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The material point method (MPM) takes advantages of both the Eulerian and Lagrangian methods, so it is
capable of handling many challenging engineering problems, such as the dynamic responses of reinforced
concrete (RC) subjected to blast and impact loadings. However, it is time-consuming to discretize the
steel reinforcement bars (‘‘rebars’’) in RC by using MPM because the diameter of the steel bar is very small
compared with the size of concrete. A hybrid finite element–material point (FEMP) method is proposed,
in which the truss element in the traditional finite element method (FEM) is incorporated into the MPM
to model the rebars. The proposed FEMP method is implemented in our three-dimensional material point
method code, MPM3D�, and validated by several benchmark problems. Finally, it is applied to simulate
the dynamic response of RC slab penetrated by projectile, and the numerical results are in good agree-
ment with the experimental data reported in the literature. The proposed idea is applicable to incorporate
other types of finite elements into MPM to take advantages of both FEM and MPM.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

As a common building material, reinforced concrete (RC) has
been used extensively to construct civilian buildings, dams, nucle-
ar reactor containment and various defense structures. Therefore,
it is important to investigate its behaviors under blast and impact
loadings, where large strain, high strain rate, fracture and crushing
phenomena frequently exist. As an adjunct to experimental study,
numerical simulation is playing more and more dominant role in
predicting structure responses to various loads, especially when
experiment cost is high. Hence, a lot of effort has been devoted
to model the dynamic response of RC or plain concrete [1–7]. To
model the interaction between the steel reinforcement bars
(‘‘rebars’’) and concrete, the rebars can be modeled as solid cylin-
ders with contact surfaces [2,8] or a fictitious interface layer [9]
which creates a bond and slip between them. These methods are
not very appealing for practical analysis of RC structures due to
requiring extremely large computational capacity. Instead, three
typical alternative techniques are usually used to take account of
the interaction approximately based on perfect bonding assump-
tion [3,4,7,10–12], which are classified as discrete, embedded and
smeared technique. By using discrete technique, rebars are mod-
ll rights reserved.

f China (2010CB832701) and
107).

).
eled with truss or beam elements connected to the concrete mesh
nodes. By using embedded technique, concrete and rebars are dis-
cretized together without inter-facial elements established be-
tween them. By using smeared technique, RC material is treated
as a homogeneous material with considering the contribution from
rebars to strength model. In this paper, reinforcement bars are also
assumed to have a perfect connection to the concrete.

Most of the work mentioned above were conducted by finite
element method (FEM), in which erosion method with some ele-
ment deleted must be implemented to capture the phenomenon
of perforation, or Eulerian method, in which dissipation and dis-
persion problems are not easy to be overcome.

Meshfree/meshless and particle methods have been developed
for decades and received considerable attentions. A representative
of such methods is the material point method (MPM) [13], which is
an extension of the fluid implicit particle (FLIP) [14] method to so-
lid mechanics. MPM discretizes a material domain by a set of
Lagrangian material points (particles) moving through an Eulerian
background grid. The particles carry all state variables and can rep-
resent the movement and deformation of material domain. The
momentum equations of all particles are solved on a regular back-
ground grid in each time step. The numerical dissipation normally
associated with Eulerian methods is removed, while mesh distor-
tion and element entanglement associated with the Lagrangian
finite element method are avoided. Up to now, MPM and its exten-
sions have been successfully applied in many problems, such as
impact [15] and penetration [16], upsetting [17], granular media

http://dx.doi.org/10.1016/j.cma.2011.01.019
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[18], blast induced fragmentation [19,20], explosion [21], dynamic
crack [22,23], fluid–structure interaction [24,25], film delamina-
tion [26], saturated soil–structure interaction [27], just to name a
few, in which Zhang et al. [16] and Anvar and Sumanta [25] cou-
pled MPM with other methods.

Zhang et al. [16] developed an explicit material point finite ele-
ment method for hyper-velocity impact simulation. Material do-
main is discretized by a mesh of finite elements, and a regular
background grid is defined in the potential large deformation zone.
Once moving into the predefined computational grid, nodes are
converted into particles whose momentum equations are solved
on the predefined grid. This method combined the MPM and FEM
seamlessly.

Anvar and Sumanta [25] coupled a hybrid immersed boundary
with MPM to simulate 3-D fluid–structure problems, in which
the hybrid immersed boundary method is used for handling com-
plex moving boundaries and the MPM for solving the equations of
solid structure. The information communication between them is
fulfilled through appropriate interface-boundary conditions. This
is a powerful method to solve fluid–structure interaction (FSI)
problems. In order to solve FSI problems, York et al. [28] extended
the MPM to handle membranes, in which 2-D membrane is
discretized by a collection of particles along its surface, and strain
of each particle is determined in the local normal-tangential coor-
dinate system and adjusted to consistent with the membrane
assumptions.

In fact, coupling FEM with other meshless method has been
studied in many reports for impact applications. Attaway et al.
[29], Johnson [30,31] coupled smoothed particle hydrodynamics
(SPH) method with FEM, in which distinct material regions are dis-
cretized with either SPH particles or finite elements with a parti-
cle-to-surface contact algorithm used to quantify subsequent
material interactions. Johnson and Stryk [32] extended this cou-
pled particle method by converting damaged or failure elements
into particles. Vignjevic et al. [33] presented an alternative method
of combining SPH and FEM by treating the nodes as particles to cal-
culate the contact force vector by using an SPH particles contact
algorithm originally. In addition to coupling methods, a hybrid par-
ticle-element method was given by Fahrenthold et al. [34–36],
which uses both elements and particles for all material control vol-
umes. The particles are used to model all inertia, contact-impact,
while the elements model the tension and elastic–plastic shear.
The material failure is simply accommodated (without element-
to-particle converting or discarding mass and energy ) via the loss
of element cohesion. Therefore, particles not associated with any
intact elements move as individual fragments. This hybrid method
offers important advantages in hyper-velocity impact applications.

