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Abstract

A new numerical procedure is proposed for the analysis of three-dimensional dynamic soil-

structure interaction in the time domain. In this study, the soil is modelled as a linear elastic

solid, however the methods developed can be adapted to include the effects of soil nonlinear-

ities and hysteretic damping in the soil. A substructure method, in which the unbounded

soil is modelled by the scaled boundary finite-element method, is used and the structure is

modelled by 8 to 21 variable-number-node three-dimensional isoparametric or subparametric

hexahedral curvilinear elements. Approximations in both time and space, which lead to effi-

cient schemes for calculation of the acceleration unit-impulse response matrix, are proposed for

the scaled boundary finite-element method resulting in significant reduction in computational

effort with little loss of accuracy. The approximations also lead to a very efficient scheme for

evaluation of convolution integrals in the calculation of soil-structure interaction forces. The

approximations proposed in this paper are also applicable to the boundary element method.

These approximations result in an improvement over current methods. A three-dimensional

Dynamic Soil-Structure Interaction Analysis program (DSSIA-3D) is developed, and seismic

excitations (S-waves, P-waves, and surface waves) and externally applied transient loadings

can be considered in analysis. The computer program developed can be used in the analysis of

three-dimensional dynamic soil-structure interaction as well as in the analysis of wave scatter-

ing and diffraction by three dimensional surface irregularities. The scattering and diffraction of

seismic waves (P -, S-, and Rayleigh waves) by various three-dimensional surface irregularities

are studied in detail, and the numerical results obtained are in good agreement with those

given by other authors. Numerical studies show that the new procedure is suitable and very

efficient for problems which involve low frequencies of interest for earthquake engineering.
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1 Introduction

The various numerical methods developed for the analysis of dynamic soil-structure interaction

during the last quarter century can be classified into two main groups; the direct method and the

substructure method. In the direct method, the structure and a finite, bounded soil zone adjacent

to the structure (near field) are modelled by the standard finite element method and the effect

of the surrounding unbounded soil (far field) is analyzed approximately by imposing transmitting

boundaries along the near-field/far-field interface. Many kinds of transmitting boundaries have

been developed over the past two decades to satisfy the radiation condition, such as a viscous

boundary[1], a superposition boundary[2], and several others[3].

In the substructure method, the soil-structure system is divided into two substructures: a struc-

ture which may include a portion of nonlinear soil or soil with an irregular boundary, and the

unbounded soil[4]−[5]. These substructures are connected by the general soil-structure interface

(See figure 1). The unbounded soil is assumed to be linear but the structure could be nonlinear.

Generally the nonlinear soil adjacent to the structure can be treated as a part of the structure, so

nonlinearity of the soil adjacent to the structure could also be included if necessary.

Usually a dynamic soil-structure interaction analysis by the substructure method can be per-

formed in three steps as follows:

1. Determination of seismic free-field input motion along the general soil-structure interface. The

seismic free-field input motion can be determined by free-field site analysis[4],[6].

2. Determination of the reaction of the unbounded soil on the general soil-structure interface in

the form of a displacement-force relationship.

3. Analysis of the bounded soil-structure system under the action of the externally applied

transient loading and the ground interaction force determined by steps 1 and 2.

The reaction of the unbounded soil on the general soil-structure interface is represented by a

boundary condition in the form of a force-displacement relationship, which is global in both space

and time. The boundary-element method is a powerful procedure for modelling the unbounded

medium since only the boundaries of the unbounded medium are discretized so that the spatial

dimension is reduced by one, and the radiation condition is satisfied automatically as a part of

the fundamental solution. Based on the substructure method, many hybrid methods (coupling

methods)[7]−[9] have been developed where the structure and an adjacent finite region of the soil
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Figure 1: Structure-soil system

are discretized by the standard finite element method while the unbounded soil is modelled by the

boundary element method. However, it is very difficult to derive the fundamental solutions for

many cases. The scaled boundary finite-element method[10], which is the alias of the consistent in-

finitesimal finite-element cell method[11], combines the advantages of the boundary element method

and the finite element method, and no fundamental solution is required. It is exact in the radial

direction, converges to the exact solution in the finite-element sense in the circumferential direction,

and is rigorous in both space and time.

In this paper a new three dimensional dynamic soil-structure interaction procedure is developed

where the scaled boundary finite-element method is used to model the unbounded soil while the

structure is modelled by 8 to 21 variable-number-node three-dimensional isoparametric or subpara-

metric hexahedral curvilinear elements[12]. Approximations in both time and space are proposed

for the scaled boundary finite-element method to reduce the computational effort required for prac-

tical engineering problems. Approximation in time leads to an efficient scheme for evaluation of

convolution integrals and approximation in space leads to a sparse unit-impulse response matrix,

so that the computational efforts required for the calculation of the unit-impulse response matrix

and the ground interaction forces are reduced significantly. The approximations proposed in this

paper are also applicable to the boundary element method. These procedures are an improvement

over current methods and are applicable to both seismic excitations (S-waves, P-waves and surface

waves) and externally applied transient loading.

