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The finite element method (FEM) is popular in cutting process simulations. Due to large strains and ele-
ment distortions the FEM simulations are confronted with numerical difficulties. In the present contribu-
tion the material point method (MPM) is developed for cutting process simulations. Due to special
working condition in cutting, a special contact algorithm has been applied for the simulation. Verification
of computations confirm that the MPM generates realistic chip morphologies. The plastic strain and tem-
perature distributions are compared with the FEM computations. It is found that the MPM provides a
smoother chip formation and less strain localizations. The predictions on friction effect and feed influence
agree with experimental observations. The investigation shows that the material point method is an effi-
cient alternative method to the finite element methods.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Machining process is one of the prominent industrial applica-
tions in the manufacturing field. It is necessary to make advance-
ments in the manufacturing industry with the application of
present technology. The best of it is to use the numerical methods
to analyze machining processes. Application of numerical methods
has brought enormous changes in the engineering field. The funda-
mental process in manufacturing industrial applications is cutting.
The simplest form of analyzing cutting process is to consider the
orthogonal cutting. Many works have been performed to analyze
cutting process analytically, numerically and experimentally. The
mechanics incurred in cutting process has been explained by
Merchant in the year 1945 by considering plastic behavior of mate-
rial [1,2]. This is the initial motivated work for progressive research
in metal cutting. In early 1970s numerical field has shown its sig-
nificance in wide range of fields. During 1980s numerical works on
cutting process have been carried out. In 1985 Strenkowski and
Carroll started publishing numerical work on cutting [3,4]. In
1989 Howerton presented experimental work comparing with
numerical simulations [5]. Bäker has explained some of the com-
putational issues regarding energy dissipation in chip formation
and thermal effects on chip morphology [25,26]. Aurich has pre-
sented brief discussion about the orthogonal metal cutting using fi-
nite element method [6]. In later years researchers identified
element deformation as the fundamental problem for numerical
ll rights reserved.
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modeling of cutting process. The severe deformation of material
during cutting process leads to heavy distortion in finite elements
in numerical modeling of cutting and diminishes accuracy of the
results. Hence it is important to develop methods to reduce the ele-
ment deformation. Partially the element distortion has been over-
come with the application of techniques like remeshing, adaptive
meshing and ALE. Remeshing technique has been applied to reduce
the element distortion. But the remeshing technique has its own
limitations like reformation of the mesh due to which previous
time step stress field will be neglected, hence error will occur in
the computation of field variables. Later adaptive meshing and
Arbitrary Lagrangian Eulerian (ALE) methods have been applied
for cutting process to reduce element distortion effects [9–11].
Even though these techniques partially solve the element distor-
tion problem, there are other round off errors. In [7] the element
size in using FEM is explained. The numerical results are sensitive
to the FE mesh used [8]. Hence it is necessary to develop or apply
new method to reduce the element distortion effect without signif-
icant errors. This leads to apply the element free techniques for
high deformation processes (machining processes) to remove the
element distortion problem.

The first element free technique applied to cutting process is
SPH (Smoothed Particle Hydrodynamics). In 1997 Heinstein and
Segalman first applied SPH method for orthogonal cutting process
simulations [12]. The authors mainly explained the application and
advantages of the method, certainly element deformation handling
at the vicinity of cutting tool edge. In later years very few works
have been published on cutting with SPH. In 2007 Limido et al.
did significant work on cutting process with the application of
, doi:10.1016/j.commatsci.2011.06.018
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SPH [13], mainly explained the reliability of the SPH method by
comparing with FEM numerical approach and experimental data.
There are other meshless techniques, but the active portion of
the work on cutting is done only with SPH. The published works
on cutting with meshless techniques are very few when compare
to FEM, this might be due to complexities incurred in developing
the method. For successful modeling of high deformation processes
element free methods are generally more convenient. Hence in
present contribution MPM (material point method) has been
developed for cutting process simulations.

The MPM is evolved from PIC (particle in cell) method and is a
finite element based particle method [14]. Chen and Schreyer
started developing MPM from PIC [16] in 1994, which is the initial
development of MPM. Later Sulsky contributed many works on
MPM, his method is further extended by Bardenhagen et al. to in-
clude frictional contact [17,19]. Recently many works have been
published with the MPM for transient dynamic problems [21,23].
The results confirm that the MPM is an alternative method to
FEM in high deformation dynamic problems as there is no need
of re-meshing or adaptive meshing with MPM [24]. But the density
of material points used in the computation will influence the sim-
ulations results.