In this paper, the MPM is extended to predict the dynamic re-
sponse of RC under impact loading. However, it is time-consuming
that the rebars and concrete are discretized by particles together
with the same particle space. Based on the fact that the rebars in
the concrete mainly sustain tensile or compressive loading, a hy-
brid finite element–material point (FEMP) method is proposed, in
which the truss element of FEM (rebar element) is incorporated
into MPM to model the rebars. The rebars are discretized by both
particles and rebar elements. The particles, serving as the nodes
of the rebar elements, only carry position and velocity variables,
whereas rebar elements carry axial forces (i.e. stresses). In order
to distinguish from the particle in MPM, particle here for the rebar
is termed as rebar node.

Several numerical examples are presented in this paper. Firstly,
a series of uniaxial tensile tests are simulated to validate the rebar
element. Secondly, a pendulum simulation is given to demonstrate
the ability of the method to resolve rebar element moving laterally
through a Cartesian background grid. Then, RC slab subjected to
nose-projectile perforation is studied for different initial velocities,
and numerical results agree well with the experimental data con-
ducted by Hanchak et al. [37]. Finally, a 2-D RC slab perforation
simulation is given to investigate the interaction between rebars
and concrete in detail.

The remaining sections of the paper are organized as follows. A
brief review of MPM is given in Section 2, while the formulations of
rebar element are presented in Section 3. The numerical imple-
mentation of the FEMP method is described in Section 4, and the
Holmquist–Johnson–Cook (HJC) model [38,39] for concrete is pre-
sented in Section 5. Some numerical examples mentioned above
are presented in Section 6. Finally, several conclusions are made
in Section 7.

2. Brief review of MPM

In the updated Lagrangian description, the material domain is
governed by

@rji

@xj
þ qfi ¼ q€ui ð1Þ

with boundary conditions

ðnjrijÞ
��
Ct
¼ �ti

uijCv
¼ �ui

(
ð2Þ

The energy equation is given by

q _e ¼ Dijrij ð3Þ

where the subscripts i and j denote the space component with Ein-
stein summation convention, Ct is the prescribed traction bound-
ary, Cu is the prescribed displacement boundary, rij is the Cauchy
stress, q is the current density, fi is the body force, €u is the acceler-
ation. The comma denotes covariant differentiation. nj is the unit
outward normal, e is the internal energy per unit mass, Dij is the
rate-of-deformation.

By taking the virtual displacement dui as test function, the weak
form of momentum equation can be obtained asZ

X
q€uidui dXþ

Z
X
qrs

ijdui;j dX�
Z

X
qfidui dX�

Z
Ct

q�ts
i dui dCt ¼ 0

ð4Þ
where rs

ij ¼ rij=q is the specific stress, �ts
i ¼ �ti=q.

In MPM, the mass is lumped at particles so that the density is
approximated as

qðxÞ ¼
Xnp

p¼1

mpdðxi � xipÞ ð5Þ

where np denotes the total number of particles, mp is the mass of
particle p, xip is the coordinate of particle p in ith direction, d is
the Dirac delta function. Substituting Eq. (5) into Eq. (4) leads to

Xnp

p¼1

mp€uipduip þ
Xnp

p¼1

mprs
ijpduip;j �

Xnp

p¼1

mpfipduip �
Xnp

p¼1

mp�ts
iph�1duip ¼ 0;

ð6Þ
where duip,j = dui,j(xp), rs

ijp ¼ rs
ijðxpÞ, fip = fi(xp), �ts

ip ¼ �ts
i ðxpÞ, h denotes

the thickness of the layer of the boundary.
During solution phase, the particles are rigidly attached to the

background grid and deform with the grid. A variable u and its
derivatives of particles can be obtained from the grid points uI

via the standard FEM shape functions as

up ¼
Xng

I¼1

NIpuI ð7Þ

up;j ¼
Xng

I¼1

NIp;juI ð8Þ



Fig. 2. RC discretization in FEMP method. Hollow dots denote concrete material
points, while solid dots denote rebar nodes and solid lines connecting solid dots
denote rebar elements.
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where subscript I represents the value of grid point I, ng denotes the
total number of grid points, NIp = NI(xp) is the shape function value
of grid point I at the site of particle p. For 3-D problem, 8-node hexa-
hedral grid is adopted as the background grid and the shape func-
tion is given by

NI ¼
1
8
ð1þ nnIÞð1þ ggIÞð1þ ffIÞ; I ¼ 1;2; . . . ;8 ð9Þ

where nI, gI,fI, either �1 or +1, denote the nature coordinates of
point I. n, g, f, which are between �1 and +1, denote the nature
coordinates of a particle. If the particle p is outside the hexahedron,
NI(xp) is equal to zero.

Substituting Eqs. (7) and (8) into Eq. (6) with invoking the arbi-
trariness of duiI, yields

_piI ¼ f int
iI þ f ext

iI ; I ¼ 1;2; . . . ; ng ð10Þ

where

piI ¼ mIv iI ¼
Xnp

p¼1

mpv ipNIp ð11Þ

is the momentum of grid point I, vip is the velocity of particle p,

mI ¼
Xnp

p¼1

mpNIp ð12Þ

is the mass of grid nodal I,

f int
iI ¼ �

Xnp

p¼1

NIp;jrijpmp=qp ð13Þ

is the internal force,

f ext
iI ¼

Xnp

p¼1

NIp�tiph�1mp=qp þ
Xnp

p¼1

mpNIpfip ð14Þ

is the external force. Note that a lumped grid mass matrix is used in
Eq. (11).

The leapfrog central difference method with variable time
step size is employed to integrate Eq. (10), as shown in Fig. 1,
where tk+1 = tk + Dtk+1/2, tk+1/2 = tk + Dtk+1/2/2 = tk�1/2 + Dtk and Dtk =
(Dtk�1/2 + Dtk+1/2)/2.

