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a b s t r a c t

As a Lagrangian particle method, the material point method (MPM) has the potential to model extreme
deformation of materials, where the traditional finite element method (FEM) often encounters mesh dis-
tortion and element entanglement which lead to numerical difficulties. However, FEM is more accurate
and efficient than MPM for problems with small deformation. It is therefore desirable to model the body
with extreme deformation by MPM and the body with small deformation by FEM, respectively. In this
paper, a method to handle the contact interaction between the MPM body and the FEM body is proposed,
which is implemented on the background grid of MPM. By this method, FEM is coupled with MPM and a
hexahedral element is incorporated into our 3D explicit MPM code MPM3D�. Several numerical exam-
ples, including plate impact, sphere rolling, perforation of thick plate, and fluid–structure interaction
problems, are studied and the numerical results are in good agreement with analytical solution and
results available in the literature. The coupling of FEM and MPM offers advantages of both FEM and MPM.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, many Lagrangian meshless/meshfree and
particle methods have been proposed to solve challenging
mechanics problems, such as hyper-velocity impact, explosion, dy-
namic crack propagation, fluid–structure interaction (FSI) prob-
lems and so on. The smoothed particle hydrodynamics (SPH)
method was proposed and used early for hyper-velocity impact
[1–3]. Johnson et al. [4,5] have done a lot of work to improve and
apply SPH for impact and penetration problems; Rabczuk and Eibl
[6] applied improved SPH–MLSPH to model dynamic failure of con-
crete; Liu et al. [7,8] applied SPH for explosion problems. For the
crack problem, Belytschko and Tabbara [9] applied the element-
free Galerkin method (EFGM) for the dynamic crack propagation
for the first time. Then Rabczuk and Belytschko [10,11] developed
a cracking particles method based on step function, namely EFG-P,
which used cracked particle to represent the crack surface and to
model the fracture of concrete. Similarly, Rabczuk and Zi [12],
Rabczuk et al. [13] put forward an extended element free Galerkin
method, XEFGM. For the FSI problem, Idelsohn et al. [14] proposed
a particle finite element method (PFEM) for solving incompressible
flows with free-surfaces and breaking waves. Recently, Rabczuk
et al. [15] put forward an immersed particle method for FSI of

fracturing structures under high pressure loads, where both the
structure and fluid are treated by meshfree method. Another
representative of such methods is the material point method
(MPM) [16], which has been used for impact [17,18] and penetra-
tion [19,20], explosion [21,22], dynamic crack propagation [23,24],
film delamination [25], FSI [26,27] and saturated soil-structure
interaction problems [28], just to name a few.

Up to now, many techniques have appeared for the coupling of
meshless/meshfree methods with FEM. Rabczuk et al. [29] gave a
detailed review of the various methods for coupling, such as mas-
ter–slave coupling [4,30,31], coupling via mixed interpolation [32],
coupling with Lagrange multipliers [33,34], and so on.

Attaway et al. [35] coupled SPH with FEM through master–slave
algorithm for the first time. Using this coupled method, in each
time step, they detected whether slave particles penetrate master
element faces. Following the contact detection, a contact constraint
is applied to calculate forces that push the slave particles back to
remain on the master surface. Similarly, Johnson et al. [31,4] cou-
pled SPH and FEM by master–slave algorithm with application
for high velocity impact problems. Then Johnson and Stryk [36]
extended this coupled particle method by converting damaged or
failure elements into particles. Afterwards, Rabzuk et al. proposed
an alternative method where the particles are rigidly fixed to the
FE nodes via master–slave coupling [29]. Recently, Vuyst et al.
[37] presented a novel method of combining SPH and FEM with
contact method of SPH by treating the nodes as meshless particles.

Besides SPH, Belytschko et al. [32] developed a coupled method
for EFGM and FEM. Interface elements between EFGM and FEM
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domains is employed with the shape function composed of FEM
and EFGM shape functions. In addition, Hegen [33] coupled FEM
with EFGM via Lagrange multipliers. Furthermore, Rabczuk and
Belytschko [34] extended this coupled scheme to non-linear prob-
lems and applied it to deformable interfaces. For other meshless
methods, Liu et al. [38] coupled the reproducing kernel particle
method (RKPM) with FEM by modifying the shape functions in
the transition area for both RKPM and FEM. Besides this, Liu and
Li et al. [39–41] proposed a new method called reproducing kernel
element method (RKEM) to combine the advantages of both FEM
and meshless methods.

For MPM, Zhang et al. [19] developed a coupling method called
explicit material point finite element (MPFE) method. In this meth-
od, the material domain is discretized initially by a mesh of finite
elements with a predefined computational grid in the potential
large deformation region. The nodes located in the predefined grid
are treated as particles and their momentum equations are solved
on the grid, whereas the remaining nodes are treated as finite ele-
ment (FE) nodes whose momentum equations are solved on the FE
mesh. Further, Zhang et al. proposed a FEMP method [20] for mod-
eling reinforced concrete subjected to impact loading. The essential
idea of this method is to introduce a hybrid bar element into MPM,
where the nodal variables are updated from background grid and
the stresses are updated on the element. By this hybrid bar ele-
ment, the reinforced bar in concrete can be discretized easily.

In MPM, material domain is discretized with a set of Lagrangian
material points (particles), which carry all state variables in order
to model history-dependent materials. An Eulerian background
grid is used to integrate the momentum equation. In each time
step, the particles are rigidly attached to background grid and
move with the grid. Then Kinematic variables are first mapped
from particles to grid points to establish the momentum equations
on background grid. Afterwards, the solutions of the momentum
equation are mapped from grid points back to particles to update
their positions and velocities. At the end of each time step, the de-
formed grid is discarded and a new regular grid is defined for the
next time step. Hence, mesh distortion and element entanglement
associated with the FEM are overcome; while numerical dissipa-
tion normally associated with Eulerian method is avoided.

