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a b s t r a c t

Taking advantages of both Lagrangian and Eulerian methods, material point method (MPM) is suitable for
modeling problems with extreme deformation. However, MPM is less accurate and less efficient than
finite element method (FEM) for small deformation problems due to particle quadrature and mappings
between particles and background grid applied in MPM. To take advantages of both FEM and MPM, an
adaptive finite element material point method is developed for modeling the dynamic behavior of mate-
rial under extreme loading. Bodies are initially discretized by finite elements, and then the elements with
large strain are adaptively converted into MPM particles based on their degree of distortion or plastic
strain during the solution process. The interaction between the remaining finite elements and MPM par-
ticles is implemented based on the background grid in MPM framework. Several numerical examples are
presented to validate the efficiency and accuracy of the proposed method, and the numerical results are
in good agreement with experiments, while the efficiency of the method is higher than that of both MPM
and FEM.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulation of extreme deformation problems such as
explosion, impact and landslide problems is a very active research
topic. The Lagrangian finite element method (FEM) has been devel-
oped maturely and used in various numerical analyzes, but suffers
from mesh tangling which may deteriorate its numerical accuracy
and efficiency dramatically for all such problems. Recently, a lot of
effort has been devoted to develop new high-performance finite
element models which are less sensitive to mesh tangling, such
as quadrilateral membrane element by the quadrilateral area coor-
dinate method [1], 4-node hybrid stress-function membrane ele-
ment by the principle of minimum complementary energy [2],
etc. In contrast to Lagrangian method, Eulerian methods use Eule-
rian mesh without element distortion, but encounter difficulties in
capturing the material interfaces and tracking the internal history
variables. In addition, the arbitrary Lagrangian Eulerian method [3]
was developed to take advantages of both FEM and Eulerian meth-
ods, which has been applied in 2D problems successfully. However,
developing an effective and efficient mesh moving scheme for
complicated 3D problems is still a big challenge. Furthermore,
the convective effects due to the mass flux between adjacent cells

in Eulerian framework could still cause dissipation and dispersion
problems.

Since the 90s of the last century, many researches have been
focusing on the meshless/particle methods to expand the capacity
of numerical methods for all such problems within the Lagrangian
framework. The basic idea for these methods is to discretize the
material domain by a set of particles instead of mesh and construct
the trial functions based on the particles. Hence, all such methods
without the mesh dependence are suitable for problems with
extreme deformation. Until now, many meshless methods have
been proposed with successful applications, such as the smoothed
particle hydrodynamics (SPH) method [4,5], the element free
Galerkin (EFG) method [6,7], the reproducing kernel particle
(RKPM) method [8,9], just to name a few. But the efficiency of all
such methods is lower than that of FEM for small deformation
problems and they suffer from their inherent shortcomings [10].
For higher accuracy, the trial functions used in meshless methods
are often complicated which make the essential boundary condi-
tions complicated to apply compared with FEM. Hence, much effort
has been devoted to couple these methods with FEM to benefit
from the advantages of both methods and avoid their shortcomings
[11–14]. The coupling algorithms include master–slave coupling,
coupling via mixed interpolation, coupling via Lagrange multipli-
ers, coupling via a bridge domain, etc. Among them, Johnson
et al. proposed an algorithm to automatically convert distorted
finite elements into meshless particles for 2D and 3D [15,16]. Such
coupling works are reviewed by Rabczuk et al. in detail in [17]. In
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addition to coupling methods, Fahrenthold and Horban [18] devel-
oped a hybrid particle–element method, which uses both elements
and particles for whole material region without element-to-parti-
cle converting.

Among meshless methods, material point method (MPM) [19]
takes the advantages of both Lagrangian and Eulerian methods.
In MPM, the material domain is discretized by a set of Lagrangian
particles which carry all the state variables, such as position, veloc-
ity, stress, strain, etc. An Eulerian background grid covering all the
material domain is used to integrate the momentum equations and
calculate the spacial derivatives. Unlike others meshless methods,
the trial functions used in MPM are the same to that of FEM. So
MPM shows some advantages over other meshless methods in effi-
ciency and tension stability [20]. Furthermore, it is easy to impose
the essential boundary conditions and a no-slip contact constraint
is inherent in MPM due to the single-valued velocity field used to
update all the particles.