Topographical and geological irregularities may induce large amplifications and significant spa-

tial variations in seismic ground motion during earthquakes, consequently the site effects are very

important in the consideration of the response of structures, such as dams, bridges, and life-line

systems. This has motivated studies of more realistic problems of ground motion amplification by

surface irregularities. Accurate prediction of ground motions requires three-dimensional analysis.
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Due to the complexity of three dimensional surface irregularities, the available analytical methods

for solving three-dimensional scattering and diffraction problems are limited and are applicable only

to special geometries. The wave function expansion method[13]−[16] is widely used, in which the

unknown scattered wave field is expressed in terms of wave functions which satisfy the equation of

motion, and radiation conditions at infinity. Traction-free boundary conditions are then imposed

locally at several points on the surface of the cavity and the half-space.

Many numerical methods have been developed to solve realistic problems in strong ground

motion seismology and earthquake engineering. The boundary integral equation methods (BIEMs)

are very effective for studying the wave scattering in geotechnical problems involving unbounded

domains. These methods require only discretization of the boundary of the scatterers and the

radiation conditions at infinity can be modeled exactly[18]−[20], but they require evaluation of

Green’s functions which often require a large amount of computational effort and the methods are

limited to problems involving linear materials[21]. Finite element and finite difference methods

can be used to solve problems with complex geometries and nonlinear materials, but these require

the discretization of the entire domain of solution which makes such procedures inefficient for

geotechnical problems. Many hybrid methods have been proposed which utilize the versatility of

the finite element and finite difference methods for detailed modeling of the near field and the

effectiveness of the BIEM and the wave function expansion techniques in the far field[22]−[23].

The numerical procedure proposed in this paper can be used to analyze the scattering and dif-

fraction of any elastic waves by three-dimensional surface irregularities, such as mountains, cavities

and alluvial deposits with various shapes. The procedure can also be extend to consider similar

problems which include hysteretic damping and nonlinearities in the soil properties.

2 Equation of Motion of the Structure

If both the seismic excitation and the externally applied transient loading are considered, the

equation of motion of the structure in the time domain can be expressed as[5]·
Mss Msb

Mbs Mbb

¸½
üts
ütb

¾
+

·
Css Csb
Cbs Cbb

¸½
u̇ts
u̇tb

¾
+

·
Kss Ksb

Kbs Kbb

¸½
uts
utb

¾
=

½
0
−rb(t)

¾
+

½
ps(t)
pb(t)

¾
, (1)

where M is the mass matrix, K is the stiffness matrix of the structure, u, u̇, and ü are the

displacement, velocity and acceleration vectors, respectively, rb(t) is the ground interaction force

vector, and p(t) are externally applied force vector. In (1), the subscripts b, and s denote the

nodes on the soil-structure interface and the remaining nodes of the structure, respectively, and the

superscript t denotes the total motion of the structure. The damping matrix C represents viscous
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damping in the structure and is included for completeness but is not considered in the numerical

examples presented later in this paper.

After the ground interaction force vector, rb(t), is determined, the dynamic response of the

structure can be obtained from (1) by using direct integration.

3 Ground Interaction Force

In the substructure method, the ground interaction forces rb(t) are given by the convolution

integral[11],

rb(t) =

Z t

0

Mg
bb(t− τ )(ütb(τ )− ügb(τ))dτ , (2)

where the superscript g denotes the unbounded soil with excavation,Mg
bb(t) is the acceleration unit-

impulse response matrix and ügb(t), the acceleration vector, at the nodes b (which will subsequently

lie on the structure-soil interface) of the soil with the excavation. Equation (2) can be used to

calculate a general wave pattern consisting of oblique body waves and surface waves. The ground

motion ügb(t), depends on the excavation so that it is more convenient to replace this generalized

scattered motion by the free-field motion üfb (t), which does not depend on the excavation, with the

exception of the location of the nodes for which it is to be calculated, and can be determined by

the free-field site analysis[4],[6].

The free-field system results when the excavated part of the soil is added to the soil with

excavation as indicated in figure 2. For this special case, the structure consists of the excavated

part of the soil only, and part of the integral on the right-hand side of (2) can be reformulated by

considering the equation of motion as[5],

Z t

0

Mg
bb(t− τ )ügb(τ)dτ =

Z t

0

Mf
bb(t− τ )üfb (τ )dτ , (3)
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whereMf
bb is the acceleration unit-impulse response matrix of the free field site referred to the nodes

at the soil-structure interface. To calculate the acceleration unit-impulse response matrix of the

free field site, the excavated part of the soil is discretized by the finite element method. Standard

finite element discretization of the excavated part of the soil results in the acceleration unit-impulse

response matrixMe of the excavated soil, which is given by

Me = −1 + 2ξi
ω2

Ke +Me , (4)

whereKe is the stiffness matrix of the excavated soil,Me the mass matrix, ω the circular frequency,

i =
√−1 and ξ the hysteretic damping ratio of the excavated soil. The damping ratio is introduced

for completeness however for the numerical results presented later, ξ is set to zero. The matrixMe

can be decomposed into the submatrices Mii, Mib and Mbb. The subscript b refers to the nodes

on the structure-soil interface, and the subscript i refers to the remaining nodes. Eliminating the

degree of freedom at i-th node leads to

Me
bb =Mbb −MbiM

−1
ii Mib , (5)

where Me
bb denotes the acceleration unit-impulse response matrix of the excavated soil referred to

the nodes b. Adding Me
bb to M

g
bb results in the acceleration unit-impulse response matrix of the

continuous soil (free field site, see figure 2)Mf
bb, discretized at the same nodes b which subsequently

lie on the structure-soil interface. That is

Mf
bb =M

e
bb +M

g
bb . (6)