Although MPM can be more accurate, more efficient and more
robust than FEM for problems involving severe distortions, the
accuracy of particle quadrature used in MPM is lower than that
of Gauss quadrature used in FEM. As a result, it is less accurate
and efficient than FEM for problems with small deformation. In
addition, MPM requires more computational storage because it
makes use of both grid and particle data. Moreover, FEM is with
more mature development and comprehensive capabilities. In this
paper, to take advantages of both methods, FEM is coupled with
MPM, in which the body with mild deformation is modeled by
FEM, while the body with extreme deformation is modeled by
MPM. The interaction between the FEM body and the MPM body
is handled by a local multi-mesh contact method [42–44,47]. The
FE nodes located on the contact interface are treated as particles,
so that the contact force is calculated on the background grid point
to avoid penetration between the FEM body and the MPM body.
Furthermore, a Coulomb friction model is implemented to allow
friction slipping between bodies. This coupled finite element–
material point (CFEMP) method is implemented in our 3D explicit
MPM code MPM3D� and several numerical examples are studied
to validate the CFEMP method. Numerical results are in good
agreement with analytical and available results.

The remaining parts of the paper are organized as follows. A
brief review of the MPM and the FEM solution schemes is pre-
sented in Section 2, while the contact method for coupling MPM
with FEM is presented in detail in Section 3. The numerical imple-
mentation of the proposed method is summarized in Section 4, and

several numerical examples mentioned above are presented in Sec-
tion 5. Finally, conclusions are given in Section 6.

2. Brief review of MPM and FEM solution schemes

2.1. Governing equations

In material domain X, the basic equations of continuum
mechanics in an updated Lagrangian description are the mass
conservation

qðX; tÞJðX; tÞ ¼ q0ðXÞ; ð1Þ

the momentum conservation

rij;j þ qfi ¼ q€ui ð2Þ

and the energy equation

q _wint ¼ Dijrij; ð3Þ

with the boundary conditions

ðnjrijÞjCt
¼ �ti;

uijCv
¼ �ui

(
ð4Þ

and initial conditions

_uðX;0Þ ¼ _u0ðXÞ;
uðX;0Þ ¼ u0ðXÞ:

�
ð5Þ

In the above equations, subscripts i and j denote the component
of the space with Einstein summation convention, subscript 0 sig-
nifies the initial value, the comma denotes covariant differentia-
tion, and the superimposed dot indicates the time derivatives. q
is the current density, J is the Jacobian determinant, X is the
Lagrangian coordinate, rij is the Cauchy stress, fi is the body force
per unit mass, ui is the displacement, Dij is the rate-of-deformation,
w is the internal energy per unit mass, and nj is the unit outward
normal to the boundary. Ct and Cu signify the prescribed traction
boundary and displacement boundary of X, respectively.

Taking the virtual displacement dui as test function, the weak
form of the momentum equation can be obtained by the weighted
residual method asZ

X
q€uiduidXþ

Z
X
rijdui;jdX�

Z
X
qfiduidX�

Z
Ct

�tiduidC ¼ 0; ð6Þ

where the displacement boundary conditions are assumed to be
satisfied as a priori.

2.2. MPM solution scheme

In MPM, the material domain is discretized by a set of particles,
as shown in Fig. 1. As a result, the mass is lumped at each particle
so that the density is approximated by

Fig. 1. MPM discretization sketch.
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qðxÞ ¼
Xnp

p¼1

mpdðx� xpÞ; ð7Þ

where np is the total number of the particles, mp is the mass of par-
ticle p, xp is the coordinate of particle p, and d is the Dirac delta
function.

As particles are rigidly attached to the background grid in each
time step, the kinematic information can be mapped between par-
ticles and grid points through the shape functions of the grid cell.
For example, the grid nodal momentum can be obtained by map-
ping the particles momenta to the grid point, namely,

PiI ¼
Xnp

p¼1

NIpmpv ip; ð8Þ

where subscripts p and I denote variables associated with particle p
and grid point I, respectively. NIp = NI(xp) is the value of shape func-
tion of grid point I evaluated at the site of particle p. In this paper,
the 8-point hexahedral cell is employed, so that

NIp ¼
1
8
ð1þ nnIÞð1þ ggIÞð1þ ffIÞ I ¼ 1;2; . . . ;8; ð9Þ

where (n 2 [�1,1], g 2 [�1,1], f 2 [�1,1]) are the nature coordinates
of particle p, nI, gI and fI take on their nodal value of (±1,±1,±1). If
the particle p is outside of the cell, NIp is equal to zero.

Substituting Eqs. (7) and (8) into Eq. (6) and invoking the arbi-
trariness of duiI lead to

_piI ¼ fiI I ¼ 1;2; . . . ;ng ; ð10Þ

where

piI ¼ mIv iI ð11Þ

is the momentum of grid point I,

fiI ¼ f ext
iI þ f int

iI ð12Þ

is the nodal force of grid point I,

f int
iI ¼ �

Xnp

p¼1

NIp;jrijp
mp

qp
ð13Þ

is the internal force,

f ext
iI ¼

Xnp

p¼1

NIp�tiph�1 mp

qp
þ
Xnp

p¼1

mpNIpfip ð14Þ

is the external force, rijp ¼ rijðxpÞ; f ip ¼ fiðxpÞ; �tip ¼ �tiðxpÞ, and h de-
notes the thickness of the layer of the boundary. In Eq. (11), the
lumped mass matrix is used, namely

mI ¼
Xnp

p¼1

mpNIp: ð15Þ

2.3. FEM solution scheme

In FEM, the weak form of Eq. (6) can be used directly without
any modifications. In this paper, the 8-node hexahedron element
is implemented and the shape functions are the same to that given
in Eq. (9). Consequently, the displacement ui of material point X
can be approximated by

uiðX; tÞ ¼
X8

K¼1

NKðnðXÞÞuiKðtÞ; ð16Þ

where the subscript K denotes the FE nodes. The integration over
material domain in Eq. (6) can be calculated as the summation of
the integration over all elements. Substituting Eq. (16) into Eq. (6)
yields

