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SUMMARY

A procedure which involves a non-linear eigenvalue problem and is based on the substructure method
is proposed for the free-vibration analysis of a soil–structure system. In this procedure, the structure is
modelled by the standard �nite element method, while the unbounded soil is modelled by the scaled
boundary �nite element method. The fundamental frequency, and the corresponding radiation damp-
ing ratio as well as the modal shape are obtained by using inverse iteration. The free vibration of a
dam–foundation system, a hemispherical cavity and a hemispherical deposit are analysed in detail. The
numerical results are compared with available results and are also veri�ed by the Fourier transform
of the impulsive response calculated in the time domain by the three-dimensional soil–structure–wave
interaction analysis procedure proposed in our previous paper. The fundamental frequency obtained by
the present procedure is very close to that obtained by Touhei and Ohmachi, but the damping ratio and
the imaginary part of modal shape are signi�cantly di�erent due to the di�erent de�nition of damping
ratio. This study shows that although the classical mode-superposition method is not applicable to a
soil–structure system due to the frequency dependence of the radiation damping, it is still of interest in
earthquake engineering to evaluate the fundamental frequency and the corresponding radiation damping
ratio of the soil–structure system. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dynamic interactions at soil–structure interfaces play an important role in the seismic
response of structures. These interactions cause energy dissipation, and change the natural
modes of vibration of the structure such as natural frequencies and the corresponding mode
shapes. This has motivated many numerical studies to evaluate these interactions. Based on the
direct method, many kinds of transmitting boundaries [1; 2] have been developed over the past
two decades to satisfy the radiation condition. Many hybrid methods (coupling methods) [3–5]
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have also been developed based on the substructure method, where the structure and an adjacent
�nite region of soil are modelled by the standard �nite element method, while the unbounded
soil is modelled by the boundary element method or the scaled boundary �nite element method
[7], which is otherwise called the consistent in�nitesimal �nite element cell method [8]. Most of
these studies are mainly concerned with the energy dissipation caused by dynamic interactions.
However, for a close investigation of the interaction e�ects on a structure–soil system, it is
desirable to evaluate the free-vibration frequencies, especially the few low-frequency modes of
vibrations. Touhei and Ohmachi proposed a modal analysis procedure [6] based on an FE–BE
method in the time domain along with the classical mode-superposition method and applied it
to a dam–foundation system. In their procedure, the eigenvalues are evaluated from the poles
of the frequency response function, which is calculated by the FE–BE method.
Because the dynamic-sti�ness matrix is frequency dependent and complex, the orthogonality

condition is not satis�ed for a soil–structure system. Consequently, the equations of motion
cannot be uncoupled, and the classical mode-superposition method is not applicable to the
soil–structure system. However, it is still of interest in earthquake engineering to investigate
the free-vibration frequencies and the corresponding radiation damping ratios, especially for
the modes of vibration with the lowest frequencies.
In the substructure method, the e�ect of the unbounded soil on the structure is represented by

a force–displacement relationship. Based on the substructure method, a non-linear eigenvalue
problem is obtained in this paper for the analysis of the free vibration of a three-dimensional
soil–structure system. The scaled boundary �nite element method is then used to model the
unbounded soil, while the �nite element method is used to model the structure. Inverse it-
eration is used to solve the non-linear eigenvalue problem. The fundamental frequency and
the corresponding radiation damping ratio as well as the eigenvector are obtained. The free
vibration of a dam–foundation system, a cavity and a deposit are analysed in detail. The re-
sults obtained by this method are also veri�ed by using the Fourier transform of the impulsive
response of a soil–structure system calculated by the three-dimensional soil–structure–wave
interaction analysis procedure proposed in Reference [5].

2. BASIC EQUATION

2.1. Equations of motion

For a soil–structure system without applied force, the equations of motion of the structure in
the frequency domain can be expressed as [9][

Sss(!) Ssb(!)
Sbs(!) Sbb(!)

]{
uts(!)
utb(!)

}
=
{

0
−rb(!)

}
(1)

where the dynamic sti�ness matrix S of the structure is calculated as

S(!)=K(1 + 2�hi)−!2M (2)

in which �h is the damping ratio, M is the mass matrix, C is the viscous damping matrix,
K is the sti�ness matrix of the structure, u(!) is the displacement vector, and rb(!) is the
ground interaction force. In (1), the subscripts b, and s denote the nodes on the soil–structure
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Figure 1. Soil–structure system.

interface, and the remaining nodes of the structure, respectively, as shown in Figure 1, and
the superscript t denotes the total motion of the structure.