Substituting (6) and (3) into (2) gives

rb(t) = r
(1)
b (t) + r

(2)
b (t) , (7)

where

r(1)b (t) =

Z t

0

Mg
bb(t− τ)(ütb(τ )− üfb (τ ))dτ ,

r
(2)
b (t) = −

Z t

0

Me
bb(t− τ)üfb (τ)dτ .

The acceleration unit-impulse response matrix Mg
bb(t) is calculated using the scaled boundary

finite-element method[11]. It may be shown that

r
(2)
b (t) = −z−1

h
Me

bb(ω)ü
f
b (ω)

i
, (8)
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where z−1 [∗] denotes the Inverse Fourier Transformation. The term enclosed in square bracket on

the right-hand side of (8) is evaluated in the frequency domain and then transformed to the time

domain as indicated.

Substituting (7) into the equation of motion of structure (1) enables the response of this

structure-soil system to the incident wave and/or applied transient loading to be determined by

a numerical integration scheme in the time domain.

4 Approximations in time and space

The scaled boundary finite-element method is a rigorous method for modelling the unbounded

media. Since the exact unit-impulse response matrix of an unbounded medium is fully coupled

in both space and time, its calculation using the scaled boundary finite-element method requires

considerable computational effort, however the result is very accurate. In engineering practice, it

is desirable to reduce computational effort by introducing approximations in both time and space.

The proposed procedures in this paper significantly reduce the computational time with little loss

of accuracy.

4.1 Approximation in time

The acceleration unit-impulse response matrix, Mg
bb(t), can be decomposed as (see figure 3)

[11]

Mg
bb(t) = CH(t) +KtH(t) +Mf(t), (9)

where K is the static-stiffness matrix, C is the matrix of dashpot coefficients at circular frequency

ω = 0 of the unbounded soil, H(t) is the Heaviside-step function, and Mf (t → ∞) = 0. It

follows that the acceleration unit-impulse matrix, which is nonlinear with respect to time, can be

approximated as a piece-wise linear function of time and usually only few linear segments, four or

five, are adequate. In this paper, the unit-impulse matrix is approximated by a few linear segments

before time tk and one linear segment after time tk. Here tk can be determined by balancing

the accuracy requirement and the computational effort required for calculation of the acceleration

unit-impulse response matrix.

The scaled boundary finite element method is used to calculate the acceleration unit-impulse

response matrix, which results in a special type of integral equation. In this study, the time

discretization scheme proposed by Wolf and Song[11] is used to solve the scaled boundary finite

element equation, in which the response matrix is assumed to be piece-wise constant over each time

step. This scheme is a conditionally stable scheme and the time step used must be less than the

critical step size to obtain a stable solution, which requires significant computational effort.
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Figure 3: Decomposition of the acceleration unit-impulse response matrix

As already mentioned, the response matrix is approximated by a few linear segments, therefore it

only necessary to calculate the response matrix at these time steps. The time discretization scheme

used is a conditionally stable scheme, consequently the solution will become unstable after a couple

of time steps if the time steps used are too large. To estimate the stability of the time discretization

scheme, the acceleration unit-impulse response matrices of the hemispherical cavity described in

section 6.2 are calculated by using different time steps, and the results are compared in figure 4.

This numerical study shows that although a very large time step is used, satisfactory solutions are

still obtained within the first several time steps, say five or six. In the numerical examples presented

later in this paper, the time step is chosen as tk/5, and only five time steps are used to calculate the

acceleration unit-impulse response matrix before time t = tk. The computational effort is further

reduced significantly, see figure 5.b.

To obtain sufficient accuracy in the interested frequency range, the size of linear segments, ∆t0,

must satisfy

∆t0 ≤ ωmax
π

(10)

where ωmax is the maximum circular frequency of the interested frequency range. Meanwhile, tk

should also be chosen carefully to ensure the desired accuracy.

4.2 Approximation in space

Approximation in space is another approach to reduce the computational effort required for the

calculation of the unit-impulse response matrices and the ground interaction force.

The basic equation of the scaled boundary finite-element method in the time domain is a integral

equation with respect to a unknown unit-impulse response matrix of order N and the linear algebra
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Figure 4: Dimensionless unit-impulse response coefficient, E(t)/E(0), of the hemispherical cavity de-
scribed in section 6.2 versus dimensionless time. E(t) is the summation of all elements of the unit-impulse
response matrix at time t and E(0) = E(t = 0).

package LAPACK is used to solve the equation. Computational effort for most LAPACK driver

routines is proportional to N3 [24], consequently if the basic equation of the scaled boundary finite-

element method is reduced to M equations with the unknown matrix of order K (N/M < K < N)

by introducing approximations, the computational effort for solving these M integral equations is

much less than that for solving the original equation.