_piK ¼ fiK ; ð17Þ

where

piK ¼ mKv iK ð18Þ

is the momentum of FE node K,

fiK ¼ f int
iK þ f ext

iK þ f C
iK ð19Þ

is the nodal force of FE node K,

f int
iK ¼ �

X
e

Z
Ve

NK;jrjidV ¼ �
X

e

NKe;jrjieVe ð20Þ

is the internal force of FE node K,

f ext
iK ¼

X
e

Z
Ve

qNK fidVþ
Z

Cte

NK�tidC
� �

¼
X

e

meNKefieþ
Z

Cte

NK�tidC
� �

ð21Þ

is the external force, and f C
iK is the hourglass-resisting nodal force to

control the hourglass modes caused by one-point Gauss quadrature.
Both the standard and Flanagan–Belytschko hourglass control
schemes [45,46] are implemented in CFEMP method.

In Eqs. (20) and (21), subscript e denotes the value at the center
of element e, and me = qeVe.

3. Coupling scheme

From Section 2, it can be found that MPM is very similar to FEM in
one time step, so that FEM can be coupled with MPM readily by the
contact method. A coupling scheme is developed based on the local
multi-mesh contact method [47] in the framework of MPM. In each
time step, MPM bodies and FEM bodies are first updated indepen-
dently to obtain their trial values of nodal variables, as if they were
not in contact. If the momenta of a MPM body and a FEM body are
projected to the same grid point, two bodies contact at the grid
point, so a contact force is imposed on them to prevent penetration.

In order to describe the algorithm more clearly, two bodies, as
shown in Fig. 2, are considered. Body r, denoted by XF, is modeled
by FEM, while body s, denoted by XM, is modeled by MPM. If con-
tact occurs at a grid point I, the FE node which is located on the sur-
face of body r and has contribution to the grid point I is termed as
hybrid node. Nodes a, b, and c in Fig. 2 are typical hybrid nodes.

3.1. Time integration

The central difference time integration algorithm is used to
integrate the momentum equation, as shown in Fig. 3, where
tk+1 = tk + Dtk+1/2, tk+1/2 = tk + Dtk+1/2/2 = tk�1/2 + Dtk and Dtk =
(Dtk�1/2 + Dtk+1/2)/2.

In the follows, the superscript k denotes the value of variable at
time tk. Given uk

ip and _uk�1=2
ip , we seek for the solution at time tk+1.

3.1.1. Time integration in domain XM

From Eq. (10), the momentum of grid point at time tk+1/2 can be
updated by

pkþ1=2
iI ¼ pk�1=2

iI þ f k
iI Dtk; ð22Þ

where f k
iI is the nodal force of grid point I at time tk given in Eq. (12).

The velocities and the positions of particles at time tk+1/2 and
tk+1, respectively, are updated by

vkþ1=2
ip ¼ vk�1=2

ip þ Dtk
Xng

I¼1

f k
iI Nk

Ip=mk
I ; ð23Þ

xkþ1
ip ¼ xk

ip þ Dtkþ1=2
Xng

I¼1

pkþ1=2
iI Nk

Ip=mk
I : ð24Þ
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3.1.2. Time integration in domain XF

For the hybrid nodes, the velocities at time tk+1/2 are updated in
a way similar to the particles from the background grid as

vkþ1=2
iK ¼ vk�1=2

iK þ Dtk
Xng

I¼1

f k
iI Nk

IK=mk
I þ f k;C

iK Dtk=mJ ; ð25Þ

where the subscript I denotes the point of the background grid, f k
iI is

the nodal force of grid point I at time tk, and f C
iK is the hourglass

resisting force.
For other FE nodes, the velocities at time tk+1/2 are updated from

Eq. (17) as

vkþ1=2
iK ¼ vk�1=2

iK þ f k
iKDtk=mJ : ð26Þ

The nodal positions at time tk+1 are updated by

xkþ1
iK ¼ xk

iK þ vkþ1=2
iK Dtkþ1=2: ð27Þ

3.1.3. Critical time step
Both MPM and FEM use the central difference time integration

algorithm so that the critical time step size is determined by

Dt ¼ minðLe=cÞ; ð28Þ

where Le is the characteristic length of cell e in MPM and element e
in FEM, and c is the material local sound speed. The characteristic
length Le in MPM is constant due to the regular background grid cell
used. In contrast, the characteristic length Le in FEM is variable due
to the deformation of the element. In order to keep all operations
synchronic in the same loop, the minimum critical time step size
of FEM and MPM domains is used as the time step size. Therefore,
the Le of FEM should not be less than that of MPM so that the critical
time step is dependent on the MPM domain.

3.1.4. Artificial bulk viscosity
In order to treat shock waves, artificial bulk viscosity q [45] is

applied, which is defined as:

q ¼ c0qL2
e ð _ekkÞ2 � c1qLec _ekk if _ekk < 0;

0 if _ekk P 0;

(
ð29Þ

where c0 and c1 are dimensionless constants, c is the local sound
speed, _ekk is the trace of the strain rate tensor. Le is the characteristic
length of grid cell in MPM, and the characteristic length of element
in FEM.