2.2. Ground interaction force

The ground interaction forces, rb(!), play an important role in the free vibration of a soil–
structure system because they represent the e�ects of the unbounded soil on the structure. It
makes the equations of motion (1) for free vibration of a soil–structure system more di�cult
to solve. The ground interaction forces rb(!) are given by

rb(!)= �S
g
bb(!)(u

t
b(!)− ugb(!)) (3)

where the superscript g denotes the unbounded soil with excavation, ugb(!) is the displacement
at the nodes b (which subsequently lie on the structure–soil interface) of the ground with
excavation, and �Sgbb(t) is the dynamic sti�ness matrix of the ground with excavation which is
calculated by the scaled boundary �nite element method in the frequency domain [8].
For free vibrations of the soil–structure system, the scattered motion of incident waves,

ugb(!)=0.

2.3. Non-linear eigenvalue problem

Substituting Equation (3) into Equation (1) results in(
(1 + 2�hi)

[
Kss Ksb

Kbs Kbb +
�Sgbb(!)
(1+2�hi)

]
−!2

[
Mss Msb

Mbs Mbb

]){
uts
utb

}
=0 (4)

Equation (4) is a non-linear eigenvalue problem. The dynamic-sti�ness matrix is a frequency-
dependent complex matrix, hence Equation (4) is more di�cult to solve. There are several
methods to solve this non-linear eigenvalue problem, such as the inverse iteration method [10],
Newton’s method [11], and Jacobi–Davidson iterations method [12].
The free-vibration frequencies and the corresponding modal shapes can be obtained as the

solution of Equation (4), but the orthogonality condition is not satis�ed for the soil–structure
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system, consequently the modal shapes cannot be used to uncouple the equations of motion to
solve them e�ciently. However, the free-vibration frequencies and the corresponding radiation
damping ratios of the lowest few modes of vibration are still of interest in earthquake engineer-
ing. It is possible to obtain all free-vibration frequencies and the corresponding mode shapes,
but the fundamental frequency of a soil–structure system is the most important in earthquake
engineering. The inverse iteration is used in this paper to evaluate the fundamental frequency,
the corresponding radiation damping ratio and the mode shape e�ciently from Equation (4).
For the case in which no structure exists, Equation (4) cannot be solved directly. To over-

come this di�culty, the complex dynamic-sti�ness matrix �Sgbb(!) is decomposed as

�Sgbb(!)= �Kgbb + �S
g1
bb(!) (5)

where the matrix �Kgbb= �S
g
bb(0) is a real matrix, which represents the static sti�ness matrix of

the unbounded soil. Substituting Equation (5) into Equation (4) leads to

[(1 + 2�hi)K −!2 �M(!)]ut = 0 (6)

where

K=

[
Kss Ksb

Kbs Kbb +
�Kgbb

(1+2�hi)

]

�M(!) =

[
Mss Msb

Mbs Mbb + �Mg1
bb(!)

]

�Mg1
bb(!) =

{
− �Sgbb(!)− �Kgbb

!2 for !¿0
0 for !=0

The inverse iteration solution of Equation (6) is formulated by

ut(0) = [1; 1; : : : ; 1]T

K�ut( j) = �M(!( j−1))ut( j−1)

ut( j) =
�ut( j)

max(�ut( j))
(7)

�( j) =
(�ut( j))T �M(!( j−1))ut( j−1)

(�ut( j))T �M(!( j−1))�ut( j)

!( j) =
√
�( j)(1 + 2�hi)

where max(�ut( j)) is the largest element of the �ut( j) which is used to normalize the �ut( j). In
Equation (7), the matrix K is a complex constant matrix, therefore it is factored only once
throughout the iterations. From Equation (7), the fundamental frequency, the corresponding
radiation damping ratio and mode shape can be obtained. The free-vibration frequency of the
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jth mode of vibration obtained from Equation (7) or Equation (4) can be expressed in the
following form:

!j= aj + ibj (8)

where aj and bj are the real and imaginary parts of !j. The free-vibration motion of the jth
mode can be written as

utj(t)= u
t
j exp(−bjt + iajt) (9)

Equation (9) represents the free vibration of a damped system. The free-vibration frequency
of the damped system of the jth mode of vibration, !Dj , and the corresponding damping ratio,
�j, can be obtained as

!Dj = aj (10)

�j =
bj√
a2j + b2j

(11)

respectively.
If the hysteretic damping ratio of a structure, �h, is equal to zero, the damping ratio �j

obtained from Equation (11) is the radiation damping ratio. Otherwise, the e�ect of hysteretic
damping is included in the damping ratio �j. Consider any two positive peaks which are m
cycles apart, such as unj and u

n+m
j which occur at times n(2�=aj) and (n+m)2�=aj, respectively.

