 Poy + 10y 1100y
H=F ox? 2 92 2 0xdy ox? 2 02 2 0xdy (20)
140, 6 fm I ST 10 oy & «u L 1@y |7
2 0xOy 2 o 2 0xOy 2 x?
Q=E'x
10411 + m' »Oq)l lva‘/" + mlzvaa‘il 1% % lvd%’ + mlzvdg;w (21)
mv%_,'_ 112»3614;1 ma}] + 112\30(4))C1 mv(?(;/)N + llz\r(?g;, 6(/)]\ + llzv(‘)g;\,




where E' = E/(1 —v?). It can be observed from (19)
and (21) that the entries of matrix N and Q are of
different order of magnitude, so that the penalty
functions 4, and A; should also be of different order of
magnitude. In this paper, 4 = 10%, 4, = A[E/(1 — ).
Because no integrals are required in the calculation of
the coefficient matrix K, the meshless weighted least
square method (MWLS) is much more efficient than
Galerkin method. The coefficient matrix K is sym-
metric and positive.

4 Meshless Galerkin least-squares method

Unlike Galerkin method, the Euler equations which
obtained from the least-squares variational principle
(12) no longer give the original differential equations
(11), but give higher order derivatives of these equations.
This introduces the possibility of spurious solutions if
incorrect boundary conditions are used [12], which will
be shown clearly in the numerical results presented in
Sect. 5.

To overcome this drawback, a MGLS is developed.
The domain Q is divided into two subdomains, the
interior domain Q; and boundary domain €,, as
shown in Fig. 1. Galerkin method is applied in the
boundary domain €,, whereas the Ileast-squares
method is applied in the interior domain ;. Hence,
we have
oIl :—)\,\/ 50’,‘/(’/((0',']"]' +f,)dQ+ (31/{,'(0',‘]',]' +f,)dQ

Q (o}
— / 5u,~(0'ijnj — f,)dF =0 (22)

I
where I, is the part of boundary I'; on which the trac-
tion is prescribed. 4 is a weight that can be chosen as 1/E
to make every terms in (22) in the same order.

Integrating the second term by parts, equation (22)
can be rewritten as

L=I,+I;

Fig. 1 The boundary domain and interior domain
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Sl =— 1 00 k(04 + /;)dQ —
Q Q

58,:/‘0',:/‘(19

Qz F, Fl

5u,»aijnjdl" =0

(23)

Belytschko et al.[16] coupled EFG to finite elements
based on a blending approach where blending functions
are used to combine the finite element and meshless
approximations on the interface zone. In the present
MGLS method, the domain Q is divided into two sub-
domains only for the purpose of evaluation of the
functional. From the physical point of view, the domain
Q is not divided into subdomains, and the trail function
and its derivatives are continuous across the boundary
I'1. Consequently, no special scheme is requried to
couple the the interior domain Q; and boundary domain
Q.

The integration in the first term of (23) is used to
average the residual of the equilibrium equations in the
interior domain Q;, which can be replaced by its discrete
form because the solution accuracy in the least-squares
method is much less sensitive to the integration accuracy
than in the Galerkin method. We have

Ny
ST ==2 " 80u k(05 +f)l\ey, — /Q 0¢;;0;;dQ

s=1

+ 5u,ﬁdQ+/ 5u,f,dl"+/ 5uiaijnde:O (24)
Q, I, I

where N; is the total number of nodes located in the
interior domain Q;, namely x; € Q;, s=1,2,...,N|.
Substituting MLS approximation (8) into (24) and
invoking the arbitrariness of the virtual nodal displace-
ments du;;, we get

KU =P (25)
where
N,
K= / B"DBAQ — / N'Qdr + > JH'H (26)
Q I s—1
P= / NTfdQ + / N'dr — > H'f (27)
.Q] F,

s=1

in which N, H and Q are given by (19)-(21), and

%oy Oy
Ox 0 ox 0
0 9,
B=|0 o0,
dy Ox dy ox
1 Vo 0
Ey
D—1 5 |v 1 0 | (for plane stress)
—V
0
1—\)0
0 0 5



186

In the present method, integrals are involved only in
the boundary domain Q,, which is usually a thin layer of
domain and is much smaller than the interior domain
Q;. Consequently, the computational effort required is
much less than that required for GBMM, while the
imposition of boundary conditions is the same as that in
GBMM. Numerical studies show that the present
method is stable.

The moving least-square (MLS) approximation is used
to construct the trial functions in both boundary domain
and interior domain. Consequently, a appropriate scheme
must be used to enforce displacement (Dirichlet) bound-
ary conditions. In the present paper, the penalty method is
used. An alternative scheme is to use FEM interpolants in
the boundary, which automatically satisfy displacement
type boundary conditions [16].

Note that the least-square method is used in the
interior domain, whereas the Galerkin method is used in
the boundary domain. Consequently, the Euler equa-
tions obtained from the present MGLS method give the
original differential equations in the boundary domain,
while give higher order derivatives of these equations in
the interior domain. No boundary conditions are ap-
plied on the boundary of the interior domain, so the
proposed method eliminates the possibility of spurious
solutions.