3.2. Contact detection

The contact detection is accomplished by monitoring the inter-
action of different velocity fields at the same grid point. The masses
and the momenta of the particles of MPM body s and the nodes lo-
cated on the surface of FEM body r are mapped to the background
grid. Then the velocity of grid point I contributed from body b can
be obtained as

vb;k�1=2
iI ¼ pb;k�1=2

iI

mb;k
I

; ð30Þ

where the superscript b denotes the value mapped from body b, mb;k
I

and pb;k�1=2
iI are the mass and the momentum of grid point I, respec-

tively. If the momenta of two bodies are mapped to the same grid
point, the contact may occur. That is to say, when

ðv r;k�1=2
iI � vs;k�1=2

iI Þnr;k
iI > 0 ð31Þ

is satisfied, the FEM body contacts with the MPM body in the vicin-
ity of grid point I. In Eq. (31), nr;k

iI is the unit outward normal of body
r at point I along the boundary. In the FEM domain XF; nr;k

iI equals to
the summation of normal vectors of the element faces in which the
hybrid nodes with contributions to the grid point are located. The
direction of gradient of mass of a body with constant density along
the boundary is outward normal to the boundary. Hence, the gradi-
ent of mass evaluated at the grid point of the computational grid
provides an approximation for the normal direction at the surface
of the body. In the MPM domain XM, where the mass is lumped
at each particle, ns;k

iI can be calculated approximately by the gradient
of the mass [42] as

ns;k
iI ¼

X
p

Nk
Ip;imp: ð32Þ

Multiplied by mr;k
I ms;k

I , Eq. (31) can be rewritten as

ms;k
I pr;k�1=2

iI �mr;k
I ps;k�1=2

iI

� �
nr;k

iI > 0: ð33Þ

When using the contact detection condition Eq. (33), two bodies
may contact if the space between them is less than two times the
grid cell size, which makes contact occur earlier than the actual
contact time. The improved contact detection method proposed
by Ma et al. [47] is used here to prevent the earlier contact.

3.3. Contact force

If two bodies contact at grid point I, contact forces must be im-
posed on them to prevent penetration. After imposing the contact
force f b;c;k

iI , the updated momentum pb
iI of body b is given by

pb;kþ1=2
iI ¼ �pb;kþ1=2

iI þ Dtkf b;c;k
iI ; ð34Þ

Fig. 2. 2D illustration of coupling FEM with MPM.

Fig. 3. Time integration.
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where

�pb;kþ1=2
iI ¼ pb;k�1=2

iI þ Dtkf b;k
iI ð35Þ

is the trial value of the grid nodal momentum, pb;k�1=2
iI is the grid no-

dal momentum at the beginning of each time step, and f b;c;k
iI is the

contact force applied on body b at time step tk.
The updated momentum must satisfy the impenetrability

condition

ms;k
I pr;kþ1=2

iI �mr;k
I ps;kþ1=2

iI

� �
nr;k

iI ¼ 0: ð36Þ

By substituting Eq. (34) into Eq. (36), the normal contact force
f nor;k
I ¼ f r;c;k

iI nr;k
iI ¼ �f s;c;k

iI nr;k
iI can be obtained as

f nor;k
I ¼

ms;k
I

�pr;kþ1=2
iI �mr;k

I
�ps;kþ1=2

iI

� �
nr;k

iI

mr;k
I þms;k

I

� �
Dt

¼ f nor;k
I;1 þ f nor;k

I;2 ; ð37Þ

where

f nor;k
I;1 ¼

ms;k
I pr;k�1=2

iI �mr;k
I ps;k�1=2

iI

� �
nr;k

iI

mr;k
I þms;k

I

� �
Dt

; ð38Þ

f nor;k
I;2 ¼

ms;k
I f r;k

iI �mr;k
I f s;k

iI

� �
nr;k

iI

mr;k
I þms;k

I

� � : ð39Þ

In the above, f s;k
iI is the nodal force of grid point I contributed

from MPM body s by Eq. (12), and f r;k
iI is the nodal force of grid

point I contributed from FEM body r by

f r;k
iI ¼

Xnh

J¼1

NIK f r;k
iK ; ð40Þ

where nh is the total number of the hybrid node, and f r;k
iK is the nodal

force of hybrid node K given by Eq. (19).
For stick contact, substituting Eq. (34) into the non-slip

condition

ms;k
I pr;kþ1=2

iI �mr;k
I ps;kþ1=2

iI

� �
tr;k

iI ¼ 0; ð41Þ

the tangential contact force f stick;k
I ¼ f r;c;k

iI tr;k
iI ¼ �f s;c;k

iI tr;k
iI can be

obtained as

f stick;k
I ¼

ms;k
I

�pr;kþ1=2
iI �mr;k

I
�ps;kþ1=2

iI

� �
tr;k

iI

mr;k
I þms;k

I

� �
Dt

¼
ms;k

I pr;k�1=2
iI �mr;k

I ps;k�1=2
iI

� �
tr;k

iI

mr;k
I þms;k

I

� �
Dt

þ
ms;k

I f r;k
iI �mr;k

I f s;k
iI

� �
tr;k

iI

mr;k
I þms;k

I

� � : ð42Þ

In Eq. (41), tr;k
iI is the unit tangent at grid point I along the

boundary, which can be determined by

tr;k
iI ¼

v r;k�1=2
iI � vs;k�1=2

iI

� �
� v r;k�1=2

jI � v s;k�1=2
jI

� �
nr;k

jI nr;k
iI

v r;k�1=2
iI � vs;k�1=2

iI

� �
� v r;k�1=2

jI � v s;k�1=2
jI

� �
nr;k

jI nr;k
iI

��� ��� : ð43Þ

For slip contact, the friction at the contact surface is described
by the Coulomb friction model, in which the friction force is lim-
ited to lf nor;k

I , where l is the friction coefficient. Therefore, the tan-
gential contact force can be obtained as

f tan;k
I ¼min lf nor;k

I ; f stick;k
I

� �
: ð44Þ

Finally, the contact force applied on body b can be expressed as

f b;c;k
iI ¼ f nor;k

I nb;k
iI þ f tan;k

I tb;k
iI : ð45Þ

3.4. Stress update

In CFEMP, the stress at the time tk+1/2 is updated by

rkþ1
ij ¼ rk

ij þ _rk�1=2
ij Dtkþ1=2; ð46Þ

where _rij is the material time derivative of the stress. _rij is deter-
mined by

_rij ¼ rrij þ rikXjk þ rjkXik; ð47Þ

where rrij is the Jaumann (co-rotational) stress rate, and Xij is the
spin tensor. rrij is determined from the strain rate _eij by a constitu-
tive model.