The superscript k indicates the value of variable at time tk. The
grid momentum at time tk+1/2 can be obtained from Eq. (10) as

pkþ1=2
iI ¼ pk�1=2

iI þ Dpk
iI ð15Þ

where

Dpk
iI ¼ f k;int

iI þ f k;ext
iI

� �
Dtk ð16Þ

The velocity and position of particles at time tk+1/2 and tk+1, respec-
tively, are given by

vkþ1=2
ip ¼ vk�1=2

ip þ
Xng

I¼1

Dpk
iIN

k
Ip=mk

I ð17Þ

xkþ1
ip ¼ xk

ip þ Dtkþ1=2
Xng

I¼1

pkþ1=2
iI Nk

Ip=mk
I ð18Þ
Fig. 1. Time integration.
3. Finite element–material point method

As shown in Fig. 2, the rebars in RC are discretized into truss
elements (rebar elements) as in FEM, while the concrete is discret-
ized into particles as in MPM. All the rebar nodes and particles
move in the same single-valued velocity field for modeling approx-
imately the interaction between rebars and concrete. Similar to
MPM, the momentum equations in FEMP method are also solved
on the background grid. In each time step, the momenta and forces
of all particles and rebar nodes are mapped to the grid points to
establish their momentum equations. After solving the momentum
equations, map the results from grid points back to particles and
rebar nodes to update their positions and velocities. Strain incre-
ments of particles and rebar elements are calculated by different
means with description in detail as follows. After that, stresses of
particles and rebar elements are updated. The nodal force of rebar
node is obtained by accumulating the axial forces of the rebar ele-
ments connected to it.

For the sake of clarity, a steel bar with length L and cross-sec-
tional area A is studied. The steel bar is discretized by rebar ele-
ments as shown in Fig. 3.

A variable of rebar node r denoted by ur, and its derivatives, ur,j,
can be obtained from grid points value uI via the standard FE shape
functions as

ur ¼
Xng

I¼1

NIruI ð19Þ

ur;j ¼
Xng

I¼1

NIr;juI ð20Þ

Take rebar element e as an example. The incremental strain of the
rebar element e is given by

Dek
e ¼ lke � lk�1

e

� �
=lk�1

e ð21Þ
Fig. 3. (a) Physical model of steel bar and (b) discretized model with rebar elements
and background grid.



Fig. 4. General discrete model with different level of background grid refinement.

1662 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1659–1670
where lk
e denotes the length of rebar element e at time tk. The axial

stress of rebar element e is updated by

rkþ1
e ¼ rk

e þ Drk
e ð22Þ

where Drk
e is the incremental axial stress obtained from the incre-

mental strain Dek
e with an appropriate constitutive law.

The axial force of rebar element e is given by

Fkþ1
e ¼ Arkþ1

e ð23Þ

Due to the contributions of rebar nodes, the grid points mass mI,
momentum piI, internal force f int

iI and external force f ext
iI can be

rewritten for FEMP method as

mI ¼
Xnp

p¼1

mpNIp þ
Xnr

r¼1

mrNIr ð24Þ

piI ¼
Xnp

p¼1

mpv ipNIp þ
Xnr

r¼1

mrv irNIr ð25Þ

f int
iI ¼ �

Xnp

p¼1

NIp;jrijpmp=qp þ
Xnr

r¼1

NIrf int
ir ð26Þ

f ext
iI ¼

Xnp

p¼1

mpNIpfip þ
Xnp

p¼1

NIp�tiph�1mp=qp þ
Xnr

r¼1

mrNIrf ext
ir ð27Þ

where nr is the total number of rebar nodes, mr and vir are the
lumped mass and velocity of rebar node r, respectively. f ext

ir is the
external force applied on rebar node r, and

f int
ir ¼

Xne

e¼1

KreFe cos hie ð28Þ

is the internal force of rebar node r. In Eq. (28), Kre = 1 for the left
side node r of the rebar element e, and Kre = �1 for the other node.
coshie is direction cosine and given by

cos hie ¼ ðxk
i1 � xk

i2Þ=lk
e ð29Þ

The last terms in the right side of Eqs. (24)–(27) are the contri-
butions from rebar nodes.

In order to investigate the effect of cell size on the proposed
method, a 1-D problem is considered. A steel bar is discretized into
a set of rebar elements, as shown in Fig. 4. Two cases are investi-
gated. For case 1, the rebar element length is two times of the cell
size so that each grid point has contribution from at most one rebar
node. For case 2, the rebar element length is equal to the cell size so
that each grid point has contribution from at least two rebar nodes.
To update the velocity and position of rebar node n, the momen-
tum equation is established and solved at grid points 1 and 2.

In case 1, the nodal forces of grid points 1 and 2 are given by

f1 ¼ N1nðFn � Fn�1Þ
f2 ¼ N2nðFn � Fn�1Þ

ð30Þ
The masses of grid points 1 and 2 are given by

m1 ¼ N1nmn

m2 ¼ N2nmn
ð31Þ

where mn is the lumped mass of rebar node n, NIn is the shape func-
tion value of grid point I evaluated at the site of rebar node n.

Therefore, the acceleration of rebar node n is given by

an ¼
X2

I¼1

NInfI=mI ¼ ðFn � Fn�1Þ=mn ð32Þ

It can be found from Eq. (32) that the FEMP method is equiva-
lent to the linear FEM if each grid point has contribution from at
most one rebar node.

In case 2, the forces of grid points 1 and 2 are given by

f1 ¼ N1nðFn � Fn�1Þ þ N1ðn�1ÞðFn�1 � Fn�2Þ
f2 ¼ N2nðFn � Fn�1Þ þ N2ðnþ1ÞðFnþ1 � FnÞ

ð33Þ

The masses of grid points 1 and 2 are given by

m1 ¼ N1nmn þ N1ðn�1Þmn�1

m2 ¼ N2nmn þ N2ðnþ1Þmnþ1
ð34Þ

Therefore, the FEMP method is no longer equivalent to the linear
FEM if each grid point has contribution from at least two rebar
nodes. In this case, an intrinsic damping is introduced in FEMP for
rebar element, which will be shown in Section 6. The intrinsic
damping will be reduced for the further increase of rebar element
length with respect to the cell size. In addition to the intrinsic
damping, the artificial viscosity is still used in the FEMP method
to get an reasonable wave patterns.