By now, significant effort has been devoted to the development
of MPM. Bardenhagen and Kober [21] developed a generalized
interpolation material point (GIMP) method to suppress the artifi-
cial noise when the particles moving across the cell, due to the dis-
continuity of the gradient of the standard shape function used in the
original MPM. Ma et al. [22] proposed an adaptive particle splitting
scheme for MPM to avoid the numerical fracture when two particles
are separated by a grid cell. Based on the Lagrangian multiplier
method, much work has been done to build the contact/friction/
separation algorithm of MPM [23–25], where the impenetrability
condition and Coulomb friction model are carried out on the back-
ground grid. Ma et al. [26] proposed an accurate contact detection
method to avoid contact occurring earlier than the actual time
and also developed a local multi-grid contact method based on
the work of Hu and Chen [27]. MPM and its extensions have been
used for many problems involving extreme deformation, such as
explosion and impact [28,29], geomechanics [30,31], cracking
expansion [32], multiphase flows [33], just to name a few. However,
the efficiency of MPM is lower than that of FEM due to the mappings
between background grid and particles, while the accuracy of parti-
cles quadrature used in MPM is lower than that of Gauss quadrature
used in FEM. Hence, Zhang et al. [34] developed an explicit material
point finite element method (MPFEM) to combine the advantages of
both FEM and MPM. In MPFEM, the material domain is discretized
by finite elements with a predefined background grid in the antici-
pated large deformation region. The finite element nodes covered
by the background grid are converted into MPM particles automat-
ically during the simulation process. But, users are required to iden-
tify the potential large deformation region to place the background
grid. Furthermore, elements with mild deformation are converted
into particles once they move into the predefined background grid.
Recently, Lian et al. [35] proposed a coupled finite element material
point (CFEMP) method, in which the body with mild deformation is
discretized by finite elements, while the body with extreme defor-
mation is discretized by MPM particles. The interaction between
them is implemented by contact method carried out on the back-
ground grid. However, users are also required to identify the body
which will experience extreme deformation.

To take full advantages of both FEM and MPM, an adaptive finite
element material point (AFEMP) method is proposed in this paper.
In AFEMP method, bodies are initially discretized by finite ele-
ments, and then the distorted elements are adaptively converted
into MPM particles when their plastic strain or distortion degree
exceed a user prescribed value during the simulation process.
The interaction between the remaining finite elements and MPM
particles is implemented based on the background grid in MPM
framework. Hence, the material region with mild deformation is
modeled by finite elements, while the material region with ex-
treme deformation is modeled by MPM particles automatically.

In this paper, AFEMP method is first validated by two problems
of two-rod impact and Taylor bar impact, and then applied to study
the penetration of a WHA long rod projectile to a steel plate and
the soil collapse problems. The numerical results are in good agree-
ment with the analytical results and experimental data, while the
efficiency of AFEMP is higher than that of both FEM and MPM espe-
cially for problems involving extreme deformation.

The remaining part of this paper is organized as follows. Section
2 gives the detail of the discretization of momentum equations by
AFEMP method. The element–particle conversion algorithm is pro-
posed in Section 3 and the coupling algorithm between the
remaining finite elements and the converted particles is presented
in Section 4. The description of the numerical implementation is
presented in Section 5, while the numerical examples are listed
in Section 6. Finally, the conclusions are summarized in Section 7.

2. AFEMP method

2.1. Discretization scheme

In AFEMP method, a material region X shown in Fig. 1(a) is ini-
tially discretized into finite elements as shown in Fig. 1(b). During
the simulation process, the distorted element is automatically con-
verted into MPM particles as shown in Fig. 1(c) where regular Eule-
rian background grid is used to cover all the MPM particles.
Therefore, the material region is discretized by both mesh and par-
ticles together, but the trial functions are constructed via the mesh
including finite element mesh and background grid.

2.2. Governing equations

In the updated Lagrangian framework, the governing equations
for the material domain X shown in Fig. 1(a) are given as

qðX; tÞJðX; tÞ ¼ q0ðXÞ ð1Þ

r � rþ qb ¼ q€u ð2Þ

ðnjrijÞjCt
¼ �ti

uijCu
¼ �ui

(
ð3Þ

_uðX;0Þ ¼ _u0ðXÞ
uðX;0Þ ¼ uðXÞ

�
ð4Þ

where q is the current density, J is the Jacobian and X is the
Lagrangian coordinate. Subscript 0 signifies the initial value, t is
the current time, r is the Cauchy stress, b is the body force per unit
mass, the superimposed dot indicates the time derivatives, u is the
displacement, subscripts i and j denote the components of the space
with Einstein summation convention, and nj is the unit outward
normal to the boundary. Ct and Cu signify the prescribed traction
boundary and displacement boundary of X, respectively. Taking
the virtual displacement dui as the test function, the weak form of
Eq. (2) can be obtained asZ

X
q€uiduidXþ

Z
X
rijdui;jdX�

Z
X
qbiduidX�

Z
Ct

�tiduidC ¼ 0 ð5Þ

This weak form will be solved by FEM and MPM solution
schemes in AFEMP method.

2.3. Solution scheme

AFEMP method includes FEM and MPM solution schemes,
which are similar. In AFEMP, distorted elements are automatically
converted into MPM particles during the simulation process.
Therefore, the material domain may consist of both finite elements
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and MPM particles with a background grid, as shown in Fig. 1(c). In
each time step, the particles are attached rigidly to the background
grid and deform with it. Hence the solution scheme for MPM par-
ticles is similar to that of FEM with taking the particles as quadra-
ture points.