5 Numerical examples

In this section, two numerical results are presented to
evaluate the accuracy and efficiency of the present
MGLS approach. To evaluate the accuracy of each
method, the following error norms are used

Vi@ —w’ - (@ —wde

x 100%

L, =

x 100%

where @ and u are the approximation and exact value of
displacement at point x, ¢ and ¢ are the approximation
and exact value of stress at point x.

5.1 Cantilevered beam

The cantilevered beam subjected to end load as shown in
Fig. 2(a) is analyzed with dimensionless elastic modulus

Table 1 Error norm obtained by using different methods for the
cantilevered beam

v =0.333333 v = 0.499999
scale  L,(%)  Ls(%)  Scale L,(%) Ls(%)
MWLS 1.2 4.221 9.201 1.2 53.70  54.94
1.5 18.16 38.85 1.5 69.46  75.20
2.0 10.19 1452 2.0 62.08  63.71
CBMM 1.2 146.1 150.2 1.2 145.6 1493
1.5 287.6 468.8 1.5 227.8  421.5
2.0 8.187  20.16 2.0 29.62  34.13
GBMM 1.2 0.085 6.669 1.2 0.214 7414
1.5 0.582 8.652 1.5 0.868  9.328
2.0 1.035 10.53 2.0 1.424 11.09
MGLS 1.2 2.186 5170 1.2 2,622 6.329
1.5 1.048 4223 1.5 1.410 5913
2.0 4.858 10.06 2.0 6.055 11.01

E=10x10% P=6, D=2 and L =12.5x 17 regular
nodes, as shown in Fig. 2(b), are used in this analysis.
The Poisson’s ratio is chosen as v = % and v = 0.499999,
respectively. To investigate the effects of boundary
conditions, two cases are analyzed. In the first case, the
left edge of the beam is fixed, while in the second case the
exact analytical displacement is prescribed on the left
edge of the beam. The upper and lower edges of the
beam are traction-free.

Table 1 compares the error norms obtained by using
different methods with different value of parameter
scale. It can be seen that the parameter scale has sig-
nificant effects on the results. As it is well known,
CBMM is unstable. It also indicates that the CBMM
and MWLS are locked for the nearly incompressible
material, while the MGLS and GBMM still give results
with satisfactory accuracy. This example shows that
MGLS appears to be stable and its accuracy is close to
that of GBMM.

Figure 3 compares the stresses a,, at stations along
the upper surface obtained by the different methods for
the first case, whereas figure 4 compares those for the
second case. These results show that MWLS leads to
spurious solutions for the first case in which the left edge
of the beam is fixed so the boundary condition is in
contradiction to the analytical solution. However,
MGLS gives correct solution in both cases. Parameters
used in the construction of MLS approximation are
assumed to be scale=1.2 and k=12. Poisson’s ratio
v=1/3.

Figure 5 compares the displacement and stress con-
vergence rate of MWLS, CBMM, WGLS and GBMM.
The mesh size % in these figures is defined as the distance

Fig. 2 Cantilevered beam and its (a) y (b)
nodal arrangement
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Fig. 3 Stress oy, at stations along the upper surface of the beam for
the first case
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Fig. 4 Stress oy, at stations along the upper surface of the beam for
the second case

in y direction between two neighboring nodes with same
x coordinate. scale is set to 1.2 and Poison’s ratio
v = 1/3 in this computation.
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Fig. 6 Infinite plate discretized with 169 nodes

5.2 Infinite plate with a central circular hole

Consider the problem of an infinite plate with a central
circular hole of radius a. The plate is subject to a uniform
tension, gy, in the x direction at infinity. Due to symmetry,
only the upper right quadrant of the plate is modelled and
the overall dimension of the quadrant is Sa x 5a. A plane
stress state is assumed with dimensionless elastic modulus
E =1 x 10%. In this analysis, oy is assumed to be 1. The
Poisson’s ratio is chosen as v =1/3 and v = 0.499999,
respectively. Two cases are analyzed. In the first case, the
symmetric boundary condition is used, namely, all points
on the left edge of the plate are fixed in the horizontal
direction and free in the vertical direction whereas all
points on the bottom edge are free in the horizontal
direction and fixed in the vertical direction. In the second
case, the exact analytical displacements are imposed on
the left and bottom edges. In both cases, the exact ana-
lytical tractions are prescribed at the right and upper
boundary, and the periphery of the circular hole is trac-
tion-free. Nodal arrangement and the boundary domain
are shown in Fig. 6.