Using Equation (9), the ratio of these two values is given by

unj =u
n+m
j = exp(2�mbj=aj) (12)

The damping ratio, �j, follows from Equations (11) and (12) as

�j=
�√

4�2m2 + �2
(13)

where �= ln unj =u
n+m
j .

3. ANALYTICAL EXAMPLE

3.1. Spherical cavity embedded in full-space

The free vibration in radial direction of a spherical cavity embedded in full space is analysed.
The dynamic-sti�ness matrix is given by [8]

�Sgbb(a0)=K
∞
(
1− �a20

1 + a20
+ ia0

�a20
1 + a20

)
(14)

where the non-dimensional frequency a0 =!r0=cp, the static-sti�ness coe�cient K∞=16�Gr0,
�=(1− �)=2(1− 2�); r0 is the radius of the cavity, cp is the dilatational wave velocity, G is
the shear modulus, and � is Poisson’s ratio.
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In this case, no structure exists, that is Kss=Ksb=Mss=Msb=Css=Csb=0 in Equation
(4). Substituting Equation (14) into Equation (4) leads to

K∞
(
1− �a20

1 + a20
+ ia0

�a20
1 + a20

)
U t
b =0 (15)

Solving Equation (15) for the non-dimensional frequency, a0, gives

a0 =
1
2�
(i±

√
4� − 1) (16)

The radiation damping ratio � and the free-vibration frequency !D of the spherical cavity
are given by

!D =
cs
r0

√
2

1− � (17)

�=

√
1− 2�
2(1− �) (18)

Equations (17) and (18) show that the free-vibration frequency of the spherical cavity
embedded in full space in the radial direction varies between

√
2cs=r0 and 2cs=r0, while the

radiation damping ratio varies between 0 and
√
2=2. The radiation damping ratio only depends

on Poisson’s ratio. The ratio of two successive positive peaks follows from Equations (12)
and (16)

un=un+1 = exp

(
2�√
4� − 1

)
(19)

To verify the free-vibration frequency and the radiation damping ratio given by Equations
(17) and (18), the impulsive response of the cavity is analysed in the time domain. The
following pressure pulse

p(t)=



p0
2

(
1− cos 2�t

t0

)
; 06 t 6 t0

0; t¿t0

(20)

is applied uniformly to the wall of the cavity in the radial direction, where t0 = 3:46 r0=cp. The
Poisson’s ratio � is assumed to be 0.495. In the non-dimensional displacement response of the
cavity to the pressure pulse as shown in Figure 2, the second positive peak u2 = 0:1605 occurs
at time �=39:878 while the third positive peak u3 = 0:0856 occurs at time �=71:628. The
free-vibration frequency and the damping ratio can be obtained from the impulsive response
of the cavity as !Dr0=cs=1:989 and �=0:0995, which are the same as those calculated by
Equations (17) and (18).
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Figure 2. Displacement response.

Figure 3. A mass–spring system connected to a semi-in�nite rod on elastic foundation.

3.2. Mass–spring system connected to a semi-in�nite rod on elastic foundation

To illustrate the e�ect of unbounded soil on the free vibration of a structure in a soil–structure
system, the free vibration of a mass–spring system, which is connected to a semi-in�nite rod
on an elastic foundation as shown in Figure 3, is studied.
In this spring–mass system, hysteretic damping is included by introducing the complex

sti�ness coe�cient k∗0 = k0(1 + 2�hi), where �h is the damping ratio and k0 is the sti�ness
coe�cient of the spring. In Figure 3, the area of the cross-section of the semi-in�nite rod is
denoted by A, the mass density by �, the modulus of elasticity by E, and the static spring
sti�ness per unit length of the elastic foundation by kg. The dynamic sti�ness coe�cient,
�Sgbb(!), of the semi-in�nite rod on an elastic foundation is given by [8]

�Sgbb(!)=K
∞
√
1− a20 (21)

where the static-sti�ness coe�cient K∞=
√
EAkg, and the non-dimensional frequency a0 =

!
√
A�=kg.
The dynamic-sti�ness matrix of the semi-in�nite rod on elastic foundation is a complex

matrix, which is equivalent to a frequency-dependent spring and a frequency-dependent damper.
Consequently, the mass–spring system connected to a semi-in�nite rod on elastic foundation
is equivalent to the system shown in Figure 4.
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Figure 4. Equivalent system.