In domain XF, the strain rate and spin tensor are calculated at
the element center by

_eije ¼
1
2

X8

I¼1

ðNIe;j _uiI þ NIe;i _ujIÞ; ð48Þ

Xije ¼
1
2

X8

I¼1

ðNIe;j _uiI � NIe;i _ujIÞ: ð49Þ

In domain XM, the strain rate and spin tensor are calculated at
the particle by

_eijp ¼
1
2

X8

I¼1

ðNIp;j _uiI þ NIp;i _ujIÞ; ð50Þ

Xijp ¼
1
2

X8

I¼1

ðNIp;j _uiI � NIp;i _ujIÞ: ð51Þ

The deviatoric stress and the pressure are updated here with a
constitutive law and an equation of state (EOS), respectively.

4. Numerical implementation

It should be noted that f nor;k
I;1 , the first part of the normal contact

force in Eq. (37), will vanish if the momenta pb;k�1=2
iI at the begin-

ning of each time step satisfy the impenetrability condition Eq.
(36). However, the deformed background grid in MPM is discarded
at the end of each time step, and a new regular background grid is
redefined for the next time step. Therefore, the impenetrability
condition (36) may not be satisfied at the beginning of each time
step, even if it has been imposed at the end of last time step
[43]. As pointed out by Huang et al. [43], the nodal velocities
vb;k�1=2

iI used to update the stresses may violate the impenetrability
condition Eq. (36), which may introduce disturbance to the system.

To eliminate the artificial disturbance, before updating stresses
of particles, the nodal momenta ps;k�1=2

iI of grid point I are adjusted
to their new values ~ps;k�1=2

iI by using

~ps;k�1=2
iI ¼ ps;k�1=2

iI þ Dtkf nor;k
I;1 ns;k

iI ; ð52Þ

where f nor;k
I;1 is defined in Eq. (38). It can be verified that the adjusted

nodal momenta ~ps;k�1=2
iI satisfy the impenetrability condition Eq.

(36). The velocities of hybrid nodes in FEM body r are also adjusted
for the reason same to above by using

Fig. 4. Typical discretization of plate impact.
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~v r;k�1=2
iK ¼ v r;k�1=2

iK þ Dtk
Xng

I¼1

f nor;k
I;1 nr;k

iI Nk
IK=mr;k

I : ð53Þ

The detailed implementation of the method is presented as
follows.

1. Initialize background grid points.
Loop over all the particles in MPM body s to calculate their
contributions to the masses and the momenta of grid points
by

ms;k
I ¼

X
p

ms
pNk

Ip; ð54Þ

ps;k�1=2
iI ¼

X
p

ms
pv

s;k�1=2
ip Nk

Ip: ð55Þ

Loop over all the FE nodes located at the surface of FEM body r
to calculate their contributions to the masses mr;k

I and mo-
menta pr;k�1=2

iI of grid points in a way similar to that in Eqs.
(54) and (55).

2. Apply the boundary conditions.
3. Detect the contact grid points.

Loop over all the grid points to detect the contact grid points.
If Eq. (33) is satisfied and the real physical distance between
two bodies is less than a prescribed value, the two bodies
contact at the grid point I. Label FE nodes which have contri-
butions to the grid point I as hybrid nodes.

4. Loop over all the contact grid points to adjust their momenta
ps;k�1=2

iI to new values ~ps;k�1=2
iI according to Eq. (52). Then loop

over all the hybrid nodes to adjust their velocities v r;k�1=2
iI to

new values ~v r;k�1=2
iI according to Eq. (53).

5. Update stresses.
Loop over all the particles to calculate their incremental
strains and spin tensors, respectively, from the background
grid by using

Dek�1=2
ijp ¼ 1

2
Dtk

X8

I¼1

Nk
Ip;j

~vs;k�1=2
iI þ Nk

Ip;i
~v s;k�1=2

jI

h i
; ð56Þ

Xk�1=2
ijp ¼ 1

2

X8

I¼1

Nk
Ip;j ~v

s;k�1=2
iI � Nk

Ip;i ~v
s;k�1=2
jI

�	
ð57Þ

Loop over all the elements to calculate their incremental
strains and spin tensors based on the adjusted velocities
~v r;k�1=2

iI by using Eqs. (56) and (57), respectively.

Fig. 5. (a) Plate impact stress profile at time 3.0 ls; (b) Energy evolution of plate impact.

Table 1
Information for plate impact.

Elements Particles Time steps
to 15 ls

Cost/s Separation
time/ls

Analytical – – – – 8.63
CFEMP 1512 12,096 695 50 8.7
MPM – 24,192 695 97 8.7

Fig. 6. Plate impact stress profile at time 3.0 ls for different ratio by fixing cell size
0.5 mm.

Fig. 7. Plate impact stress profile at time 3.7 ls.
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Then update the stresses of particles and elements by corre-
sponding constitutive law and EOS. The density of a particle
or an element is updated by
qkþ1

p ¼ qk
p= 1þ Dek�1=2

iip

� �
: ð58Þ

6. Calculate the nodal force.
Loop over all the particles to calculate internal forces f int;k

iI

and external forces f ext;k
iI of grid points by using Eqs. (13)

and (14), respectively.
Loop over all the elements to calculate the nodal internal
forces f int;k

iI , external forces f ext;k
iI and hourglass resisting

forces f C;k
iI . If the node I is fixed in i direction, set

f k
iI ¼ f ext;k

iI þ f int;k
iI þ f C;k

iI ¼ 0 to make its acceleration ak
iI ¼ 0.