In both FEM and MPM, the displacement u is approximated as

ui ¼
Xn

I¼1

NIuiI ð6Þ

where the subscript I denotes the FE node in FEM domain and the
background grid node in MPM domain, respectively. NI is the corre-
sponding shape function, n is the total number of nodes in an ele-
ment in FEM domain or grid nodes in a background cell in MPM
domain, and uiI is the displacement of node I in i direction. The same
type of elements are used in both FEM domain and MPM back-
ground grid. Taking the eight-node hexahedral element as an exam-
ple, the shape functions are given by

NI ¼
1
8
ð1þ nnIÞð1þ ggIÞð1þ ffIÞ; I ¼ 1;2; . . . ;8 ð7Þ

where ðnI;gI; fIÞ are the nature coordinates of element node I in the
parent domain (n 2 ½�1;1�, g 2 ½�1;1�, f 2 ½�1;1�Þ.

Substituting Eq. (6) into Eq. (5) yields

_piI ¼ f int
iI þ f ext

iI ð8Þ

where

piI ¼ mIv iI ð9Þ

is the nodal momentum, mI is the nodal mass, v iI is the nodal
velocity,

f int
iI ¼ �

X
e

Z
Ve

NI;jrjidV ð10Þ

is the internal nodal force, and

f ext
iI ¼

X
e

Z
Ve

qNIbidV þ
Z

Cte

NI�tidC
� �

ð11Þ

is the external nodal force. In AFEMP, the lumped mass matrix is
used for both elements and particles. For FEM, volume integration
is carried out with one-point integration, so that Eqs. (10) and
(11) can be rewritten, respectively, as

f int
iI ¼ �

X
e

NeI;jrjieVe ð12Þ

f ext
iI ¼

X
e

MeNeIbei þ
Z

Cte

NI�tidC
� �

ð13Þ

where e denotes element, Me ¼ qeVe. Moreover, the hourglass-
resisting force must be added to the right side of Eq. (11) to control
the hourglass modes. Thus the total nodal force is composed of
three parts, namely

fiI ¼ f ext
iI þ f int

iI þ f C
iI ð14Þ

For MPM, mass and momentum of particles are mapped to the
background grid at the beginning of each time step via the shape
functions, namely

mI ¼
Xnp

p¼1

NIpmp ð15Þ

piI ¼
Xnp

p¼1

NIpmpv ip ð16Þ

where the subscript p denotes the MPM particle, np is the total
number of MPM particles. The volume integration in MPM is carried
out with particles integration, so that the Eqs. (10) and (11) can be
rewritten, respectively, as

f int
iI ¼ �

Xnp

p¼1

NIp;jrijp
mp

qp
ð17Þ

f ext
iI ¼

Xnp

p¼1

NIp�tiph�1 mp

qp
þ
Xnp

p¼1

mpNIpbip ð18Þ

Thus the background grid nodal force is given by

fiI ¼ f ext
iI þ f int

iI ð19Þ

In AFEMP method, the central difference method with variable
time step size is used to integrate the momentum equation Eq.
(8). As shown in Fig. 2, tkþ1 ¼ tk þ Dtkþ1=2, tkþ1=2 ¼ tk þ Dtkþ1=2=2 ¼
tk�1=2 þ Dtk and Dtk ¼ ðDtk�1=2 þ Dtkþ1=2Þ=2, where k denotes the
kth time step.

The critical time step size is determined by

Dt ¼minðLe=cÞ ð20Þ

where Le is the characteristic length of element e in FEM domain
and the cell e in MPM domain, c is the material sound speed. If a
regular background grid used in MPM, Le is the cell size.

Therefore, the nodal velocities of FE node I are updated by

vkþ1=2
iI ¼ vk�1=2

iI þ ðf k;int
iI þ f k;ext

iI þ f C
iI ÞDtk=Mn ð21Þ

and the nodal positions at time tkþ1 are updated by

xkþ1
iI ¼ xk

iI þ vkþ1=2
iI Dtkþ1=2 ð22Þ

For MPM particle p, its velocities and positions are updated by
the nodal velocities and accelerations of background grid nodes,
respectively, as

Ω

(a) Material Domain

particle 

cell 

grid node

(b) FEM Discretization (c) FEM and MPM Discretization

Fig. 1. A material domain with AFEMP discretization.

t = 0 t k-1 t k t k+1

t k+1/2

t k-1/2

t k-1/2

t k+1/2

t k∆

∆ ∆

t 

Fig. 2. Time integration.
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vkþ1=2
ip ¼ vk�1=2

ip þ
Xng

I¼1

f k
iI Nk

pI=mk
I Dtk ð23Þ

xkþ1
ip ¼ xk

ip þ Dtkþ1=2
Xng

I¼1

pkþ1=2
iI Nk

pI=mk
I ð24Þ

where pkþ1=2
iI ¼ pk�1=2

iI þ f k
iI Dtk. At the end of the time step, the

deformed background grid is discarded and a new regular back-
ground grid is used in the next time step, while the finite element
mesh is embedded with the material domain.