Figure 7 compares the stresses a,, at stations along
the left edge of the plate obtained by the different
methods for the first case, whereas Fig. 8 compares
those for the second case. These results also show that

Fig. 5 Displacement conver- (a) (b)
gence rate and stress convergence ", ¢ =15
rate 3 { S —e—CBMM .
301 o L % —o—MWLS /
s 2 —=—GBMM
|_e —e—CBMM i
/ MWLS 1.0 —=—MGLS N
0.5 —=—GBMM -
—5-MGLS / I
—_
0.0 | 051" ;
—
// /-D//
P
-0.5 14 S —— S 5
o —o 0.0
-1.0 i
I A
0
15 -0.5
-0.9 -0.8 -0.7 -0.6 -0.9 -0.8 -0.7 -0.6
log(h) log(h)
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Fig. 7 Stress oy, at the stations along the left edge of the plate for the
first case
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Fig. 8 Stress gy, at the stations along the left edge of the plate for the
second case

MWLS leads to spurious solutions for the first case in
which the prescribed displacement boundary conditions
are in contradiction to the analytical solution. However,
MGLS gives correct solution in both cases. Parameters

Table 2 Error norm obtained by using different methods for the
first case

v = 0.333333 v = 0.499999
scale  L,(%)  Ls(%)  Scale L,(%) Ls(%)
MWLS 1.2 72.75 48.16 1.2 19.58 31.40
1.5 70.56 43.67 1.5 13.02  20.03
2.0 65.36 37.65 2.0 3.105  7.032
CBMM 1.2 2.035 2.941 1.2 2231 12.54
1.5 4.333 4.834 1.5 6.850  55.30
2.0 14.70 21.86 2.0 4.422 18.71
GBMM 1.2 0.716 6.248 1.2 0.659  6.527
1.5 1.303 8.834 1.5 0932  9.173
2.0 3.058 11.28 2.0 2.093 11.55
MGLS 1.2 2.233 3.167 1.2 1.876  3.627
1.5 2.883 5.204 1.5 1.612 5299
2.0 2.544 8.041 2.0 2.106  7.411

Table 3 Error norm obtained
second case

by using different methods for the

v = 0.333333 v = 0.499999
scale  L,(%) Lo (%) Scale  Ly,(%) Ls(%)
MWLS 1.2 12.24 18.46 1.2 73.68 50.21
1.5 7.685 11.41 1.5 71.90 46.32
2.0 2.934 34.68 2.0 66.83 38.42
CBMM 1.2 0.575 6.163 1.2 2.384 3.774
1.5 0.918 8.757 1.5 3.248 4.659
2.0 2.059 11.06 2.0 53.73 70.33
GBMM 1.2 0.575 6.163 1.2 0.700 6.595
1.5 0.918 8.757 1.5 1.283 9.218
2.0 2.059 11.06 2.0 2939 11.72
MGLS 1.2 1.284 2.702 1.2 2.587 4.045
1.5 1.461 4.685 1.5 2.080 5.730
2.0 1.996 6.670 2.0 2.694 8.956

used to construct the MLS approximation are assumed
to be scale = 1.2 and k = 12. In both cases Poison’s ratio
v=1/3

Figures 9 and 10 compare the displacement and stress
convergence rates of CBMM, MGLS and GBMM for
the first case and second case, respectively. The mesh size

Fig. 9a, b displacement conver- (a) (b)
gence rate and stress convergence __ g g —~ 08
rate for the first case 3 s 8 e
55 0.4 % -
2 L ‘o 5= 0.6 ——
0.2 £ — s
— —e—CBMM
0.0 —a—GBMM .
_— —a—MGLS 0.4 —
- o
0.2 o
-0.4 . 0.2 . —e—CBMM
* o— | —s—GBMM
-0.6 —a—MGLS
o 0.0
-0.8 el
l/ *
-1.0 0.2
150 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 150 -1.45 -140 -1.35 -1.30 -125 -1.20
log(h) log(h)
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Fig. 10 Displacement conver- (a) (b)
gence rate and stress convergence  __ 1.2
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—o—MGLS I B
o e
0.6 |w
0.0 8
R
%E:%/ 0.3 4o 5
-0.4 u ) //,o
: _ - —
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log(h) log(h)

h in these figures is defined as the minimal distance in y
direction between two neighboring nodes along the left
edge. The parameter scale is set to 1.2 in this analysis.
Tables 2 and 3 compare the error norms obtained by
using different methods with different value of parame-
ter scale for the first and second case, respectively. In
both cases Poison’s ratio v=1/3 which represent a
nearly incompressible material. It can be seen that the
parameter scale has significant effects on the results. This
example also shows that MGLS appears to be stable and
its accuracy is close to, even better than, that of GBMM.

6. Concluding remarks

Galerkin-based meshless methods are computational
intensive, whereas collocation-based meshless methods
suffer from instability. Meshless weighted least squares
method is very efficient, but it may give spurious solu-
tions if incorrect boundary conditions are used because
the Euler equations obtained from the least-squares
variational principle no longer give the original differ-
ential equations, but give higher order derivatives of
these equations. A new efficient meshless method,
meshless Galerkin least-squares method, is proposed in
this paper. Numerical studies show that the accuracy of
the proposed MGLS is much higher than that
of CBMM and is very close to, even better than, that of
GBMM, while the computational cost is much less than
that of GBMM.
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