Then loop over all the hybrid nodes to map their nodal forces
to grid points.

7. Loop over all contact points to calculate f nor;k
I;2 , the second

term of the normal contact forces, by Eq. (39) and the tan-
gential contact force f tan;k

I by Eq. (44).
8. Loop over all the grid points to update their momenta by

pg;kþ1=2
iI ¼ ~pg;k�1=2

iI þ Dtk f g;k
iI þ f nor;k

I;2 ng;k
iI þ f tan;k

I tg;k
iI

� �
ð59Þ

and apply the boundary conditions of the background grid.
9. Loop over all the particles to update their velocities and

positions by using

vkþ1=2
ip ¼ vk�1=2

ip þ Dtk
Xng

I¼1

f g;k
iI þ ðf

nor;k
I;1 þ f nor;k

I;2 Þng;k
iI

�

þ f tan;k
I tg;k

iI

�
Nk

Ip=mk
I ð60Þ

and Eq. (24), respectively.
10. Loop over all the FE nodes to update their velocities and posi-

tions by Eqs. (26) and (27), respectively. Loop over all the
hybrid nodes to update their velocities and positions by
Eqs. (25) and (27), respectively, and label them as FE nodes.

11. Discard the deformed background grid and define a new reg-
ular background grid. Return to step 1 to start a new time step.

5. Numerical examples

5.1. Symmetric plate impact

A series of plate impact with different material laws applied are
investigated here to validate the accuracy and efficiency of CFEMP.
In all the simulations, the initial gap between the two plates is set
to zero, and the friction coefficient is zero.

The first example is a symmetric plate impact. The length of the
plate is 21 mm and the area is 3 � 3 mm. Two plates are traveling
with an equal and opposite velocity of 100 m/s towards each other.
Elastic material law is applied for both plates, whose Young’s mod-
ulus E = 65 � 103 MPa, Poisson’s ratio m = 0, and density q = 2.75 �
10�3 g/mm3. A typical discretization of the two plates is shown in

Fig. 8. (a) Plate impact stress profile at time 6.8 ls; (b) Energy evolution of plate impact.

Table 2
Information for plate impact.

Elements Particles Time steps
to 20 ls

Cost/s Separation
time/ls

Analytical – – – – 17.28
CFEMP 3024 12,096 2756 212 17.3
MPM – 36,288 2777 582 17.3

Fig. 9. A sphere rolling on an inclined plate.

Fig. 10. Typical discretization of a sphere rolling on an inclined plate.
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Fig. 4, where the left plate is modeled by FEM, while the right plate
by MPM. Plane strain assumption is applied along the sides of the
model, which result in a 1D wave propagation in the plates. The
element size is 0.5 mm, the grid cell size 0.5 mm, and the particle
space 0.25 mm.

The numerical results of stress profile and separation time are
in good agreement with 1D analytical solution. Fig. 5(a) compares
the stress profiles in the plates for time 3.0 ls obtained by CFEMP
and 1D analytical solution, while Fig. 5(b) shows the energy curve
of the simulation. The protuberance of the profile given by CFEMP
is located in the region of MPM near to the contact interface due to
the asymmetry of discrete of MPM and FEM, but the influence is
limited to local region so that it could be ignored. Moreover, some
oscillations are observed in the MPM domain but not in the FEM
domain. Table 1 lists the separation time of two plates and the
computational cost for both CFEMP and MPM, which shows that
the CFEMP is more efficient than the MPM for this simulation.

Obviously, the accuracy of the contact method is dependent on
the ratio R between the finite element size and MPM cell size.

Therefore, the aspect ratio effect is further investigated for the
example given above by fixing the cell size of 0.5 mm and increas-
ing the finite element size from 0.25 mm to 1.5 mm. The numerical
results obtained for different R are illustrated in Fig. 6, which
shows that the numerical result agrees well with the analytical
result when the R is less than 2, but significant oscillation can be
seen when the R is larger than 2 in the profile of MPM domain
due to the unmatched mesh at the contact interface. Besides, pen-
etration is observed in the simulation due to the unmatched mesh
for R larger than 1.

In addition, an elasto-plastic material law with isotropic hard-
ening is applied for both plates, whose Young’s modulus
E = 65 � 103 MPa, tangent modulus ET = 30 � 103 MPa, Yield stress
ry = 300 MPa and density q = 2.75 � 10�3 g/mm3. Other parame-
ters are the same to the above example and set R = 1. In this exam-
ple, double waves of elastic wave and plastic wave will propagate
along the plates at the same time. The numerical result is given in

Fig. 11. Center-of-mass position for sphere as a function of time: (a) the angle of inclination h = p/4, and coefficient of friction l = 0.1 and 0.4, respectively. (b) the angle of
inclination h = p/3, and coefficient of friction l = 0.2 and 0.6, respectively.

Table 3
Simulation cost for sphere rolling on the inclined plate.

Elements Particles Time steps to 2.0 ms Cost/s

CFEMP 8000 17,259 3391 144
MPM – 81,259 3622 456

Fig. 12. Energy evolution of sphere rolling: (a) for case 1; (b) for case 2.

Fig. 13. Schematic of the ogive-nose projectile.
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Fig. 7, which shows that the numerical result is close to the 1D ana-
lytical solution.