Several constitutive models, such as elasticity and elastic plas-
ticity with linear kinematic hardening, are implemented for the re-
bar element in MPM3D�. Several failure models are also
implemented for rebar element. Once the material reaches a pre-
scribed failure criterion, the rebar element will be deleted to model
the fracture of steel reinforcement. Rebar nodes not associated
with any intact rebar elements will move as individual particles
according to the velocity field of the cells in which the rebar nodes
are located.

4. Numerical implementation

The proposed FEMP method has been implemented in our 3-D
MPM code, MPM3D�, for USL scheme (Update Stress Last) [13],
MUSL scheme (Modified Update stress Last) [40] and USF scheme
(Update stress First) [41], as follows.

1. Loop over all the particles and rebar nodes to calculate
their contributions to the masses and momenta of the grid
points of cells in which they are located. The mass mk

I and



Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1659–1670 1663
momentum pk�1=2
iI of grid point I are given by Eqs. (24) and (25),

respectively.
2. Loop over the grid points located on boundary to reset their

momenta corresponding to the essential boundary conditions.
3. This step is only used in USF scheme. Update the stresses of par-

ticles and rebar elements
(a) Loop over all the particles to calculate their rate-of-

deformations
Fig. 5. (a) Physical model, (b) discrete model and (c) Equivalent model.

Fig. 6. Initial configurations of discrete models.
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Dk�1=2
ijp ¼ 1

2

X8

I¼1

Nk
Ip;jv

k�1=2
iI þ Nk

Ip;iv
k�1=2
jI

h i
ð35Þ

spin tensors

Xk�1=2
ijp ¼ 1

2

X8

I¼1

Nk
Ip;jv

k�1=2
iI � Nk

Ip;iv
k�1=2
jI

h i
ð36Þ

densities

qkþ1
p ¼ qk

p

.
1þ Dek�1=2

iip

� �
ð37Þ

and then update the Cauchy stress

rkþ1
ijp ¼ rk

ijp þ _rk�1=2
ijp Dt ð38Þ

with an appropriate constitutive equation and state of equa-
tion. In above equations, vk�1=2

iI ¼ pk�1=2
iI =mk

I is the velocity of
grid point I, Dek�1=2

ijp ¼ Dk�1=2
ijp Dtk is the incremental strain, _rij

is the material time derivative of the Cauchy stress which
is related to the Jaumann (co-rotational) stress rate rrij by

_rij ¼ rrij þ rijXlj þ rjlXli ð39Þ

The Jaumann (co-rotational) stress rate is determined from
the strain rate by a constitution equation.

(b) Loop over all the rebar elements to calculate their incre-
mental strains Dek

e by using Eq. (21), density by using

qkþ1
e ¼ qk

e

�
1þ Dek

e

� �
ð40Þ

and then update the axial stress rkþ1
e by Eq. (22). Note that

the stresses of rebar elements are always updated in their
co-rotational coordinates.

4. Loop over all the particles and rebar elements to calculate the
grid points internal forces f int;k

iI and external forces f ext;k
iI by using

Eqs. (26) and (27), respectively. If the USF scheme is used,
rijp ¼ rkþ1

ijp and qp ¼ qkþ1
p , otherwise rijp ¼ rk

ijp and qp ¼ qk
p. If

the point I is fixed in i direction, set f k
iI ¼ f int;k

iI þ f ext;k
iI ¼ 0 to make

its acceleration ak
iI ¼ 0.

5. Loop over all the grid points to integrate momentum equations
by using Eq. (15).

6. Loop over all the particles and rebar nodes to update their
velocities and positions by mapping the grid points results back
to them by using Eqs. (17) and (18), respectively.

7. This step is only used in MUSL scheme. Extrapolate the new
velocities of particles and rebar nodes to the grid points to
obtain the improved points momenta, namely
1. 5

2

or
ce

/N
pkþ1=2
iI ¼

Xnp

p¼1

mpvkþ1=2
ip Nk

Ip þ
Xnr

r¼1

mrvkþ1=2
ir Nk

Ir ð41Þ
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Fig. 7. Comparison of the axial forces of two rebar elements in case 1.
8. This step is only used in MUSL and USF schemes. Update the
stresses of particles based on the updated velocities vkþ1=2

iI in a
similar way as that given in step 3. For rebar element, the incre-
mental strain Dekþ1

e is calculated by using Eq. (21) and stresses
are updated based on this.

9. Discard the deformed background grid and define a new regular
background grid. Return to step 1 to start a new time step.

Nairn [42] compared the differences between USF, USL and
MUSL for MPM, and found that USL has numerical difficulties
and inaccuracies in energy calculations, while both MUSL and
USF give greatly improved energy calculations. Moreover, MUSL
tends to slowly dissipate energy while USF tends to slowly increase
in energy. USF, USL and MUSL are all implemented in our code, but
only MUSL scheme is used in the numerical examples presented in
Section 6.

5. Concrete model

Since concrete is a very complex composite material, numerous
studies have been devoted to develop concrete models for a com-
prehensive description of the material behavior under impact load-
ing conditions. A representative of such models is HJC model
proposed by Holmquist and Johnson, which was implemented in
LS-DYNA [39] and used in [44,45] for penetration problems simu-
lation. Polanco-Loria et al. [46] pointed out that HJC model repre-
sents a good compromise between simplicity and accuracy for
large-scale computations. In this paper, HJC model is used for con-
crete material, and other types of concrete models such as RHT [43]
and ‘‘Concrete Damage Model’’ [1] can also be used.

The HJC model was originally presented for dynamic problems.
In order to involve high strain rates and damage effects, the equiv-
alent strength is expressed as
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r� ¼ ½Að1� DÞ þ Bp�N�½1þ C ln _e�� ð42Þ

where r� ¼ r=f 0c denotes the normalized equivalent stress, r is the
actual equivalent stress, f 0c represents the quasi-static uniaxial com-
pressive strength. p� ¼ p=f 0c denotes the normalized pressure, p the
actual pressure. _e� ¼ _e= _e0 represents the dimensionless strain rate,
_e the actual strain rate, _e0 ¼ 1:0 s�1 the reference strain rate.
T� ¼ T=f 0c denotes the normalized maximum tensile hydrostatic
pressure, T the maximum tensile hydrostatic pressure. A, B, N, C
and Smax are normalized cohesive strength, normalized pressure
hardening coefficient, pressure hardening exponent, strain rate
coefficient and normalized maximum strength, respectively.