Based on the aforementioned discussion, we can find that there
are two fundamental differences between FEM and MPM. Firstly,
the Gauss points are taken as quadrature points in FEM, while
the particles are taken as quadrature points in MPM. Secondly,
the mesh is embedded in and deforms with the material domain
during the solution process in FEM, whereas the grid is only tem-
porarily embedded in and deform with the material domain in
the current time step in MPM. Therefore, it is straightforward to
convert the elements with large strain into MPM particles by
replacing the Gauss quadrature with particle quadrature and the fi-
nite element mesh with the background grid.

3. Conversion algorithm

In this section, the element–particle conversion algorithm is
proposed, which converts the distorted elements into particles
based on a given criteria to avoid element distortion. An element
is converted into particles when either its equivalent plastic strain
or its degree of element distortion exceeds a user-specified value.
The degree of element distortion can be evaluated by the ratio of
minimum area and the maximum area of the element surfaces tak-
ing the hexahedral element as an example. Of course, other criteria
could also be used.

For the sake of clarity, take the quadrilateral element as an
example to show the conversion algorithm in detail. Fig. 3 shows
a quadrilateral finite element mesh with a boundary defined by
FE nodes a, b, . . . , and n. Elements A and B are designated as candi-
dates for conversion to particles. It is common that four particles
are placed uniformly in a cell in MPM in 2D problems. Therefore,
elements A and B are removed from the finite elements list and
replaced by four particles, respectively.

In order to guarantee the mass momentum and energy conser-
vation, the mass, volume, and internal energy of the element A and
B are averaged to the four particles equally. The stress, strain and
other history variables of the four particles are set to those of the
Gauss points of replaced element. As shown in Fig. 4, the positions
of the particles are calculated via the shape function with a speci-
fied nature coordinates ð�0:5;�0:5Þ by

xip ¼
X4

I¼1

NIð�0:5;�0:5ÞxiI ð25Þ

where xiI is the position of the FE node I. Then, the velocities of the
particles are set as those of the adjacent FE nodes. Place background
grid to cover all the particles.

The FE node c which is not connected to any elements is
removed from the FE nodes list, while the FE nodes b, i, d, f, j, k,
and g located at the interface between MPM particles and remain-
ing finite elements are labeled as transition nodes whose nodal
mass are reduced by the removal of elements.

After conversion, one Gauss point quadrature is replaced by
four particles quadrature with the conservation of mass momen-
tum and energy, and the finite element mesh is replaced by back-
ground grid. In 3D problems, one hexahedral element is replaced
by eight MPM particles in a similar way.

4. Coupling between finite elements and MPM particles

The coupling between the remaining finite elements and MPM
particles is implemented by the transition nodes based on the
background grid in MPM framework. The momentum equations
of particles in MPM are solved on the background grid and the
incremental strain of particles are calculated from the velocity field
of the background grid, which imply that the interaction and con-
nection between particles are carried out via the background grid.
Therefore, the momentum equations of transition nodes are solved
on the background grid together with the particles to establish the
interaction and connection between FEM domain and MPM
domain.

For the sake of clarity, take a 2D problem shown in Fig. 5 as an
example. The material domain is discretized by finite elements in
its left part and by MPM particles in the remaining part. The FE
nodes a, b and c located at the interface between FEM domain
and MPM domain are termed as transition nodes. In each time step,
the mass, momentum and nodal force of transition nodes are
mapped to the background grid nodes abreast with MPM particles.
Taking the grid node I shown in Fig. 6 as an example, the nodal
mass of grid node I is given by

mI ¼
Xnp

p¼1

NIpmp þ
Xnt

t¼1

NItmt ð26Þ

where the subscript t denotes the transition node, nt is the total
number of transition nodes. The nodal momentum of grid node I
is obtained by

a
b

c d e f g h

i j

b
i j

k m

n

d e f g h

k m

n
a

FE node particleinterface

A B

Fig. 3. Conversion of finite elements to particles.

η

ξ

η = −1

η = +1

ξ = −1

ξ = +1

element A parent element

b

c d

i

Fig. 4. Calculation of particles position.

I

element 

particle 

cell 

FΩ

a

b

c
a,b,c: transition nodes

grid node

FE node

MΩ

Fig. 5. Coupling between FEM and MPM.
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piI ¼
Xnp

p¼1

NIppip þ
Xnt

t¼1

NItpit ð27Þ

and the external nodal force of grid node I is obtained by

f ext
iI ¼

Xnp

p¼1

mpNIpbip þ
Xnt

t¼1

NItfit ð28Þ

where fit is the nodal force of transition node without the hourglass-
resisting force.

The velocity field used for the calculation of incremental strain
of elements and particles must be identical. Hence, the velocity of
the transition nodes must be reset by mapping the velocities of
grid nodes back to the transition nodes before calculating the
element strain by

v it ¼
Xng

I¼1

NtIv iI ð29Þ

After solving the momentum equations on background grid, the
velocities and positions of transition nodes are updated, respec-
tively, by

vkþ1=2
it ¼ vk�1=2

it þ Dtk
Xng

I¼1

f k
iI Nk

pI=mk
I þ f C;k

it =mtDtk ð30Þ

xkþ1
it ¼ xk

it þ Dtkþ1=2
Xng

I¼1

pkþ1=2
iI Nk

pI=mk
I þ f C;k

it =mtDtk

 !
ð31Þ

where f C;k
it is the hourglass-resisting force. Therefore, the velocity

field and displacement field are consistent along the interface
between FEM domain and MPM domain.