5.2. Asymmetric elastic plate impact

An asymmetric elastic plate impact with different length and
material parameters is further studied here. One plate is with size
of 3 � 3 � 42 mm and modeled by elastic constitutive with
E = 65 � 103 MPa, q = 2.75 � 10�3 g/mm3, while the other is with
size of 3 � 3 � 21 mm and modeled by elastic constitutive with
E = 32.5 � 103 MPa, q = 5.5 � 10�3 g/mm3. Other parameters are
the same to example in Section 5.1 and set R = 1. The sound speed
of the first plate is two times that of the other, but the impedance is

matched. The longer plate is modeled by FEM, while the other by
MPM.

Fig. 8(a) compares the stress profile obtained by CFEMP and
MPM with the analytical solution at time 3.6 ls. The energy curve
is shown in Fig. 8(b). Table 2 lists the information about the contact
separation time and computational cost, which shows the accuracy
and efficiency of CFEMP method is higher than that of MPM.

5.3. Sphere rolling simulation

The third example is an elastic sphere rolling on an inclined
elastic plate due to gravity, as shown in Fig. 9. The plate is inclined
at an angle h from the horizontal. The radius of sphere is R = 1.6 m,
and the size of plate is 20 � 4 � 0.8 m. The gravity g = 10 g/s2 is
vertically downward.

From rigid body dynamics, the sphere will roll and either stick
or slip at the point of contact depending on the angle of inclination
and the friction coefficient. For convenience, the direction tangent
to the surface of the plane is chosen as x-direction, so that the kine-
matics equation of the center-of-mass of the sphere can be ex-
pressed as

xðtÞ ¼
x0 þ 1

2 gt2ðsin h� l cos hÞ tan h > 3l ðroll and slipÞ;
x0 þ 5

14 gt2 sin h tan h 6 3l ðpure rollingÞ;

(

where x0 = 0 is the x-component of the initial center-of-mass
position.

In the simulation, the sphere has a Young’s modulus of E = 4.2
� 106 Pa, Poisson’s ratio of m = 0.4, and density of q = 1000 Kg/m3.
The plate has a Young’s modulus of E = 4.2 � 107 Pa, Poisson’s ratio
of m = 0.4, and density of q = 10,000 Kg/m3. As shown in Fig. 10, the
plate is modeled by FEM with fixed boundary condition at the bot-
tom surface, while the sphere is modeled by MPM. The element
size is 0.2 m, cell size is 0.2 m, and particle space is 0.1 m.

Four cases are studied. In the first and the second cases, the in-
clined angle is h = p/4 with frictional coefficient of l = 0.1 and 0.4,
respectively. In the third and fourth cases, the inclined angle is
h = p/3 with frictional coefficient of l = 0.2 and 0.6, respectively.
In the first and third cases, the sphere will roll and slip, in other
cases the sphere will roll and stick.

Table 4
Material constants of projectile.

q (g/mm3) E (GPa) l ry (GPa) ET (GPa)

0.00785 202 0.3 1.43 14.759

Table 5
Material constants of A6061-T651 for strength model and EOS.

q (g/mm3) E (GPa) l A (MPa) B (MPa) n C m

0.0027 69 0.3 262 52.1 0.41 0 0.859
c0 (mm/ms) s c0 Tmelt (K) Troom (K)
5,350 1.34 2.0 875 293

Table 6
Effect of grid cell size and element size on the simulation results.

Case Cell size (mm) Number of
particles for target

Number of
elements for
projectile

Residual
velocity
(m/s)

1 3 90,593 5440 286
2 2 314,600 18,144 418
3 1.5 756,315 42,752 433
4 1 2,516,800 145,152 456
Experiments – – – 455

Fig. 14. Projectile-target interaction at the striking velocity v0 = 575 m/s.
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Fig. 11(a) compares the numerical results of the center-of-mass
position with the analytical solutions for case 1 and 2, and
Fig. 11(b) for case 3 and 4. The numerical results obtained by
CFEMP method are in good agreement with analytical results. Ta-
ble 3 lists the computational cost of case 1 for both CFEMP and
MPM, which shows that the CPU time required for the MPM simu-
lation is more than that of CFEMP simulation. The energy curves of
case 1 and 2 are illustrated in Fig. 12.

5.4. Perforation of thick plate

In order to validate the robustness of CFEMP method, a projec-
tile against oblique thick plate is investigated. The inclined angle is
30�. The experiments were conducted by Piekutowski et al. [48],
where ogive-nose hardened steel projectiles and 6061-T651 alumi-
num plates were adopted. As shown in Fig. 13, the projectile has a
length of 88.9 mm and a diameter of 12.9 mm with a 3.0 caliber-ra-
dius-head. The target has a thickness of 26.3 mm and an area of
110 � 110 mm.

The projectile is discretized with an unstructured elements
arrangement and modeled by an elasto-plastic material law with
isotropic hardening. The target is discretized with a structured par-
ticle arrangement and modeled by an elastic–plastic material law,
Johnson–Cook model whose yield stress is calculated by

ry ¼ Aþ B�en
p

� �
ð1þ C ln _e�Þð1� T�mÞ;

where A, B, C, n and m are the material constants, �ep is the effective
plastic strain, _e� ¼ _�ep= _e0 is the dimensionless plastic strain rate for
_e0 ¼ 1:0 s�1, and T⁄ = (T � Troom)/(Tmelt � Troom) 2 [0,1] is the dimen-
sionless temperature. Besides, the pressure of target material is up-
dated by the Mie–Gruneisen EOS. Material failure is taken into
account by setting the deviatoric components of the stress tensor
to zero when the effective plastic strain reaches the plastic strain

Fig. 15. Contour plot of the effective plastic strain at final time 0.28 ls.

Fig. 16. The energy error for the case 4 in time.