MPM is a more expensive method compare to FEM, because
MPM stores data in material points as well in back ground mesh.
Oscillations in the results with MPM is taken care by using the gen-
eralized interpolation material point technique (GIMP) [21,23].
Strain localization in MPM is very sensitive to material points.
The simulation work using GIMP is presented in [22]. As MPM does
not contain any mesh, there is no question arises on the lines of ele-
ment distortion. The external visualization of MPM is similar to
meshless method, though the computational approach is different,
this advantages over FEM. In the present work the MPM is applied
for simulation of cutting process based on the visco-plastic models.

2. Computational approaches

In this section the material point method (MPM) and general-
ized interpolation material point method (GIMPM) will be re-
viewed. The main difference between the two methods is the
order of shape functions. In MPM C0 order shape functions and in
GIMPM C1 order shape functions are used.

2.1. Material point method (MPM)

Although there are several kinds of meshless methods devel-
oped in last decades, their methodological complexities and com-
putational limitations give scopes for other methods to apply for
certain processes. For this reason MPM is developed as one of the
spatial discretization methods. The essential idea behind this
method development is to use it for fluid and solid mechanics
problems. Though the MPM method is not utilized concepts of fully
developed meshless method, it incurs Lagrange and Eulerian con-
cepts to solve the problem. Hence it can be used successfully for
high deformation rate processes, as explosive simulations, high
speed machining process, etc. MPM is particle method, developed
based on PIC (particle in cell) method. Initially the method is devel-
oped for fluid applications, later has been applied for large defor-
mation and large rotation problems successfully. For continuum
bodies, the mass conservation equation is

dq
dt
þ q$ � v ¼ 0 ð1Þ

and conservation equation for momentum is given by

q
dv
dt
¼ $ � rþ qb; ð2Þ
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where q is the mass density, v is the velocity vector, r is stress ten-
sor and b is the body force vector. In MPM, the continuum body is
discretized with Np material particles. Each material particle carries
the information of position, velocity, mass, density, stress, strain
and all other internal state variables necessary for the constitutive
model. Since the mass of each particle is fixed, Eq. (1) is automati-
cally satisfied. At each time step, the mass and velocities of the
material particles are mapped onto the background computational
mesh (cell). The mapped velocity vj of the node j is obtained
through the following equation:
X

j

mijvj ¼
X

p

mpvpNiðxpÞ; ð3Þ

where mp, vp and xp are the mass, velocity and position of the par-
ticle p, respectively. Ni is the shape function of the background cell.
For 3D problem, a eight nodal cell is employed with the shape func-
tions given by

Ni ¼
1
8
ð1þ nniÞð1þ ggiÞð1þ ffiÞ; ð4Þ

where n, g and f are the natural coordinates of the material particle
in the cell along the x, y and z directions. The shape functions are the
same as in the finite element method.

In Eq. (3) the consistent mass matrix, mij, is given by

mij ¼
X

p

mpNiðxpÞNjðxpÞ: ð5Þ

In practice, we generally replace mij with a lumped diagonal mass
matrix, midij (no summation over i), so that Eq. (3) becomes

mivi ¼
X

p

mpvpNiðxpÞ; ð6Þ

where lumped mass is represented by

mi ¼
X

p

mpNiðxpÞ: ð7Þ

After the information mapped from material points to mesh nodes,
the discrete formulation of Eq. (2) on the mesh nodes can be ob-
tained. The weak form of Eq. (2) is formulated based on the stan-
dard procedure as in the finite element method,Z

X

qdv � dv
dt

dXþ
Z

X
dðv$Þ � rdX�

Z
Ct

dv � tdc�
Z

X
qdv � bdX

¼ 0; ð8Þ

where X is the current configuration of the continuum, Ct is the
traction boundary, r is the stress tensor, t is the external force vec-
tor and b is the body force vector. Since the continuum bodies are
described with a finite set of material particles, the mass density
can be written as,

qðxÞ ¼
XNp

p

mpdðx� xpÞ; ð9Þ

where d is the Dirac delta function with dimension of the inverse of
volume. From above equations it is deduced that

mi
dvi

dt
¼ ðf iÞint þ ðf iÞext

: ð10Þ

Above mi is lumped mass, (fi)int and (fi)ext are the internal force and
external force vectors which read separately