In AFEMP method, a contact/friction/separation algorithm is
implemented based on the background grid to handle the contact
event between different bodies. The basic idea is to map the infor-
mation of particles and FE nodes located at the surface of the
bodies to the background grid which is used to search for the con-
tact interface and calculate the contact forces between different
bodies to prevent the penetration. The detail of the contact method
is presented in [35] and will not be repeated here.

5. Implementation of the method

The detailed implementation of AFEMP method in a time step
can be summarized as follows.

1. Redefine the background grid, map the mass momentum of all
MPM particles and transition nodes to the background grid by
Eqs. (26) and (27), respectively.

2. Reset the velocity of the transition nodes by the velocity field of
the background grid by Eq. (29).

3. Update the stress. In AFEMP, the stress is updated at the MPM
particles and element centers. The Jaumann stress rate is used
in the stress update. The strain rate and the spin tensor are cal-
culated by

_ek�1=2
ijp ¼ 1

2

X8

I¼1

Nk
Ip;jv

k�1=2
iI þ Nk

Ip;iv
k�1=2
jI

h i
ð32Þ

Xk�1=2
ijp ¼ 1

2

X8

I¼1

½Nk
Ip;jv

k�1=2
iI � Nk

Ip;iv
k�1=2
jI � ð33Þ

where the subscript p denotes the particle in MPM region and
denotes the Gauss point in finite element region.
4. Calculate the FEM nodal force by

f k
ie ¼ f k;int

ie þ f k;ext
ie þ f k;C

ie ð34Þ

and the MPM grid nodal force by

f k
iI ¼

Xnp

p¼1

mpNk
Ipbk

ip �
Xnp

p¼1

Nk
Ip;jrijp

mp

qp
þ
Xnt

t¼1

Nk
Itf

k
it ð35Þ

5. Solve the momentum equations at the background grid nodes
in MPM region, and at FE nodes except for the transition nodes
in FEM region.

6. Update the velocity and position of FE nodes by Eqs. (21) and
(22), MPM particles by Eqs. (23) and (24), and transition nodes
by Eqs. (30) and (31), respectively.

7. Loop over all the FE nodes located at the surface of the FEM
domain, and convert any distorted elements connected with
these nodes into MPM particles based on the conversion
scheme presented in Section 3. Label the nodes located at the
updated interface between FEM domain and MPM domain as
transition nodes, and delete the converted elements and the
FE nodes which are not connected to any elements.

8. Discard the deformed background grid for MPM.

The implementation of the contact method is not given here, which
has been described in detail in [35].

6. Numerical examples

6.1. Symmetric rods impact

The impact of two symmetric elastic rods shown in Fig. 7 is first
studied to validate the accuracy of the coupling scheme in AFEMP.
Two rods with length of l0 ¼ 21 mm are traveling at an equal and
opposite velocity of v0 ¼ 100 m/s towards each other.

In order to study this problem with 3D codes, the sectional area
of the rods is chosen as 3 mm � 3 mm. The density, elastic modu-
lus and Poisson’s ratio of the rods are chosen as q ¼ 2:75 g/cm3,
E ¼ 65 GPa and m = 0, respectively. Symmetric boundary conditions
are applied along the four sides parallel to the x axis in both rods.
Hence, the analytical separation time and stress distribution can be
obtained based on the 1D wave propagation theory. The analytical
peak stress during the contact of both rods is r ¼ �v0

ffiffiffiffiffiffi
Eq

p
¼

�1336:97 MPa, and the analytical separation time of the contact
process is t ¼ 2l0=

ffiffiffiffiffiffiffiffiffi
E=q

p
¼ 8:63 ls.

Both the element size and cell size are chosen as 0.5 mm. To as-
sess the effect of particle density on the accuracy of MPM results,
this problem is studied using MPM in which the rods are discret-
ized initially by 1, 8 and 27 particles/cell (p/c), respectively. The

I

a

Fig. 6. Grid node I.