An accumulated damage failure model is used in HJC model,
which is written as

D ¼
X

ðDep þ DlpÞ=ðD1ðp� þ T�ÞD2 Þ
n o

where D denotes the damage parameter, Dep and Dlp denote the
equivalent plastic strain and plastic volumetric strain, respectively,
during one cycle of integral computation. D1 and D2 are the damage
constants. In order to allow for a finite amount of plastic strain to
fracture, a third damage constant Efmin is provided.

Considering high pressures and air voids, the equation of state
(EOS) in HJC model is divided into three response regions including
linear elastic zone, transition zone and full dense zone.

(1) Linear elastic zone
This zone arises at p 6 pcrush, where the material is at elastic
state. Within this region, the EOS is given by
p ¼ Kelasticl; p 6 pcrush ð43Þ

where q is the current density, l = q/q0 � 1 is the volumetric
strain, q0 is initial density. Kelastic = pcrush/lcrush denotes the
elastic bulk modulus. pcrush and lcrush represent the pressure
and volumetric strain that occur at crush in a uniaxial stress
compression test, respectively.
(2) Transition zone
This region occurs at pcrush 6 p 6 plock, where the material is
at the plastic transition state. In this region, air voids are
gradually compressed out of the concrete and plastic volu-
metric strain is produced.
The loading EOS is given by
Fig. 9. Physical model of pendulum.
p ¼ pcrush þ Ktranðl� lcrushÞ; pcrush 6 p 6 plock ð44Þ

where Ktran = (plock � pcrush)/(lplock � lcrush), lplock = plock(1 +
llock)/K1 + llock denotes the volumetric strain at plock. plock

represents the fully dense pressure, K1 is a material con-
stant. llock = qgrain/q0 � 1 is the locking volumetric strain,
where qgrain is the grain density.
The unloading EOS is given by

p¼ pcrushþK tranðlmax�lcrushÞþ ½ð1� FÞKelasticþ FK1�ðl�lmaxÞ
ð45Þ

where F = (lmax � lcrush)/(lplock � lcrush) is the interpolation
factor, lmax is the maximum volumetric strain reached prior
to unloading.
(3) Fully dense zone
In this region, the air voids are completely removed from the
concrete when the pressure reaches plock so that the concrete
is completely crushing.

The loading EOS is given by

p ¼ K1 �lþ K2 �l2 þ K3 �l3 ð46Þ

where �l ¼ ðl� llockÞ=ð1þ llockÞ is the modified volumetric strain,
K1, K2 and K3 are constants for material with no air voids.

The unloading EOS is given by

p ¼ K1 �lmax þ K2 �l2
max þ K3 �l3

max þ K1ðl� lmaxÞ ð47Þ

The tensile pressure is limited to T(1 � D).
There are a number of parameters to be determined. For mate-

rial strength model, the parameter T is defined as the maximum
principle stress in tension that the material can support. The strain
rate constant, C, is determined from the curve of normalized uniax-
ial compressive strengths for concrete as a function of strain rate.
The A, B, N and Smax are determined using the test data provided
by Hanchak et al. [37] with some assumptions. The determination
of D1, D2 and Efmin for damage model require experimental data
from uniaxial compression test. For EOS, the parameters K1, K2

and K3 were obtained from shock Hugoniot data for granite and
quartz. pcrush ¼ f 0c=3, lcrush = Pcrush/Kelastic where Kelastic is deter-
mined from elasticity theory using Young’s modulus and Poisson’s
ratio. The air void ration is llock = qgrain/q0 � 1, where qgrain =
2680 kg/m3 for the type of concrete used in our simulation. A
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Fig. 10. Pendulum problem simulations – initial conditions.
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detailed guidance for the determination of the model parameters
can be found in [38].

6. Numerical examples

In this section, several examples, including spring vibrator sim-
ulations, pendulum simulations and RC perforation simulations,
are presented to validate the FEMP method.

6.1. Spring–mass system

An elastic bar with left side fixed is subjected to a tension force
F = 10,000 N at its right side, as shown in Fig. 5(a). The bar has an
initial length of L = 0.4 m and cross sectional area of A = 0.785 m2.
Its density q and Young’s modulus E are taken as 8.9 � 103kg/m3

and 1.17 � 1011 Pa, respectively. The bar is discretized into two re-
bar elements, as shown in Fig. 5(b), where l = L/2, m = qAL/4. This
problem is equivalent to a spring–mass system as shown in
Fig. 5(c), where k = EA/l.

Two cases are simulated with cell size of 0.1 � 0.1 � 0.1 m (case
1) and 0.2 � 0.2 � 0.2 m (case 2), respectively, as shown in Fig. 6. In
both cases, one layer of background grid is used in z direction with
particles along the center line of the grid in x-direction.

The axial forces of the two elements for case 1 are compared
with analytical solutions in Fig. 7. As discussed in Section 3, the
FEMP method for case 1 is equivalent to the linear FEM. Therefore,
the numerical results agree very well with the analytic solution.

Fig. 8 compares the axial forces of both two elements in case 2
with the analytical solutions, respectively, which show that axial
Fig. 11. Comparison of time histories of angle h between FEMP and FE methods.
forces are damped to the steady state, namely tensile force F. That
is to say, the FEMP method has intrinsic damping if each grid point
has contribution from at least two rebar nodes. To avoid the intrin-
sic damping, the rebar element length should be at least 2 times of
cell size, so that each grid point has contribution from at most one
rebar node.

6.2. Pendulum simulation

A pendulum problem, presented by York et al. [28], is simulated
here. The pendulum is shown in Fig. 9, and all the parameters are
taken from Ref. [28].

A string attached a mass, m = 3.3, is connected to a stationary
wall with a frictionless ball and socket joint under a field force
due to gravity. The string has a length of L = 0.73, section area of
A = 0.01, density of q = 1.0 and Young’s modulus of E = 106. The
string is initially inclined at an angle h0 = 19.8� measured from
vertical.