In the scaled boundary finite-element method, the structure-soil interface is treated as only one

substructure so that the unit-impulse response matrix is a full matrix. To introduce approximation

in space, the structure-soil interface is divided into several substructures and the unit-impulse re-

sponse matrices for the substructures are calculated first and then assembled to form the global unit-

impulse response matrix for the structure-soil interface, as in the standard finite element method.

This process is equivalent to reducing the basic equation of the scaled boundary finite-element

method to M integral equations with the unknown matrix of order K. The computational effort

for solving each equation is proportional to K3, so that the total computational effort for the new

scheme will be proportional to K3M . Consequently the computational effort will be reduced by a

factor of L = N3/(K3M) (M < L < M2) by introducing the approximation in space. Actually,

this factor is much greater than L, see figure 5.b.

The unit-impulse response matrix will be a sparse matrix if the degrees of freedom are properly

numbered within every substructure, so that the computational effort for the calculation of both

the unit-impulse response matrices and the ground interaction forces will be reduced significantly.

Furthermore, the scaling centre (similarity centre) can be chosen for each substructure independently

if necessary.

To assess the accuracy and efficiency of the proposed approximation in space, the acceleration

unit-impulse response matrices of the hemi-spherical cavity described in section 6.2 (see figure 9)
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Figure 5: (a). Dimensionless unit-impulse response coefficients,E(t)/E(0), of the hemispheical cavity
versus dimensionless time. E(t) is the summation of all elements of the unit-impulse response matrix at
time t and E(0) = E(t = 0); (b). Computation CPU time (s) required for the calculation.

are calculated by introducing the approximation in space. The soil-structure interface is divided

into four substructures; every substructure consists of a quarter of the interface. In this example,

N = 435,M = 4,K = 129 (see section 6.2), so that the computational effort is reduced by a factor of

10 by introducing the approximation in space. Figure 5.a compares the dimensionless unit-impulse

response coefficients of the hemispherical cavity calculated by introducing approximation in space

with those obtained by the rigorous method. The computation time required for the calculation of

the acceleration unit-impulse response matrices are presented in figure 5.b. The computer used in

the calculation is Pentum II 300 Hz. Figure 5.b shows that the CPU time used for this example is

reduced from that for the rigorous method by a factor of 15 by dividing the soil-structure interface

into 4 substructures. It can be concluded from this numerical study that the accuracy of the

proposed approximation in space is satisfactory while the computational effort required is reduced

significantly.

5 Time Integration

Implicit integration schemes, which ensure numerical stability, are presented. To obtain the solution

at time t+∆t, the equation of motion of structure is considered at time t+∆t,

·
Mss Msb

Mbs Mbb

¸½
n+1üts
n+1ütb

¾
+

·
Css Csb
Cbs Cbb

¸½
n+1u̇ts
n+1u̇tb

¾
+

·
Kss Ksb

Kbs Kbb

¸½
n+1uts
n+1utb

¾
=

½
0
− n+1rb

¾
+

½
n+1ps
n+1pb

¾
, (11)

where the superscript n+ 1 denotes ‘at time (n+ 1)∆t’, consequently n+1üts = ü
t
s((n+ 1)∆t).
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Numerical evaluation of the convolution integrals in the calculation of the ground interaction

forces is the most computationally expensive part of a soil-structure interaction analysis, conse-

quently it is desirable to reduce the computational effort required. A significant effort has been

made in linear system theory and dynamic soil-structure interaction analysis, and several efficient

schemes have been developed for numerical evaluation of convolution integrals[25]. Based on the

aforementioned approximation in time, a very efficient new scheme is developed in this paper for

numerical evaluation of the convolution integrals in the calculation of the ground interaction forces.

The basic approximations for the new scheme are:

1. The unit-impulse matrix is approximated by a few linear segments before time tk and one

linear segment after time tk.

2. The acceleration is approximated as linear over each time step.

3. The time steps for the convolution integrals are the same as for the time integrations.

To evaluate the ground interaction forces at time t + ∆t, the time interval 0 to t + ∆t, where

t = n∆t and ∆t is the time step for the time integration, is divided into M ≤ tk
∆t0 subintervals with

size ∆t0 = N∆t, and K = t+∆t−M∆t0
∆t

subintervals with size ∆t. For computational convenience, N ,

K, and M are taken as integers. The first term of the ground interaction forces for time t+∆t is

given by

r
(1)
b (t+∆t) =

MX
i=1

Z i∆t0

(i−1)∆t0
Mg

bb(τ)∆üb(t+∆t− τ)dτ +

KX
i=1

Z MN∆t+i∆t

MN∆t+(i−1)∆t
Mg

bb(τ)∆üb(t+∆t− τ)dτ, (12)

where ∆üb(t+∆t− τ ) = ütb(t+∆t− τ )− üfb (t+∆t− τ).