l l

v v0 0

00
x

y

Fig. 7. Symmetric rods impact schematic.
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stress profiles along the rods at impact time 2.8 ls obtained by
FEM and MPM with various particle densities are compared in
Fig. 8(a). It shows that for small deformation problems, MPM with
1 p/c initial discretization gives the worst results, while FEM gives
the best results. It also shows that the more particles used initially
in a cell, the better results obtained. However, the MPM solutions
suffer significant oscillation in stresses in all cases due to the cell
crossings noise of particles [21]. In order to eliminate cell crossing
noise of particles, Bardenhagen and Kober proposed a GIMP meth-
od [21], which is evaluated by Wallstedt and Guilkey [36]. Re-
cently, Zhang et al. proposed a dual domain material point
method by modifying the gradient of the shape function for
smoother result [37]. Here, this problem is also solved by GIMP
algorithm with different particle densities, and the results are
shown in Fig. 8(b). There is no significant oscillation in stresses
in 1 and 8 p/c cases, whose results are much better than that of
MPM. However, the results of GIMP with 27 p/c show significant
oscillation in stresses due to that the GIMP weighting functions
tend toward those of MPM as more particles are used [21]. As Bar-
denhagen suggested, fewer particles/cell used is advantageous for
GIMP. Generally speaking, the FEM results are more accurate than
those of both MPM and GIMP for small deformation problems, and
the best choice for p/c value is 8 for MPM with the computational
effort taken into account.

To investigate the convergence of MPM, GIMP and FEM, the nor-
malized error in stresses �eL2 ¼ jjejjL2

=jjrexðxÞjjL2
is studied, where

jjejjL2
¼ jjrexðxÞ � rhðxÞjj ¼

Z x2

x1

ðrexðxÞ � rhðxÞÞ2dx
� �1=2

is the Lebesque (L2) norm, x1 ¼ �21 mm, x2 ¼ 21 mm. By using the
nodal integration, the normalized error can be rewritten as

�eL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Iðre � rIÞ2=N
q

=r, where rI is the value of the stress on grid

node I distributed along x direction of rod, re is the corresponding
analytical solution which takes the value of either 0 or r, r is the
analytical peak stress in the rod, and N is the total number of gird
nodes in x direction whose analytical stress equals r. Take the stress
profiles value at time 2.8 ls as a sample, Fig. 9 compares the nor-
malized errors of FEM solution with those of MPM and GIMP solu-
tions for different particles densities. It is shown that the accuracy
and convergence rate of FEM are higher than that of both MPM
and GIMP in this small deformation problem, and the accuracy of
8 p/c case is higher than others in GIMP results. The convergence
rate of all the methods is lower than 1 for this dynamic problem.

In AFEMP, cell crossing noise of particles occurs only in the
MPM domain, which can be reduced by using GIMP. The difference
between GIMP and MPM is mainly due to the shape functions, so
GIMP can be implemented in AFEMP as similar to MPM. This prob-
lem is studied again using AFEMP with GIMP. As shown in Fig. 10,
one part of each rod with length of 9 mm is modeled by GIMP, and
the rest part by FEM. Each rod is discretized by 864 hexahedral ele-
ments with element size 0.5 mm together with 5184 particles with
space of 0.25 mm. There is no element–particle conversion for this
small deformation problem and the cell size of the background grid
is taken as 0.5 mm, so the particle density is 8 p/c.

The separation time of the contact process obtained by the
AFEMP is 8.7 ls, which is close to the analytical result 8.63 ls. Be-
sides, the stress profiles obtained by both AFEMP and GIMP are also
in good agreement with analytical result as shown in Fig. 11 which
shows that wave reflection exists at the interface between FEM and
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Fig. 8. Numerical and analytical results of the symmetric rods impact at time 2.8 ls: (a) MPM and FEM, (b) GIMP and FEM.
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Fig. 10. Discretization model of AFEMP with GIMP.
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GIMP domain due to the different discretization types, but it has
little effect on the final results. Furthermore, the energy curves ob-
tained by AFEMP is plotted in Fig. 12 which shows good energy
conservation.

To further investigate the performance of AFEMP, the conver-
gence rate for AFEMP with GIMP and AFEMP with MPM is studied
and plotted in Fig. 13, which shows that the convergence rate of
AFEMP with GIMP is between that of FEM and GIMP and close to
GIMP, while the convergence rate of AFEMP with MPM is between
that of FEM and MPM and close to MPM.
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Fig. 13. The normalized error for MPM, GIMP, FEM and AFEMP.

Table 1
Material constants of the cylinder.

q (g/mm3) E (MPa) m A (MPa) B (MPa) n C

8:93� 10�3 117� 103 0.35 157 425 1.0 0.0

Fig. 14. (a) Discretization model and (b) the final shape of the cylinder.

Table 2
The final length and diameter of the deformed bar.

L (mm) D (mm)

Experiment 16.2 13.5
AFEMP 16.21 13.2
MPM 16.21 13.2

Fig. 15. (a) Discretization model and (b) the final shape of the cylinder.

Table 3
The final length and diameter of the deformed bar obtained with different threshold.

Threshold L (mm) D (mm)

Experiment 16.2 13.5
AFEMP 0.7 16.33 13.28
AFEMP 0.8 16.32 13.34
AFEMP 0.9 16.32 13.35
AFEMP/FEM 1 16.31 13.36
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Although the results of GIMP are smoother than those of MPM,
GIMP requires much more computational cost than MPM, espe-
cially in 3D problems. Hence, MPM is used in AFEMP for the follow-
ing examples with the particle density of 8 p/c.