Four cases with different cell sizes are studied. The initial posi-
tions of the rebar elements and the computational domain for each
case are shown in Fig. 10, where only the rebar nodes are plotted.
In cases (a) and (b), the size of the rebar element is 0.2433 with cell
size of 0.2 and 0.1, respectively, while, in cases (c) and (d), the size
of the rebar element is 0.104286 with cell size of 0.1 and 0.05,
respectively. Note that in cases (b) and (d), each grid point has con-
tribution from at most one rebar node.

The simulated time histories of the angle h are compared with
FEM result in Fig. 11. As aforementioned, FEMP method is equiva-
lent to the linear FEM for cases (b) and (d). Therefore, the FEMP re-
sults agree very well with the explicit FEM result for these two
cases. Although FEMP method is no longer equivalent to the linear
FEM for cases (a) and (c), its solution converges rapidly to the FEM
result with both grid refinement and rebar element refinement.

6.3. Reinforced concrete perforation simulations

Hanchak et al. [37] conducted perforation experiments of ogi-
val-nose projectile to RC slabs with 48 MPa (7 ksi) unconfined
compressive strengths, which are used in this paper.
Fig. 12. Projectile geometry (0.5 kg).



Fig. 13. RC geometry with location of the steel reinforcement (5.59 mm diameter).

Table 1
Material constants of the concrete.

Mass/thermal constants Value Damage constants Value

q (kg/m3) 2440 D1 0.04
Specific heat (J/kg K) 654 D2 1.0

Efmin 0.01

Strength constants Value Pressure constants Value

A 0.79 Pcrush (GPa) 0.016
B 1.60 lcrush 0.001
N 0.61 K1 (GPa) 85
C 0.007 K2 (GPa) �171
f 0c (GPa) 0.048 K3 (GPa) 208
Smax 7.0 Plock (GPa) 0.80
Shear modulus (GPa) 14.86 llock T (GPa) 0.10

0.004

Fig. 14. Comparison of residual velocities between simulated results and the
experimental test results.
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The geometry sizes of projectile and the RC target with three
layers of square-pattern reinforcement bars are shown in Figs. 12
and 13, respectively. Photographs of the projectiles after perfora-
tion in the experiments showed that the projectiles were not frac-
tured by the RC and the nose erosion was minor [37]. Therefore, an
elastic material model is used in this study for the steel projectiles
with a density of q = 8.147 g/cm3, elastic module of E = 212.42 GPa,
and Poisson’s ratio of m = 0.3.

An ideal elastic plastic model is used for the rebars with a den-
sity of q = 7.5 g/cm3, elastic module of E = 210 GPa, Poisson’s ratio
of m = 0.284, and yield stress of 235 MPa. The fracture of the rebar is
taken account of by delete the rebar element when its plastic strain
more than 0.26. The parameters of HJC model for concrete are ta-
ken from [38] as listed in Table 1.

In the experiments [37], projectiles (see Fig. 12) were fired
against RC slab targets (see Fig. 13) with initial velocity from
301 m/s to 1100 m/s, and residual velocities of the projectiles were
obtained.

To validate the HJC model implemented in our MPM3D code,
these experiments are simulated with different cell size. A quarter
of plain concrete (PC) slab is modeled due to the symmetry. In all
cases, the particle space equals to one half of the cell size. The
residual velocities obtained by FEMP method are in good agree-
ment with the experimental results with the decrease of cell size
and particle space, as shown in Fig. 14.

In order to model steel reinforcement bars, rebar element is
used. One perforation test of experiments is studied firstly, in
which the projectile struck the slab with velocity of 749 m/s and
did not hit the rebars. The residual velocity obtained from experi-
ment is 615 m/s. The discrete model is depicted in Fig. 15 with two
symmetrical planes on the side faces of both projectile and target.
This problem is simulated with three different cell size of
D = 0.4 mm, 0.5 mm and 0.6 mm, respectively. The particle space
is set to be one half of the cell size and the size of rebar element
equals to the cell size.

To investigate the effects of reinforcements on the perforation
resistance of RC target, three cases are analyzed. In the first case,
the slab is made of plain concrete, while in the second and third
cases, the slab is made of reinforced concrete. The projectile does
not hit the steel bar in the second case, but hits the steel bar in
the third case. The residual velocities obtained by FEMP method
for three cases are summarized in Table 2, which shows that the
reinforcement has a negligible effect on the residual velocity if
the projectile does not hit the steel bars, but has significant effect
if the projectile hits the steel bars. The residual velocity, 585 m/s,
obtained by FEMP method with cell size D = 0.4 mm is in good
agreement with the experimental data, 615 m/s.

Furthermore, the damage zone of the RC slab is shown in Fig. 16,
with projectile hitting steel bar and D = 0.4 mm, at time 0.5 ms,



Fig. 15. Discrete model of RC target with steel bars (right) and projectile.

Table 2
Residual velocities obtained by FEMP method.

D = 4.0 mm D = 5.0 mm D = 6.0 mm

case 1 (m/s) 585 572 563
case 2 (m/s) 585 571 561
case 3 (m/s) 556 542 534
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while Fig. 17 colored by pressure shows the deformation of the
steel bars, which experience fracture.

Finally, a set of experiments with striking velocity ranging from
300 m/s to 1058 m/s are simulated with D = 0.4 mm for both cases
Fig. 16. The damage zone of RC for projectile hitting steel bar infall three layers.

Fig. 17. The deformation of steel bars for projectile hitting steel bar infall three
layers at times 0.5 ms.
of projectile no hitting steel bars and hitting steel bars, and the
residual velocities of projectiles are shown in Fig. 18. From these
results, we can find that the residual velocities in the case projec-
tile hitting rebars are consistently lower than that in the case of
projectile without hitting rebars, which coincides to the conclusion
given by Hanchak et al. [37] and Huang et al. [8]. The reinforce-
ment can increase the resistance of concrete on ballistic perfora-
tion performance.
Fig. 18. Comparison of residual velocities between simulated results (D = 0.4 mm)
and the experimental test results.