According to the approximations 1 and 2, the first term on the right-hand side of (12) can be

evaluated as

MX
i=1

Z i∆t0

(i−1)∆t0
Mg

bb(τ)∆üb(t+∆t− τ )dτ

=
MX
i=1

(i−1)NMg
bb[α1∆

n+1−(i−1)N üb + α2∆
n+1−iN üb +

N−1X
j=1

α3∆
n+1−(i−1)N−jüb] +

MX
i=1

iNMg
bb[α2∆

n+1−(i−1)N üb + α1∆
n+1−iN üb +

N−1X
j=1

α4∆
n+1−(i−1)N−jüb], (13)
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where α1 = ∆t
6N
(3N −1), α2 = ∆t

6N
, α3 = ∆t(1− j

N
), and α4 = ∆t j

N
. In (13) the left superscript ‘iN ’

denotes ‘evaluated at time iN∆t’, consequently iNMg
bb =M

g
bb(iN∆t) and ∆n+1−iN üb = ∆üb((n +

1− iN)∆t).
Because different approximations are used for the case t+∆t ≤ tk and the case t+∆t > tk, the

second term on the right-hand side of (12) should be evaluated for these two cases. For the case

t+∆t ≤ tk, the second term on the right-hand side of (12) is evaluated as

KX
i=1

Z MN∆t+i∆t

MN∆t+(i−1)∆t
Mg

bb(τ )∆üb(t+∆t− τ )dτ

= MNMg
bb[α1∆

n+1−MN üb + α5∆
n+1−MN−Küb +

K−1X
j=1

α3∆
n+1−MN−jüb] +

(M+1)NMg
bb[α2∆

n+1−MN üb + α6∆
n+1−MN−Küb +

K−1X
j=1

α4∆
n+1−MN−jüb], (14)

where α5 = ∆t
6N
(3N − 3K + 1), α6 = ∆t

6N
(3K − 1).

For the case t + ∆t > tk, the acceleration unit-impulse response matrix at time τ > MN∆t,

Mg
bb(τ), is calculated by extrapolating matrices

MNMg
bb and

(M−1)NMg
bb, consequently the second

term on the right-hand side of (12) is evaluated as

KX
i=1

Z MN∆t+i∆t

MN∆t+(i−1)∆t
Mg

bb(τ )∆üb(t+∆t− τ )dτ

= MNMg
bb(α7∆

Küb +
K−1X
i=1

α9∆
n+1−MN−iüb)−

(M−1)NMg
bb(α8∆

Küb +
K−1X
i=1

α10∆
n+1−MN−iüb). (15)

where α7 = ∆t
6N
(3N + 1), α8 = ∆t

6N
, α9 = (1 +

i
N
)∆t, and α10 =

i
N
∆t.

Substituting (13), (14) and (15) into (12) leads to a very efficient scheme for calculation of

the ground interaction forces. Numerical evaluation of (12) only requires 2(M + 1) matrix vector

multiplications and about 2M(N + 1) + 2K vector summations, where M is usually equal to four

or five. A matrix vector multiplication requires L2, where L is the order of the matrix and the

vector, scalar multiplications and L2 scalar summations, therefore matrix vector multiplications are

numerically intensive tasks. Usually, a few linear segments, four or five, are adequate to approximate

the acceleration unit-impulse response matrix, consequently the numerical scheme developed here

significantly reduces the computational effort required for numerical evaluation of the convolution

integrals in the calculation of the ground interaction forces for earthquake engineering problems.
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Figure 6: Computation CPU time required for numerical evaluation of convolution integrals by using
different methods.

Substituting (12) and (7) into (11) gives the equation of motion of structure at time t+∆t, which

can be solved by using the Newmark method or Wilson-θ method[12]. To illustrate the efficiency of

the proposed scheme, figure 6 compares the computation CPU time required for numerical evalua-

tion of convolution integrals in the calculation of the ground interaction forces for the hemispherical

cavity described in section 6.2. In this example, the acceleration unit-impulse response matrix is

approximated by 5 linear segments before dimensionless time t̄k = 10.47, and approximated as a

linear function of time after time t̄k. Figure 6 shows that the scheme proposed in this paper for

numerical evaluation of convolution integrals is very efficient.

6 Numerical Examples

The procedure proposed in this paper can be used in the analysis of dynamic soil-structure in-

teraction and wave scattering by three dimensional surface irregularities. Seismic excitations and

externally applied transient loadings can be included in analysis.

6.1 Spherical cavity embedded in full-space

As a check on the new scheme, a spherical cavity embedded in a full space is analyzed and subjected

to a spatially uniform application of pressure. This is a one spatial dimensional problem and its

analytical solution is available[11]. The following pressure pulse is applied in the radial direction to

the wall of the cavity with t0 = 3.46r0/cp,

p(t) =

½ p0
2
(1− cos 2πt

t0
) 0 ≤ t ≤ t0

0 t < 0, t > t0,
(16)
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Structure-soil Interface

20-nodes Brick element

Figure 7: Finite element mesh of the spherical cavity embedded in full space

where r0 is the radius of the cavity and cp the speed of the dilatational wave.