ðf iÞint ¼ �
XNp

p¼1

mpr � ðMNiÞ=qp; ð11Þ

ðf iÞext ¼ �
XNp

p¼1

Nibp þ fc
i ; ð12Þ
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where the vector fc
i is the contact force which is the external nodal

force not including the body force. In the MPM formulated above C0

order shape functions are used, which makes the significant differ-
ence from the GIMP (generalized interpolation material point)
method. The weak form of momentum equation is solved on back-
ground mesh at each time step and the computed acceleration is
used to update the particles data. Later the updated particle data
is used to reinstate the position and coordinates of the background
mesh nodes. Hence at each time step the momentum equation is
solved on the background mesh.
2.2. Generalized interpolation material point method

In the early version of MPM, the cell shape function Ni is not
smoothed in the construction of the weighting function which
causes the numerical noise as the material points cross computa-
tional mesh boundaries. Everything is similar between MPM and
GIMPM except the order of shape functions. The order of shape
functions in MPM is C0, whereas the order of shape functions in
GIMP is C1. For GIMP the following smoothed shape functions are
used [18],

Ni ¼ UðrxÞUðryÞ; ð13Þ

where rx ¼ jxp � xij=L and ry ¼ jyp � yij=L, L is the length of the cell
and U(r) is given as follows

UðrÞ ¼

7�16r2

8 ; r 6 0:25
1� r; 0:25 < r 6 0:75
ð5�4rÞ2

16 ; 0:75 < r 6 1:25
0; r > 1:25:

8>>>><
>>>>:

ð14Þ

The formulations of the weak form equation as well as force vector
assignments are similar to that of conventional MPM method. The
algorithm for MPM computations is summarized as follows:

1. With the given particle data like mass, mp, position, xp, velocity,
vp, mass density, qp, and stress r the lumped mass matrix can
be calculated from Eq. (7) and solve for the nodal velocity from
Eq. (6) and form the internal force Eq. (11).

2. Solve the momentum equation for the nodal accelerations and
velocities in a Lagrangian frame from the following equation:
Please
mi½vnþ1
i � vn

i � ¼ Dtf int
i : ð15Þ
3. Update the field variables at material points by mapping the
computed nodal values using the element shape functions (C0

and C1 order shape functions for MPM and GIMP, respectively).
Positions and velocities of particle are updates as following:
xnþ1
p ¼ xn

p þ Dt
X

i

vnþ1
i Niðxn

pÞ ð16Þ

and

vnþ1
p ¼ vn

p þ
X

i

vnþ1
i � vn

i

� �
Ni xn

p

� �
: ð17Þ

Along with updating the deformation gradient for each particle,
compute the strain using computed deformation gradient and
solve constitutive equation to update the stress r.

4. Repeat the above procedure for further time steps.

MPM has its own advantages and disadvantages. All the impor-
tant necessary data is carried out by particles, the background cell
is only used to get data from material points after each time step,
at the end of each time step the mesh comes into original state
from deformed state. Particles keep carrying the computed data
cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
from step to step. Hence it is more applicable to large deformation
processes. The method has similar advantages as ALE (Arbitrary
Lagrange Eulerian) method but without mesh, hence can be used
for all ALE applications rather with precise computations and with-
out typical problems related to large deformations.

However, MPM is more expensive in terms of storage than other
methods, because it need to store the data from material points as
well from background cell. The boundaries should be treated pre-
cisely. If the particles cross the boundary of background cell, severe
numerical errors occurs. Furthermore, the accuracy of integration
and resolution of the solution is lower than the FEM.

2.3. Contact algorithm in MPM

The contact phenomenon has significant impact on the simula-
tion results in MPM. Hence better understanding of contact algo-
rithm is important to simulate processes using MPM. The initial
detailed contact algorithm has been given by Bardenhagen et al
[20]. According to Bardenhagen [17] the contact algorithm is in-
tended to solve motion and deformation of the bodies. The bodies
are moving in single valued velocity field vi applied to nodes
i = 1, . . . ,Nn. As this velocity is computed with Eq. 6, it is been
called as center-of-mass velocity field. vb

i represents the velocity
of a node related to particular body, where b ranges over a num-
ber of bodies and i ranges over the nodes i = 1, . . . ,Nn. Where Nn

represents the number of nodes. Since the shape functions have
compact support, only those nodes in the vicinity of the body will
have a meaningful velocity and the velocity at all other nodes will
be zero. If one body is isolated with others, not in contact with
others, then the two velocity fields vb

i and vi will be same in
the neighborhood of that body. When the two bodies approach
each other, then these two velocity fields differ. Thus it can be
concluded that both bodies are nearing each other to come in
contact. The constraint to define the contact between two bodies
is defined as following:

ðvb
i � viÞ � nb

i > 0: ð18Þ

In the equation above nb
i denotes the normal vector of body b at

node i. This is the simple condition to define the contact between
two bodies. With consider friction the contact algorithm is more
complicated. Sliding and sticking force will come into playing
[17]. The main drawback of Bardenhagen contact algorithm is that,
the premature contact occurs because the velocities of different
bodies are mapped on the same nodes although the distance be-
tween the bodies may be still two or more times of the length of
the cell. Hence the distance between two bodies is used as the main
criterion to define contact [22]. GIMPM with contact algorithm
based on distance between two bodies has been applied for present
simulations. In new contact algorithm if the velocities of bodies A
and B are mapped on the same node i (Fig. 1), then the distance be-
tween bodies A and B is calculated. The distance between bodies A
and B is represented by DAB

i , which can be calculated as

DAB
i ¼ nAB � dA

i � nAB � dB
i ; ð19Þ

where nAB is normal direction of contacting interface pointing from
bodies A to B. dA

i and dB
i are the vectors pointing to node i from

bodies A and B, respectively. nAB � dA
i and nAB � dB

i can be determined
as follows:

nAB � dA
i ¼max dAm

i � nAB
� �

; ð20Þ

here m = 1,2, . . . ,NA and particle Am belongs to body A.

nAB � dB
i ¼max dBm

i � nAB
� �

; ð21Þ
, doi:10.1016/j.commatsci.2011.06.018
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Fig. 1. Representation of distance between bodies and normal vector.

Fig. 2. Sketch of the computational cutting model [30].

Table 1
Properties of the material of AISI 4340.

Density, q (g/mm3) 0.00783
Elastic modulus, E (MPa) 2.07e + 5
Poisson’s ratio, m 0.3
Specific heat, Cp (mJ g�1 �C�1) 480
Thermal conductivity, k (W mm�1 �C�1) 0.044
Expansion (mm mm�1 �C�1) 1.35e�5
TMelt (�C) 1300
TRoom(�C) 25

Table 2
Johnson–Cook parameter values for AISI 4340.

A (initial yield stress in MPa) 792
B (hardening modulus in MPa) 510
n (work hardening exponent) 0.26
C (strain rate dependency coefficient MPa) 0.014
m (thermal softening coefficient) 1.03
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here m = 1,2, . . . ,NB and particle Bm belongs body B. NA and NB are
the number of material points belongs to body A and B and dAm

i

and dBm

i are the vectors pointing to node i from particles Am and
Bm, respectively.

The constraint for contact with the distance between bodies
based theorem can be defined as

DAB
i 6 L=2; ð22Þ

here L is the length of the defined cell. If Eq. (22) is satisfied, the
velocities of body A and B are adjusted to new values. Hence all field
variables are updated. During the course of contact the accelera-
tions of bodies A and B are equal.

aA
i � nAB

i ¼ aB
i � nAB

i : ð23Þ

From the Newton’s second law, normal contact force ðfnor
i Þ and

accelerations of body A and B (aA
i and aB

i ) are calculated. The normal
contact force must be non-negative for active contact. When the
normal contact force is negative the bodies will be no more in
contact.
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
3. Computational simulations

Initially the numerical set-up for the cutting process computa-
tions with FEM as well as with MPM is described. The similar
numerical modeling has been carried out for FEM and well as for
MPM. The model set-up is shown in Fig. 2.

Horizontal and vertical displacements are constrained for bot-
tom and left side nodes of the workpiece. Constant velocity has
been applied for the tool. Also there is a possibility to apply bound-
ary velocity to the work-piece, but it incurs complexities to define
the chip flow direction. The tool is modeled with rigid material, as
the concerned importance is given to the work-piece analysis dur-
ing cutting process. The workpiece in present contribution is as-
sumed under plane strain condition.