20 mm

50 mm

100 mm

400 mm

40mm

40mm

10mm

10mm

Fig. 19. Geometry of projectile and target with location of steel reinforcement bars
(2 mm diameter).



Fig. 20. Pressure wave contour in PC (left) and RC (right) at time 20 ls.

Fig. 21. Pressure wave contour in PC (left) and RC (right) at time 40 ls.

Fig. 22. The damage contour of PC (left) and RC (right) at time 80 ls.

1668 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1659–1670
6.4. A 2-D simulation on the effect of rebars

In order to investigate the interaction between rebars and con-
crete under impact loadings in detail, a 2-D problem with plane
strain assumption is studied, in which a steel block projectile with
striking velocity of 749 m/s impacts perpendicularly on a target, as
shown in Fig. 19. The gap between projectile and target is 10 mm.
The size of projectile is 2 � 25 � 104 mm, while the size of target is
2 � 610 � 178 mm. For comparison, two cases are simulated. In
case 1, PC slab target is used, while RC slab target with three layers
rebars as shown in Fig. 19 is used in case 2. The material model and
material parameters are the same as that used in Section 6.3. Due
to the symmetry, only a half of the RC/PC slab model is simulated
with cell size D = 0.4 mm, particle space 0.2 mm and rebar element
size 0.4 mm.

Wave pattern is investigated. Both Figs. 20 and 21 show the
pressure waves of the PC/RC targets, corresponding to different im-
pact time. From Fig. 20, we can find that, when the pressure wave
meets rebar material zone, pressure wave is reflected and behind
the steel bars minor pressure is transmitted to concrete material



Fig. 23. The damage contour of PC (left) and RC (right) at time 740 ls.
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zone from steel material zone at time 20 ls, because the wave
impedance of steel is greater than that of concrete. From Fig. 21,
we can find that the wave patterns in RC target are obviously dif-
ferent from that in PC target at time 40 ls.

Figs. 22 and 23 show the damage regions of the PC and RC tar-
gets at 80 ls and 740 ls after impact, respectively. It can be found
that the damage paths in the RC are mainly along the rebar posi-
tions and the damage region in RC is smaller than that in PC. Espe-
cially in Fig. 23, the RC target is delaminated into layers at the site
of the reinforcement bars due to damage in concrete adjacent to
steel bars. Based on the HJC model, once the concrete damaged,
it cannot sustain tensile loading any more, while the rebars can
still sustain tensile loading. Hence, the debonding occurs at the
surrounding of rebars.

7. Conclusion

A hybrid finite element–material point method is proposed by
incorporating the truss element of finite element method into
material point method. Both spring–mass system and pendulum
simulations have validated the accuracy and effective of this algo-
rithm. Finally this method is applied to simulate RC perforation
and the numerical results coincide to the conclusion reported in
literature. Therefore the proposed FEMP method provides a power-
ful numerical tool for the study of the dynamic response of RC un-
der impact loading. The proposed idea is applicable to incorporate
other types of finite elements into MPM to take advantages of both
FEM and MPM.

References

[1] L.J. Malvar, J.E. Crawford, J.W. Wesevich, D. Simons, A plasticity concrete
material model for DYNA3D, Int. J. Impact Engrg. 19 (9-10) (1997) 847–873.

[2] L. Agardh, L. Laine, 3D FE-simulation of high-velocity fragment perforation of
reinforced concrete slabs, Int. J. Impact Engrg. 22 (1999) 911–922.

[3] T.L. Teng, Y.A. Chu, F.A. Chang, H.S. Chin, Simulation model of impact on
reinforced concrete, Cement Concrete Res. 34 (2004) 2067–2077.

[4] C.Y. Tham, Reinforced concrete perforation and penetration simulation using
autodyn-3d, Finite Elem. Anal. Des. 41 (2005) 1401–1410.

[5] B.M. Luccioni, M. Luege, Concrete pavement slab under blast loads, Int. J.
Impact Engrg. 32 (2006) 1248–1266.
[6] Y.S. Tai, C.C. Tang, Numerical simulation: the dynamic behavior of reinforced
concrete plates under normal impact, Theor. Appl. Fract. Mech. 45 (2006) 117–
127.

[7] N. Kishi, A.Q. Bhatti, An equivalent fracture energy concept for nonlinear
dynamic response analysis of prototype rc girders subjected to falling-weight
impact loading, Int. J. Impact Engrg. 37 (2010) 103–113.

[8] F.L. Huang, H.J. Wu, Q.K. Jin, Q.M. Zhang, A numerical simulation on the
perforation of reinforced concrete targets, Int. J. Impact Engrg. 32 (2005) 173–
187.

[9] K. Lundgren, Three-dimensional modelling of bond in reinforced concrete,
Ph.D. Thesis, Department of Civil Engineering, Chalmers University of
Technology, 1999.

[10] T. Rabczuk, J. Eibl, Modeling dynamic failure of concrete with meshfree
methods, Int. J. Impact Engrg. 32 (2006) 1878–1897.

[11] F. Tahmasebinia, Finite element simulation of reinforced concrete structures
under impact accident, Struct. Surv. 26 (5) (2008) 445–454.

[12] B.M. Luccioni, M. Luege, Concrete pavement slab under blast loads, Int. J.
Impact Engrg. 32 (2006) 1248–1266.

[13] D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent
materials, Comput. Methods Appl. Mech. Engrg. 118 (1-2) (1994) 179–196.

[14] J.U. Brackbill, D.B. Kothe, H.M. Ruppel, FLIP: a low-dissipation, particle-in-cell
method for fluid flow, Comput. Phys. Commun. 48 (1988) 25–38.

[15] D. Sulsky, H.L. Schreyer, Axisymmetric form of the material point method with
applications to upsetting and Taylor impact problems, Comput. Methods Appl.
Mech. Engrg. 139 (1–4) (1996) 409–429.

[16] X. Zhang, K.Y. Sze, S. Ma, An explicit material point finite element method for
hyper-velocity impact, Int. J. Numer. Methods Engrg. 66 (4) (2006) 689–706.

[17] D. Sulsky, A. Kaul, Implicit dynamic in the material-point-method, Comput.
Methods Appl. Mech. Engrg. 193 (12-14) (2004) 1137–1170.