Due to symmetry, only one octant of the cavity is modelled. A portion of the soil adjacent to the

wall is treated as the structure and discretized by three twenty-node brick elements with 3×3×3
Gaussian integration (figure 7) and the structure-soil interface is discretized by three eight-node

isoparametric interface elements with 3×3 Gaussian integration. To compare with available results,
the dimensionless time t̄ is defined by t̄ = tcp/r0, and the dimensionless displacement ū(t̄) is defined

by ū(t̄) = u0(t̄)K∞
4πr20p0

, where K∞ = 16πGr0 is the static-stiffness coefficient.

This example is analyzed for four different cases: rigorous case without approximation, approx-

imation in time only, approximation in space only, and approximation in both space and time. For

the case of approximation in time, the acceleration unit-impulse response matrix is approximated

by five linear segments before dimensionless time t̄k = 5.2, and approximated as a linear function

of time after t̄k. For the case of approximation in space, the soil-structure interface is divided into

three substructures, with only one element in every substructure. This is the extreme case, and

will lead to the worst results among all possible approximations in space. This case can be used to

assess critically the accuracy of the approximation in space proposed in this paper. Figures 8.a and

8.b present the dimensionless acceleration unit-impulse response coefficients and the dimensionless

displacement response of the spherical cavity embedded in full-space for these four different cases.

For the extreme case of approximation in space, excellent results are still achieved within the load-

ing duration (t̄ ≤ 3.46). After time t̄ = 3.46, the vibration of the system is a free vibration, which

is usually of no interest in earthquake engineering.

6.2 Wave scattering by hemi-spherical cavities

To compare with existing analytical results, the scattering of plane harmonic waves by hemi-

spherical cavities in the homogeneous elastic half space is analyzed. The dimensionless frequencies,

ηs and ηp, are defined throughout the following sections as
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Figure 8: (a). Dimensionless acceleration unit-impulse response coefficient, E(t)/E(0), of the spherical
cavity embedded in full-space versus dimensionless time. E(t) is the summation of all elements of the
unit-impulse response matrix at time t and E(0) = E(t = 0); (b). Dimensionless displacement response
of the spherical cavity.

ηs =
2R

λs
, ηp =

2R

λp

where λp is the wavelength of the dilatational wave, λs is the wavelength of the shear wave, and

2R is the maximum width of a cross-section of the surface irregularities, which lie in the x-z plane

passing through the centre of the surface irregularities. The scattering motion depends on the

dimensionless frequencies and Poisson’s ratio ν.

In the present analysis, two groups of elements are used, one is used to discretize the structural-

soil interface (the surface of the cavity in this case), while the other is used to discretize the

excavated soil (hemi-sphere) which will form the half space together with the structure-soil interface

to determine the seismic free-field input motion (see figure 2). The finite element model is generated

by rotating figure 9, 360◦ about the z-axis in 15◦ increments. The model consists of 534 nodes, 504

eight-node three-dimensional elements for the excavated soil and 144 four-node two-dimensional

elements for the soil-structure interface.

To investigate the efficiency and accuracy of the proposed approximation in space, two finite

element models are used to idealize the soil-structure interface and no approximation is introduced

in time. In the first model, the whole interface is treated as one substructure so that there are

144 four-node two-dimensional elements and 145 nodes on the soil-structure interface, and the unit-

impulse response matrix will be a full square matrix of order 435. In the second model, the interface

is divided into 4 substructures; every substructure consists of a quarter of the interface. Point o is

chosen as the similarity center for all four substructures. There are 36 four-node two-dimensional
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Figure 9: A cross section of the finite element mesh

elements and 43 nodes in every substructure so that the unit-impulse response matrix for every

substructure will be a full matrix of order 129 and the unit-impulse response matrix of the whole

soil-structure interface will be a highly sparse matrix. According to the analysis in section 4.2, the

computational effort is reduced from that for the rigorous method by a factor of about 10 in this

case. Actually, this factor is about 15, see figure 5.b.

In this numerical example, no structure is actually introduced into the soil-structure interac-

tion system, so the ground interaction force is directly applied to the surface of the cavity. The

dimensionless time steps t̄ (t̄ = tπcs/R) for both the time integration and the calculation of the unit-

impulse response matrix are all set to 0.0697. Figure 10 shows the amplitudes of the y-component

of the surface displacement at stations along x-axis for the incident SH waves at angles of inci-

dence of 90◦ and 60◦ measured from the horizontal to the direction of incidence for dimensionless

frequency ηs = 0.75 and Poisson’s ratio ν = 1/3. The control point is chosen at point o and the

control motion is the harmonic motion with amplitude of 2 which corresponds to a unit-amplitude

incident SH wave. It can be concluded from these results that the approximations in space lead

to little accuracy loss while reducing the computational effort required significantly, so that the

approximation schemes are very attractive for engineering problems.