The MPM introduced in the previous sections is implemented in
a C++ programm and verified for different applications [21–23]. In
the present paper the MPM will be further compared with the FEM
in pressing and cutting process simulations. During MPM compu-
tations the importance of contact with consideration of friction is
explained. The FEM computations are performed using the general
purpose commercial finite element code ABAQUS [29]. For tran-
sient processes of AISI4340 steel modeled with Johnson–Cook
material model is used to describe the material property [27,28],

re ¼ ½Aþ BðepÞn� 1þ C ln
_ep

_e0

� �� 	
;

1� T � Troom

Tmelt � Troom

� �m� 	
; ð24Þ

where re denotes the effective flow stress, ep the equivalent plastic
strain, ð _ep= _e0Þ stands for non-dimensional plastic strain rate. TRoom is
the room temperature, TMelt is the melting temperature of the mate-
rial. A, the initial yield stress (MPa); B, the hardening modulus; n,
the work hardening exponent; C, the strain rate dependency coeffi-
cient (MPa); and m is the thermal softening exponent. The material
parameters are summarized in Table 1. The Johnson–Cook model is
popular in cutting process simulations. For AISI 4340 material the
Johnson–Cook constitutive equation parameters are given in Table
2.

In an adiabatic process heat conductance is neglected and the
fraction of mechanical work converted into heat only at the inte-
gration points. This fraction is defined with Taylor–Quinney factor,
g, as

qCpdT ¼ gr � ep; ð25Þ

where q denotes material density, Cp specific heat, dT temperature
change. Here the Einstein’s summation convention is used. From
the above formulation it is easy to calculate temperature values at
the integration points, if the stresses and strains are known,
whereas in thermo-mechanical coupling process temperature is cal-
culated based on heat conduction equation which should be solved
with the equilibrium equations simultaneously.

3.1. Pressing process simulations

The material block is of AISI4340 steel modeled with
Johnson–Cook material model and the press is modeled with rigid
, doi:10.1016/j.commatsci.2011.06.018
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Fig. 3. Schematic representations of plastic strain distribution for pressing process simulations with MPM and FEM.
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model. The left side nodes of the block are fixed, and right end left
for free. The geometrical sizes of the block and the press
are 1 mm � 0.5 mm � 0.1 mm and 0.1 mm � 0.7 mm � 0.1 mm,
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
respectively. A constant velocity of 200 m/s is applied to the press.
The number of particles used for the block are 183,616 and 27,136
for the press. Same number of nodes are applied for FEM mesh for
, doi:10.1016/j.commatsci.2011.06.018
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Fig. 4. Comparison of plastic strain distribution with x-distance in MPM and in FEM.

Table 3
Information about computational model.

Type of material used AISI4340 steel
Material model for workpiece Johnson–Cook
Material model for tool Rigid
Velocity for the tool 50 mm/ms
Feed 0.3 mm and 0.5 mm
Workpiece size 3 mm � 1 mm
Tool size 0.5 mm � 1 mm
Number of particles for workpiece 120,000
Number of particles for tool 20,000
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the pressing process simulation. With the given description the
numerical simulations are performed with MPM and FEM meth-
ods. Here only equivalent plastic strain distribution is compared
between two methods.

Fig. 3a–d present results of the pressing process simulations
with MPM and Fig. 3e–h represents the pressing process simula-
tions with FEM. Here equivalent plastic strain distribution is com-
pared between MPM and FEM. The maximum value of plastic
strain is limited to two in both cases for better viewing of strain
distribution. The plastic strain distribution in both cases is approx-
imately similar. The localization of strains from MPM is not clearly
observed, this is mainly caused by the number of material points.
With increasing number of material points, strain localization
can be seen more effectively. For better comparison of plastic
strain distribution between MPM and FEM computations, plots
are drawn between x-distance value and plastic strain distribution
(Fig. 4). The plastic strain distribution shown in Fig. 4a corresponds
to Fig. 3c and g, and Fig. 4b corresponds to Fig. 3d and h, respec-
tively. Here we can observe similar distribution of plastic strain.
From Fig. 4b, the strain distribution at the left side of the block in-
creases with increasing the press displacement. Slight changes in
the strain distribution comes from the different methods applied.
Generally one would expect lower accuracy in the MPM.

3.2. Cutting process simulations using GIMPM and FEM

The present MPM code is developed with C++ programming lan-
guage. For MPM computations 120,000 particles are used for the
work-piece with size 3 mm � 1 mm. Total computation time with
MPM is 37027.8 s. For computations HP Z400 work station with IN-
TEL XEON CPU was used. This is 4 processor CPU with 6 GB RAM.