[18] S.G. Bardenhagen, J.U. Brackbill, D. Sulsky, The material-point method for
granular materials, Comput. Methods Appl. Mech. Engrg. 187 (3–4) (2000)
529–541.

[19] W.Q. Hu, Z. Chen, Model-based simulation of the synergistic effects of blast
and fragmentation on a concrete wall using the mpm, Int. J. Impact Engrg. 32
(12) (2006) 2066–2096.

[20] J.E. Guillkey, T.B. Harman, B. Banerjee, An Eulerian–Lagrangian approach for
simulating explosions of energetic devices, Comput. Struct. 85 (2007) 660–
674.

[21] S. Ma, X. Zhang, Y.P. Lian, X. Zhou, Simulation of high explosive explosion using
adaptive material point method, Comput. Model. Engrg. Sci. 39 (2) (2009) 101–
123.

[22] Y.J. Guo, J.A. Nairn, Three-dimensional dynamic fracture analysis using the
material point method, Comput. Model. Engrg. Sci. 16 (3) (2006) 141–155.

[23] J. Ma, H.B. Lu, R. Komanduri, Structured mesh refinement in generalized
interpolation material point (GIMP) method for simulation of dynamic
problems, Comput. Model. Engrg. Sci. 12 (3) (2006) 213–227.

[24] A.R. York II, D. Sulsky, H.L. Schreyer, Fluid-membrane interaction based on the
material point method, Int. J. Numer. Methods Engrg. 48 (2000) 901–924.

[25] G. Anvar, A. Sumanta, A hybrid immersed boundary and material point
method for simulating 3D fluid–structure interaction problems, Int. J. Numer.
Methods Fluids 56 (2008) 2151–2177.



1670 Y.P. Lian et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1659–1670
[26] L.M. Shen, Z. Chen, A silent boundary scheme with the material point method
for dynamic analyses, Comput. Model. Engrg. Sci. 7 (3) (2005) 305–320.

[27] H.W. Zhang, K.P. Wang, Z. Chen, Material point method for dynamic analysis of
saturated porous media under external contact/impact of solid bodies,
Comput. Methods Appl. Mech. Engrg. 198 (2009) 1456–1472.

[28] A.R. York II, D. Sulsky, H.L. Schreyer, The material point method for simulation
of thin membranes, Int. J. Numer. Methods Engrg. 44 (1999) 1429–1456.

[29] S. Attaway, M. Heinstein, J. Swegle, Coupling of smooth particle
hydrodynamics with the finite element method, Nucl. Engrg. Des. 150
(1994) 199–205.

[30] G. Johnson, Linking of Lagrangian particle methods to standard finite element
methods for high velocity impact computations, Nucl. Engrg. Des. 150 (1994)
265–274.

[31] G. Johnson, S. Beissel, Normalized smoothing functions for SPH impact
computations, Int. J. Numer. Methods Engrg. 39 (1996) 2725–2741.

[32] G.R. Johnson, R.A. Stryk, Conversion of 3D distorted element method for
hypervelocity impact simulation, Int. J. Impact Engrg. 28 (2003) 947–966.

[33] T.D. Vuyst, R. Vignjevic, J.C. Campbell, Coupling between meshless and finite
element methods, Int. J. Impact Engrg. 31 (2005) 1054–1064.

[34] E.P. Fahrenthold, B.A. Horban, A hybrid particle-finite element method for
hypervelocity impact simulation, Int. J. Impact Engrg. 23 (1999) 237–248.

[35] R. Shivarama, E.P. Fahrenthold, An ellipsoidal particle-finite element method
for hypervelocity impact simulation, Int. J. Numer. Methods Engrg. 59 (2004)
737–753.

[36] Y.K. Park, E.P. Fahrenthold, A kernel free particle-finite element method for
hypervelocity impact simulation, Int.J. Numer. Methods Engrg. 63 (2005) 737–
759.
[37] S.J. Hanchak, M.J. Forrestal, E.R. Young, J.Q. Ehrgott, Perforation of concrete
slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive
strengths, Int. J. Impact Engrg. 12 (1) (1992) 1–7.

[38] T.J. Holmquist, G.R. Johnson, W.H. Cook, A computational constitutive model
for concrete subjected to large strains, high strain rates, and high pressures, in:
14th International Symposium on Ballistics Quebec, Candan, 26–29 September
1993.

[39] J.O. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology
Corporation, 1998.

[40] Z. Chen, R. Brannon, An evaluation of the material point method, Technical
Report, Technical Report No. SAND 2002-0482, Sandia National Laboratories,
Albuquerque, NM, 2002.

[41] S.G. Bardenhagen, J.U. Brackbill, Dynamic stress bridging in granular material,
J. Appl. Phys. 83 (1998) 5732–5740.

[42] J.A. Nairn, Material point method calculations with explicit cracks, Comput.
Model. Engrg. Sci. 4 (6) (2003) 649–663.

[43] AUTODYN-3D Version 4.2 User’s Manual, Centuray Dynamics, Inc., 2001.
[44] Gordon R. Johnson, Robert A. Stryk, Stephen R. Beissel, Timothy J. Holmquist,

An algorithm to automatically convert distorted finite elements into meshless
particles during dynamic deformation, Int. J. Impact Engrg. 27 (10) (2002)
997–1013.

[45] A. Dawson, S. Bless, S. Levinson, B. Pedersen, S. Satapathy, Hypervelocity
penetration of concrete, Int. J. Impact Engrg. 35 (12) (2008) 1484–
1489.

[46] M. Polanco-Loria, O.S. Hopperstad, T. Bovik, T. Berstad, Numerical predictions
of ballistic limits for concrete slabs using a modified version of the HJC
concrete model, Int. J. Impact Engrg. 35 (5) (2008) 290–303.


	A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading
	Introduction
	Brief review of MPM
	Finite element–material point method
	Numerical implementation
	Concrete model
	Numerical examples
	Spring–mass system
	Pendulum simulation
	Reinforced concrete perforation simulations
	A 2-D simulation on the effect of rebars

	Conclusion
	References