To estimate the scattering motion on the surface of the cavity and half-space, another different

finite element model is used, in which a portion of soil adjacent to the surface of the cavity is

treated as structure and discretized by eight-node brick elements. The finite element model for a

hemispherical cavity is generated by rotating figure 11, 360◦ about z-axis in 11.25◦ increments. The

model consists of 1030 nodes, 512 eight-node brick elements for structure and 480 eight-node brick

elements for the excavated soil. The soil-structure interface is divided into 4 substructures and each

substructure consists of a quarter of the interface and modeled by 64 four-node 2-D elements. The

acceleration unit-impulse response matrix is a sparse matrix and is approximated as a piece-wise

16
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Figure 10: Amplitudes of the y-component of the surface displacement at the stations along x-axis for the
incident SH waves at angles of incidence of 90◦ and 60◦. Dimensionless frequency ηs = 0.75, and Poisson’s
ratio ν = 1/3.

linear function of time before dimensionless time t̄k = 8.377 (t̄k = tkπcp/R) and a linear function

of time after t̄k. Only four linear segments are used to approximate the acceleration unit-impulse

response matrix before time t̄k.

Figure 12 shows the dimensionless surface amplitudes of vertical and horizontal displacements

of a hemispherical cavity at stations along x-axis for incident P wave at angle of incidence of

90◦ and 60◦, for the dimensionless frequency ηp = 0.25, and 0.5, respectively. Figure 13 shows

the dimensionless surface amplitudes of vertical and horizontal displacements of the hemispherical

cavity at stations along x-axis for vertically incident SV wave, for the dimensionless frequency

ηs = 0.75. Note that for a half-space, displacements would be vertical with amplitude of two for a

vertically incident P wave, and horizontal with amplitude of two for a vertically incident SV wave.

Numerical results for incident waves with low frequency, say ηp ≤ 0.5, are in good agreement with
those obtained from the wave expansion function method[14]. However, accuracy of the numerical

results decreases with the increase in the value of ηp. Thus the approximations proposed are suitable

for problems with low frequency. Because the frequency range involved in earthquake engineering

is usually below ηp = 0.5, this restriction does not prevent the application of the new scheme

to earthquake engineering problems. For higher frequency problems, a finer finite element model

must be used and the acceleration unit-impulse response matrix should be approximated by linear

segments with smaller size. This will significantly increase the computational effort required.
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Figure 11: A cross section of the finite element model
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Figure 12: Surface amplitudes of a hemispherical cavity for incident P wave at angle of incidence of 90◦

and 60◦, respectively. Dimensionless frequency ηp = 0.25, and 0.5. Poisson’s ratio ν = 0.25. Circles and
dots correspond to the results obtained by the present method, while solid lines correspond to the results
obtained by Sanchez-Sesma[14].
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Figure 13: Surface amplitudes of a hemispherical cavity for vertically incident SV wave. Dimensionless
frequency ηs = 0.75. Poisson’s ratio ν = 0.333. Circles and dots correspond to the results obtained by
the present method, while solid lines correspond to the results obtained by Eshraghi[15].

6.3 Wave scattering by cubic cavity

Due to the complexity of three dimensional surface irregularities, analytical methods are only ap-

plicable for some special geometries, such as a hemisphere or a semi-ellipsoid. However, wave

scattering and diffraction by other kind of three dimensional surface irregularities are of interest in

earthquake engineering studies. For example, foundations are a common type of three-dimensional

surface irregularities in civil engineering and earthquake engineering. The wave scattering and dif-

fraction by this type of surface irregularities are very difficult to obtain by analytical methods, and

no comparable results are available. The new scheme proposed in this study can be used to study

the scattering and diffraction of seismic waves by any realistic three-dimensional surface irregular-

ities. As an example, the scattering of SH-, SV - and P -waves by a cubic cavity, representing the

excavation for a foundation, are studied in detail (figure 14).

In this study, no structure exists and only the surface of the cavity needs to be modeled. The

soil-structure interface is modeled by five substructures and each of them is idealized by 64 four-

node two-dimensional elements and consists of 81 nodes. Figure 15 shows the surface amplitudes

of the cavity at stations along x-axis for incident P -, SH-, and SV - waves at angles of incidence of

90◦ and 60◦ measured from the horizontal to the direction of incidence. In figure 15, l is measured

along the surface of the cavity.

6.4 Wave scattering by hemispherical alluvial deposit

Material properties for the deposit R and the half space E are assumed to be related byGR = 0.3GE

and ρR = 0.6ρE, where G is shear modulus and ρ is density, with Poisson’s ratio νR = 0.3 and

νE = 0.25, respectively.
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Figure 14: A cubic cavity

The finite element model used here is similar to that shown in figure 11. The model consists of

1030 nodes, 992 eight-node brick elements for both excavated soil and structure. The soil-structure

interface is divided into 4 substructures consequently the acceleration unit-impulse response matrix

is a sparse matrix. The approximations used for the unit-impulse response matrix are the same as

section 6.2. Figure 16 presents the surface amplitudes of vertical and horizontal displacements at

stations along x-axis for incident P -, SV - and SH-waves at angle of incidence of 90◦ and 60◦ with

a dimensionless frequency ηp = 0.5, respectively.

6.5 Wave scattering by cubic alluvial deposit

As already noted, foundations are a common type of a three-dimensional surface irregularity and

wave scattering and diffraction by foundations are of interest in earthquake engineering studies.