6.2. Taylor bar impact

The second example is the typical Taylor bar test conducted by
Johnson and Holmquist [38]. A cylinder with an initial velocity of
190 m/s travels to a rigid wall. The initial length and diameter of
the cylinder are l0 ¼ 25:4 mm and D0 ¼ 7:6 mm, respectively. John-

son–Cook model is applied for the cylinder with the material con-
stant listed in Table 1.

The discretization model is shown in Fig. 14(a). The top part
with length of 3.8 mm is discretized by 7680 hexahedral elements
and 8811 FE nodes, while the bottom part by 144,324 MPM parti-
cles with cell size 0.36 mm and particle space about 0.19 mm. The
final length and diameter of the deformed bar obtained by AFEMP
and MPM are compared with the experimental data in Table 2. The
final configuration of the cylinder is shown in Fig. 14(b).

6.3. Taylor bar impact with conversion

The previous problem is studied again with the conversion
scheme. All the geometry sizes and material constants are the
same to those used in the previous problem. The bar is initially dis-
cretized by 51,456 hexahedral elements as shown in Fig. 15(a),
where the maximum element size is 0.38 mm. When the equiva-
lent plastic strain of an element exceeds the given threshold, it is
converted into eight particles with the background cell size of
0.38 mm. To study the effect of the threshold on the result, differ-
ent thresholds are used as listed in Table 3. If there is no conver-
sion, AFEMP yields the same results as the FEM.

Table 3 compares the final length and diameter of the deformed
bar obtained by the AFEMP with the experimental data. The final
configuration of the cylinder with the threshold of 0.7 is shown
in Fig. 15(b). Furthermore, the computational cost required by
MPM and AFEMP with different threshold is compared in Table
4. For AFEMP without conversion, namely FEM, the minimum time
step, Dtmin, is about one half of the maximum time step, Dtmax, due
to no extreme deformation occurred, so its efficiency is higher than
MPM. For AFEMP with conversion threshold 0.7, the minimum
time step is larger than that of FEM due to the conversion, but its
computational cost is higher than those of both FEM and MPM be-
cause the total number of time steps is greater than that of MPM
and many elements are converted into particles. However, the
computational cost of AFEMP with threshold 0.9 is lower than
those of both FEM and MPM due to that less elements are con-
verted into particles as shown in Fig. 16 and the total time steps
is less than that of FEM. So, this example shows that FEM is more
efficient than MPM for problems without element distortion. Be-
sides, AFEMP may be less efficiency than both FEM and MPM due
to inappropriate threshold applied, but is more efficient than both
FEM and MPM with a appropriate threshold.

Fig. 16. The final configuration of the bar with threshold 0.9.

Table 5
Material constants in the Johnson–Cook model.

Material A (GPa) B (GPa) n C m Tref (K) Tmelt (K)

Steel 0.75 1.15 0.49 0.014 1 293 1700
Tungsten 1.05 0.177 0.12 0.0275 1 293 1723

Table 6
Material constants in the Gruneisen EOS.

Material c (m/s) s c

Steel 3570 1.92 1.8
Tungsten 4030 1.24 1.8

Table 4
Computational cost.

Dtmax (ls) Dtmin (ls) Steps CPU (s)

FEM 1:27� 10�2 0:60� 10�2 10,752 929

MPM 3:46� 10�2 3:01� 10�2 2423 970

AFEMP (0.7) 1:27� 10�2 1:19� 10�2 6672 1208

AFEMP (0.9) 1:27� 10�2 1:19� 10�2 6670 884

Fig. 17. The discretization model for WHA projectile and plate target.

Table 7
Results of simulation and experiment.

Case Result of Residual length ratio Residual velocity ratio

I Experiment 0.85 0.97
AFEMP 0.82 0.96
MPM 0.85 0.96

II Experiment 0.76 0.99
AFEMP 0.72 0.97
MPM 0.74 0.97
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6.4. Projectile penetration

The WHA long rod projectile penetration experiment [39] is
studied. The projectiles hit steel armor plates under an angle of
60� at different initial velocities. The length and the diameter of
the projectile are 75 and 5 mm, respectively, while the size of the
target is 150 mm� 150 mm with different thickness. Two cases
are studied. In the first case, the initial velocity of the projectile
is 1500 m/s and the thickness of the target is 5 mm; in the second
case, the initial velocity is 2500 m/s, and the thickness is 9 mm.

The Johnson–Cook model and Gruneisen equation of state are
used for both projectile and target, and the material constant taken
from [39–41] are listed in Tables 5 and 6, respectively. An effective
plastic strain failure model with threshold of 0.9 is used for both
projectile and target [41].

Due to the symmetry, half of the model is studied as shown in
Fig. 17(a). Symmetrical boundary condition is applied in the sym-
metry surface, while free boundary condition is applied elsewhere.
The regular hexahedral element with element size of 1 mm is used
for the target. The total number of elements for the target is 56,250
in the first case and 101,250 in the second case. For both cases,
1824 hexahedral elements are used for the projectile model. One
element is converted into eight MPM particles when its effective
plastic strain exceeds 0.9 during the simulation process as shown
in Fig. 17(b) for the second case.