In cutting process the shear band and strain localization play an
important role. Due to localized high strains, the FEM elements are
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
distorted significantly and simulation results are sensitive to the
element size [7,8]. The accuracy of the numerical computations
drops with element distortion. In an implicit computation the
FEM fails to converge. As MPM does not contain any finite element
mesh, this method is advantageous over FEM. It contains only
background mesh on which the field variables are updated using
material points. The material points carry all the information
needed and the cell is fixed in the space.

Detailed information about the computational model is given in
Table 3. The computations are run under plane strain condition,
some assumptions are made to simplify the model. The tool is as-
sumed as rigid. Some research works demonstrated importance of
the deformable tools [15], especially for analysis of wear damage of
tool. For present simulations tool wear will not considered. The
cutting velocity is very high to reduce computation time. Such sim-
plifications will not affected the simulation qualitatively.

The main influencing parameters in GIMPM are the distance be-
tween the two nodes, distance between the particles and contact
phenomenon applied. Generally we assign the distance between
two nodes (cell distance) is approximately two times of the dis-
tance between two particles. Some times negative volume occurs
in the particles during computation, it is mainly due to high strain
values at the particles or at cell nodes. This can be remedied by
reducing velocity of the tool. Fig. 5 plots plastic strain and temper-
ature distributions from both MPM and FEM computations. In
Fig. 5a and b the plastic strain distribution is similar between both
methods. The comparison is done based on plastic strain and tem-
perature because these are the two main parameters which influ-
ence the cutting process significantly. One may observe
essentially a similar chip morphology from both computations
which implies that both methods generate averagely the same
deformations. In local regions, the differences can be found in both
strain and temperature distributions. The MPM predicts generally
smoother results in both plastic strain and temperature distribu-
tion due to its rougher interpolation algorithm. High strain rates
can be easily handled by the MPM, as particles store all the neces-
sary information at the state of the calculation. Hence no numerical
errors occur due to mesh returning to its original state. But numer-
ical errors may occur due in updating field variables on material
points by mapping the nodal values with shape functions. Later
again this material points data will be mapped to grid nodes. This
transformation of data between material points and background
mesh may admit slight changes. This method uses Lagrangian solid
particles embedded in an Eulerian grid.

Fig. 6a represents the plastic strain value at each material point
when the tool moves a distance of 2 mm from right side with
, doi:10.1016/j.commatsci.2011.06.018
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(a) With MPM 

(c) With MPM Temperature distribution (d) With FEM

Plastic strain distribution (b) With FEM

Fig. 5. Comparison of plastic strain and temperature distribution between MPM and FEM simulations. (a) Plastic strain from MPM. (b) Plastic strain from FEM.
(c) Temperature from MPM. (d) Temperature from FEM.

Fig. 6. Schematic representation of the plastic strain distribution of the whole workpiece. The x coordinate denotes the length direction of the workpiece, y stands for the
height direction. (a) MPM results. (b) FEM (ABAQUS) results.
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GIMPM method. Particle identification is done by x and y coordi-
nate values. Here x is the cutting direction, y denotes the height
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
of the workpiece. Similarly, Fig. 6b represents the plastic strain val-
ues at the integration points for FEM computations. Fig. 6a and b
, doi:10.1016/j.commatsci.2011.06.018
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Fig. 7. Effects of friction on the shear band formation. (a) With friction. (b) No friction.

Fig. 8. Influence of feed on chip morphology and shear band formation. (a) With 0.5 mm feed. (b) With 0.3 mm feed.
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are related to Fig. 5a and b, respectively. Fig. 6 is informative to de-
scribe the chip morphology effect, stability region, residual stress
and strains, etc. The region between x = 0.55 mm and 1.05 mm
in Fig. 6 is represented by effective shear banding region from
Fig. 5. Thus one can observe high plastic strains in the range of
x = 0.55–1.05 mm. When the instability condition is defined with
maximum plastic strain value, the stability region is identified very
easily with Fig. 6. The region above the maximum plastic strain de-
fined for material failure is treated as instability region. The chip
morphology is explained as the distribution of plastic strain below
x = 0.55 mm. The distribution of plastic strain with MPM (Fig. 6a)
below x = 0.55 mm is more, that identifies the bending of chip is
more with MPM. Chip morphology is not absolutely similar in both
the computations (MPM and FEM). Residual strain is more with
MPM calculation, this observation is concluded from Fig. 6a. Heavy
strain distribution traces are identified on the machined surface of
workpiece. Where as with FEM (Fig. 6b) the residual strains are
minimal on machined surface.