Table 7
The projectile’s residual velocities for different striking velocities (m/s).

v0 Experiment CFEMP MPM

400 217 229 241
446 288 293 306
575 455 456 471
730 655 631 652

Fig. 17. Projectile-target interaction at the striking velocity v0 = 400 m/s.
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efail = 1.6 at failure. The material constants for the projectile and the
target listed in Tables 4 and 5, respectively, are taken from refer-
ences [48,49]. In our simulation, the friction between projectile
and target is ignored.

We will focus first on the experiment of projectile with striking
velocity of 575 m/s. Four different cases are investigated to study

the mesh refinement effect on the accuracy of CFEMP as shown
in Table 6. In each case, the particle space is half of the cell size
and the ratio R ranges from 0.14 to 1 due to the complicated geo-
metrical shape of ogive-nose. The residual velocity of the projectile
given by CFEMP is listed in Table 6, which shows that the numer-
ical results converge to the experimental data with decreasing the
sizes of the cell and the element.

In case 4, the residual velocity of the projectile obtained by
CFEMP method is 456 m/s, which is closed to experimental result.
Moreover, the projectile-target interactions obtained in the exper-
iment and in the simulation are compared in Fig. 14, where
Fig. 14(a) shows a sequence of X-ray photographs at three times
of impact and Fig. 14(b) shows the numerical results at the same
times. The projectile’s shapes obtained by the CFEMP method are
consistent with the experimental results during the perforation
process. In addition, the effective plastic strain contour plot of
the target at 0.28 ms is shown in Fig. 15, and the energy error in
time for case 4 is illustrated in Fig. 16 which does not exceed 5.5%.

Furthermore, the projectile with different striking velocity v0 is
investigated with the same cell and element sizes used in case 4.
The residual velocity of projectile given by both CFEMP and MPM
is listed in Table 7, which shows that the numerical results are
close to the experimental data. The residual velocities given by
CFEMP method are less than that of MPM, but the difference is
not significant. The computational cost of CFEMP is more than that
of MPM due to the smallest ratio R is less than 1, but the efficiency
of CFEMP per time step is higher than that of MPM.

From the observation of experiments, the shapes of the projec-
tiles are dependent on the striking velocity v0. Therefore, the pro-
jectile-target interaction for projectile with v0 = 400 m/s is given
in Fig. 17. From the comparison, we can find that the projectile’s

Fig. 18. Schematic of the water column with an elastic obstacle.

Table 8
Material constants of water.

q (kg/m3) c0 (m/s) s c0

1000 1647 1.921 0.1

Fig. 19. Comparison between CFEMP results and PFEM [50] results for water column collapse on a flexible obstacle.
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shapes and the ballistic trajectory obtained by CFEMP method are
consistent with the experimental data during the perforation
process.

5.5. Water column collapse simulation

Finally, a fluid–structure interaction problem is investigated by
CFEMP. As shown in Fig. 18, a water column will collapse through a
flexible obstacle to the right wall due to the gravity.

The water column is of width L = 146 mm and of height 2L, and
the flexible obstacle is of width b = 12 mm and of height 80 mm.
The gap between obstacle and water column is of length L. The
water will flow freely due to the gravity acting downwards with
g = 9.8 � 10�3 mm/ms2. The air is neglected. In the simulation,
the flexible obstacle is modeled by FEM with density
q = 2.5 � 10�3 g/mm3, Young modulus E = 1 MPa and Poisson ratio
m = 0. The water column is modeled by MPM with null material
model and Mie–Gruneisen EOS, whose material constants are
listed in Table 8. In order to keep the surface of water smoothed,
the water is assumed to be able to sustain certain level of tension,
which is set to 0.006 MPa. Plane strain assumption is applied in the
simulation. The particle space is 2 mm, and both the cell and the
element sizes are 4 mm, where R = 1. Structured discretization is
used for both water and obstacle, which consist of 10,608 particles
for water, and 60 elements for the obstacle.

Although there are no available experimental results, this prob-
lem was investigated by other researchers using PFEM [50] and a
staggered method with level-set method [51], respectively. Here,
the numerical results of CFEMP method are compared with the re-
sults given by Idelsohn et al. [50], as shown in Fig. 19. Both the de-
formed shape of the obstacle and the free surface of water obtained
by CFEMP agree well with those obtained by PFEM. The time his-
tory of the deflection of the upper left corner of the obstacle is
compared with other available numerical results [50,51] in
Fig. 20. Finally, the energy curve of this problem is given in Fig. 21.

6. Conclusion

In this paper, we put forward a contact method to handle the
interaction between the body modeled by FEM and the body mod-
eled by MPM. In this method, the FE nodes located on the contact
interface are treated as hybrid nodes, whose momentum equations
are established and integrated on the contact grid points like par-
ticles. The contact force is calculated on the background grid points
and imposed on the hybrid nodes and particles. Different from the
contact of MPM, the normal vector of body surface is calculated by
the surface of elements for FEM body.

Based on the contact method, a coupled finite element–material
point method is proposed in this paper, in which the body with mild
deformation is modeled by FEM, while the body with extreme
deformation is modeled by MPM. The accuracy of FEM is higher than
MPM for body with mild deformation because the particle quadra-
ture rather than Gauss quadrature is used in MPM. Besides, the ratio
between element size and grid cell size should be less than 2 to
avoid penetration occurring due to the background grid based con-
tact method. Central difference time integration is used to integrate
the momentum equation so that if the critical time step is controlled
by the MPM body the efficient of CFEMP is higher than that of MPM.
Two plates impact and a sphere rolling on an inclined plate are
investigated to validate the accuracy and efficiency of CFEMP, and
a series of impact experiment of projectile against an inclined plate
are studied to validate the robustness of CFEMP. Finally, a fluid–
structure interaction of collapse of water column through an elastic
obstacle is studied. All the problems are three dimensional and the
numerical results obtained by CFEMP are in good agreement with
analytical solution or results available in the literature.
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