The projectile’s residual length ratios and residual velocity ra-
tios obtained by AFEMP and experiment are compared in Table 7,
which shows that numerical results obtained by AFEMP agree well
with experimental data. The residual part of the projectile obtained
by AFEMP is also in good agreement with the experimental data as
shown in Fig. 18 for both cases.

Besides, the two cases are studied by MPM again. In order to fix
the numerical accuracy of MPM and AFEMP for the objective com-
parison of computational efficiency, the cell size and particle space
of MPM discretization are also set to 1 and 0.5 mm, respectively.
The numerical results of MPM are listed in Table 7, which is close
to AFEMP results. The computational cost required by AFEMP and
MPM for the second case are compared in Table 8, which shows
that AFEMP is much more efficient than MPM in this impact sim-
ulation, although the total number of time steps used by AFEMP al-
most double that used by MPM.

6.5. Soil collapse

The final numerical example is a 2D soil collapse experiment
conducted by Bui et al. [42], in which many small aluminum bars
of diameters 1.0 and 1.5 mm were used to model soil. These bars
were initially arranged into a rectangular area 200 mm�
100 mm, which is generated by standing two flat solid walls on a
flat surface as shown in Fig. 19. The experiment was started by

quickly removing the right wall horizontally to one side. Then
the aluminum bars will flow down to the side due to the gravity,
and the final state of the aluminum bars is shown in Fig. 21.

Fig. 18. Residual part of projectile.

Table 8
Computational cost required by MPM and AFEMP.

Dtmax (ls) Dtmin (ls) Steps CPU (s)

MPM 6:45� 10�2 3:71� 10�2 1180 2241

AFEMP 3:67� 10�2 1:52� 10�2 2208 838

Fig. 19. Arrangement of soil collapse experiment.

Table 9
Material constants in Drucker–Prager model.

q (g/mm3) K (MPa) c / w

2:65� 10�3 0.7 0 19.8 0
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40
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80

100 Surface configuration of soil 
 particles in experiement
MPM: cellsize=10mm
MPM: cellsize=5mm
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MPM: cellsize=1.25mm

Fig. 20. Final surface configurations obtained by MPM with various cell sizes.
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Drucker–Prager constitutive is used for the soil, and the mate-
rial constant is taken from [42] as listed in Table 9. In order to
study this problem by 3D code, the plain strain assumption is used
for the following discretization models.

Considering that the Drucker–Prager constitutive is a local
model, a mesh convergence is studied to investigate the cell size
effect in MPM. Four cases are simulated with cell size of 10, 5,
2.5, and 1.25 mm, respectively. In each case, the particle space is
one half of the cell size which means there are eight particles in
each cell. The both side surfaces and the left side of the discretiza-
tion model are set as symmetrical boundaries. The bottom surface
is set as fixed boundary according to the settings given in [42],
while others are set as free boundaries. The surface configurations
obtained by MPM are compared with experimental data in Fig. 20,
which shows that the cases with cell size of 2.5 and 1.25 mm are
close to each other and agree well with experimental curve. That
is to say cell size of 2.5 mm is a good choice for this problem.

Then this example is simulated by AFEMP with the element size
of 2.5 mm to fix the numerical accuracy with MPM. Hence, 3200
hexahedral elements are initially used in the discretization model,
and one element is converted into eight particles when its effective
plastic strain exceeds 1.2 during the simulation process. The
boundary conditions are similar to MPM settings. The final shape
of the soil obtained by AFEMP is compared with the final shape
of aluminum bars obtained by the experiment in Fig. 21, while
the surface configurations and failure lines obtained by AFEMP
and MPM are compared with experimental results in Fig. 22, which

shows that two numerical results are close to each other and agree
well with experimental data. Furthermore, the computational cost
required by AFEMP and MPM are listed in Table 10 which also
shows that AFEMP is more efficient than MPM.

7. Conclusion

In this paper, an adaptive finite element material point (AFEMP)
method is presented, which uses FEM for the material domain dur-
ing the mild deformation stage and MPM for the same material do-
main during the extreme deformation stage. The conversion of
distorted finite elements to MPM particles is adaptive based on a
user specified criteria. The coupling between finite elements and
MPM particles is implemented by solving the momentum equa-
tions of FE transition nodes, located at the interface between finite
elements domain and MPM particles domain, together with parti-
cles on the background grid. Therefore, AFEMP method takes full
the efficiency of FEM for mild deformation and capacity of MPM
for extreme deformation. Due to the same shape functions used
in both FEM and MPM, the wave reflection from the interface is lit-
tle. Numerical results have been presented to demonstrate the
capability of AFEMP method. For mild deformation problems,
AFEMP method without element–particle conversion is identical
with FEM. For extreme deformation problems, AFEMP method is
more efficient than both FEM and MPM, while the numerical re-
sults are in good agreement with analytical results and experiment
data.
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