FEM contains the mesh, as the cutting process progresses ele-
ment distortion increases which leads to decrease in time step.
The time step keep on decreases with increasing mesh distortion.
When the time step reduces to certain level the computation will
be terminated. This problem has been overcome with GIMPM
computations as there is no mesh present to distort. With GIMPM
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
simulations after each step the background grid returns to its ori-
ginal position. No numerical errors occurs due mesh returning to
its original position as all the information is carried out by the
particles. Where as FEM incurs errors as the mesh returning to
its original position while computation. In MPM nodes remain
fixed on a regular grid, hence computation of gradients is trivial.
All these advantages of GIMPM enhances the applicability of this
method for high deformation processes. The smoother simulations
with MPM method have been seen.

3.3. Effect of friction on shear band formation

Friction has significant effects on the formation of shear bands.
With the absence of friction mild shear bands and with consider-
ation of friction intense shear bands can be observed, which are
confirmed in Fig. 7. The effect of contact considering friction leads
to intensified formation of shear bands. The coefficient of friction
used in the present contribution is l = 0.2. There is no lubricant
used for the process simulations, hence the contact friction be-
tween tool and workpiece is treated as dry friction. Friction
generates additional heat to the chip formation. When there is
no friction between two bodies, the tool moves on the workpiece
without any resistive force. Thus the amount of energy dissipation
is less. The formation of shear bands in cutting is due to mechanical
, doi:10.1016/j.commatsci.2011.06.018
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work converted into heat. When the mechanical work is less, the
amount of heat produced is also less. Therefore less intense shear
bands can be observed in the absence of friction.

3.4. Influence of feed on shear band formation

The shear instability occurs when the heating due to plastic en-
ergy dissipation is large enough. Due to this heating the material
softens, material hardens as it deforms. This tendency leads to for-
mation of shear bands. Here with increasing feed (depth of cut) the
cutting force increases, thus the energy dissipation increases. The
produced mechanical energy is converted into heat and tends to
soften the material which leads to formation of shear bands in
the localized area of primary shear zone (Fig. 8). With increasing
feed the width of shear band reduces, this is mainly due to increase
in localization leads to contraction of shear band and increase in
teeth size. The frequency of shear band formation decreases with
increasing feed (Fig. 8). With increasing feed the distance between
two instability effects increases, because of increasing in chip
thickness.

4. Conclusions

Detailed discussion about the MPM and GIMPM methods for
cutting process simulation has been summarized in the present
work. The advantages and disadvantages of MPM method are
phrased. To verify the adaptability of MPM for high deformation
processes, initially pressing process is simulated and the plastic
strain distribution is compared with FEM simulation results. The
comparison confirms that the MPM generates essentially the same
results as the FEM (see Figs. 3 and 5).

GIMPM is developed for cutting process simulation. The plastic
strain and temperature distributions of GIMPM are compared with
FEM results. It is found that the GIMPM provides a smoother
numerical results which leads to less strain localizations in the
chip formations. The trend of the shear band formation and tem-
perature distribution in both cases is similar. Spatial distribution
of plastic strain values with respect to X and Y coordinate values
gives the scope to analyze chip morphology, residual strain values
on machined surface and stability region.

The effect of friction on process simulations is discussed with
GIMPM. Strong localization can be observed by considering fric-
tion. In the absence of friction the intensity of shear band forma-
tion is not effective. Further the influence of feed on shear
localization has been explained. With increasing feed the localiza-
tion phenomenon increases, thus leads to contraction of shear
bands and formation of teeth.

The improvements have to be done in the area of contact crite-
rion applied considering friction phenomenon to derive sticking
force, sliding force, tangential force, etc. Material failure has major
scope in machining simulations, hence it is required to improve
Please cite this article in press as: R. Ambati et al., Comput. Mater. Sci. (2011)
algorithm to define material failure with the available techniques
(maximum stress, maximum strain, plastic displacement criterion,
etc.). Further investigation on influencing parameters of MPM can
be done.
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