Consequently, wave scattering and diffraction by a cubic alluvial deposit are studied. Material

properties for the deposit R and the half space E are assumed to be the same as section 6.4 and

the finite element model is similar to section 6.3.

Figure 17 shows the surface amplitudes of the cubic alluvial deposit at stations along x-axis for

incident P -, SH-, and SV - waves at angle of incidence of 90◦ and 60◦ measured from the horizontal

to the direction of incidence, respectively.

6.6 Wave scattering by semicylindrical deposit

The wave scattering by a semicylindrical deposit is studied and the results are compared with those

obtained by two dimensional analysis[17]. To compare with the results obtained by two dimensional

analysis, the model is assumed to be of the plane strain type by eliminating all degrees of freedom in
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Figure 15: Surface amplitudes of a cubic cavity for incident waves at angle of incidence of 90◦ and 60◦,
respectively. Poisson’s ratio ν = 0.25. (a) and (b): P -wave, dimensionless frequency ηp = 0.25; (c)
and (e): SV -wave, dimensionless frequency ηs = 0.25; (e) and (f): SH-wave, dimensionless frequency
ηs = 0.25;
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Figure 16: Surface amplitudes of a hemispherical deposit for incident waves at angle of incidence of 90◦

and 60◦. (a) and (b): P -waves. Dimensionless frequency ηp = 0.5; (c) and (d): SV -waves. Dimensionless
frequency ηs = 0.5; (e) and (f): SH-waves. Dimensionless frequency ηs = 0.5. In (a), circles and dots
correspond to the results obtained by the present method, while solid lines correspond to the results
obtained Sanchez-Sesma[14].
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Figure 17: Surface amplitudes of a cubic deposit for incident waves at angle of incidence of 90◦ and
60◦, respectively. (a) and (b): P -wave. Dimensionless frequency ηp = 0.25; (c) and (d): SV -wave.
Dimensionless frequency ηs = 0.25; (e) and (f): SH-wave. Dimensionless frequency ηs = 0.25;
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y-direction. The soil-structure interface is divided into 6 substructures and therefore the acceleration

unit-impulse response matrix is sparse. The response matrix is approximated by 5 linear segments

before dimensionless time t̄k = 15.10 ( t̄k = t̄πcp/R), and the dimensionless time step used for the

calculation of the response matrix is 3.02. In order to compare the results with those in [17], the

dimensionless material properties of the half-space are taken to be: G = 1, cs = 1, and cp = 2,

while the dimensionless material properties of the deposit are taken to be: G = 1/6, cs = 1/2, and

cp = 1. Poisson’s ratio for both materials is chosen to be 1/3, and the radius of the deposit R = 1.

Figure 18 presents the surface amplitudes of the deposit at stations along x-axis for incident P -,

SV - and Rayleigh-waves, for the dimensionless frequency ηs = 0.5.
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Figure 18: Surface amplitudes of a semicylindrical deposit for vertically incident P, SV and Rayleigh
waves, respectively. Dimensionless frequency ηs = 0.5. Solid lines represent results obtained by the
present method, while dots and circles represent results obtained by Dravinski[17] for 2-D semicircular
deposit.
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6.7 Wave scattering by a hemispherical mountain

The scattering of a vertically incident SH wave by a hemispherical mountain is studied. The

dimensionless parameters selected, are the same as for the hemispherical cavity. The finite element

model is generated by rotating figure 19, 360◦ about the z-axis in 15◦ increments. The Point O is

selected as the control point and the control motion is the harmonic motion with amplitude of 2.

Figure 20 presents the surface displacement amplitudes of the mountain for the vertically incident

SH wave at the stations along x-axis, y-axis and x = y axis, respectively.

x

z

O

Soil-Structure Interface

Figure 19: A section of the finite element model for the hemispherical mountain
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Figure 20: Surface displacement amplitudes at stations along x-axis and y-axis, respectively
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7 Concluding Remarks

Three dimensional dynamic soil-structure interaction analysis is a computationally intensive task,

consequently it is desirable to develop efficient numerical procedures for engineering problems. The

computational effort could be reduced to an acceptable level with only a little accuracy loss by

using following strategies:

1. The unit-impulse response matrices are approximated by a few linear segments before time

tk, and approximated as a linear function of time after time tk. This approximation results in

a very efficient scheme for evaluation of the convolution integral which is a computationally

intensive task in a soil-structure interaction analysis.

2. The structure-soil interface is divided into several substructures and the global unit-impulse

response matrix, which is a sparse matrix, is obtained by assembling those for every substruc-

ture. This approximation results in a significant reduction in computational effort for the

calculation of the unit-impulse response matrix with little loss of accuracy.

3. The computational effort required for the calculation of the acceleration unit-impulse response

matrix can be further reduced significantly by using a very large time step, say tk/5, in the

calculation of the acceleration unit-impulse response matrix. Usually only four or five time

steps are adequate.

The numerical procedure presented in this paper can be used to study the scattering and dif-

fraction of incident seismic wave by any three-dimensional surface irregularities and other dynamic

soil-structure interaction problems. Numerical studies show that the new scheme is applicable to

earthquake engineering problems, for which the frequency range involved is usually below ηp = 0.5.
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