Substituting Equation (21) into Equation (4) results in
!

2
0 −!2 −!20
−!20 !20 −!2 +

K∞

m0

√
1− a20


( Us

Ub

)
=0 (22)

where !20 = (1 + 2�hi)k0=m0.
Assume the dimensionless material quantities to be k0=m0 = 1; K∞=m0 = 1; A�=kg=1. Solv-

ing Equation (22) results in

!1 = 0:57354; !2 = 1:3455 + 0:1491i(
Us
Ub

)
1
=
(

1
0:6711

)
U;

(
Us
Ub

)
2
=
(

1
−0:7882− 0:4014i

)
U

for �h=0, and

!1 = 0:58128 + 0:01887i; !2 = 1:33191 + 0:44645i(
Us
Ub

)
1
=
(

1
0:7015 + 0:0975i

)
U;

(
Us
Ub

)
2
=
(

1
−0:7666− 0:4666i

)
U

for �h=0:2, where U is a complex constant which is determined by the initial conditions. The
free-vibration frequencies and the damping ratios of the system are obtained as

!D1 =0:5735; �1 = 0
!D2 =1:3455; �2 = 0:11

for �h=0, and

!D1 =0:5813; �1 = 0:03
!D2 =1:3319; �2 = 0:32

for �h=0:2. If the semi-in�nite rod does not exist, e.g. S
g
bb(!)=0, the free-vibration frequen-

cies and the corresponding modal shapes of the mass–spring system for �h=0 are

!1 = 0; !2 =
√
2(

Us
Ub

)
1
=
(
1
1

)
U;

(
Us
Ub

)
2
=
(
1
−1
)
U
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Comparison of the free-vibration frequencies and modal shapes of the two systems shows
that the unbounded soil not only a�ects the free-vibration frequencies, but also the modal
shapes and phase angles. The frequencies and radiation damping ratios for di�erent vibration
modes can be obtained from Equations (10) and (11).

4. NUMERICAL STUDIES

4.1. Free vibration of a dam–foundation system

Touhei and Ohmachi evaluated the natural modes of vibration of a dam–foundation system
shown in Figure 5 from the impulsive response calculated by the FE–BE method [6]. In their
study, it is assumed that the impulsive response of the dam–foundation system calculated by
the FE–BE method can be approximately represented by the classical mode superposition, so
that the equations of motion can be decoupled. Based on this assumption, the free-vibration
frequencies, equivalent damping ratios and mode shapes of the system are obtained.
To compare our results with available results, the same dam–foundation system is analysed

by the present method. The model is made up of a triangular elastic homogeneous earthdam
and an elastic homogeneous semi-in�nite foundation. The deformation is assumed to be plane
strain. The dam is modelled by the �nite element method, while the foundation is modelled
by the scaled boundary �nite element method as shown in Figure 6. In this model, the soil
adjacent to the dam is treated as a part of the structure, and the surface of the soil is treated
as the soil–structure interface. Six cases are analysed, as shown in Table I. In Table I, the
impedance ratio is de�ned as the ratio of the shear wave velocity of the dam to the shear
wave velocity of the foundation since the density of the dam is assumed to equal the density
of the foundation. Poisson’s ratio is assumed to be 0.3 for both the dam and the foundation
in all cases. The fundamental frequency and the corresponding radiation damping ratio are
compared with those of Touhei and Ohmachi in Table II. The hysteretic damping ratio of the
dam is taken as 0.0, 0.1, 0.2, and 0.3, respectively. The corresponding modal shape is shown
in Figure 7 for �h=0, for case 4. The real part of the vibration shape is very close to that of
Touhei and Ohmachi, but the imaginary part is di�erent.
The fundamental frequencies obtained by the present method are very close to those ob-

tained by Touhei and Ohmachi, but the damping ratios are signi�cantly di�erent. Actually, the
damping ratios obtained by Touhei and Ohmachi are the equivalent damping ratios, instead of
the radiation damping ratios. The equations of motion of the dam–foundation system can be
decoupled by introducing these equivalent damping ratios. The damping ratios obtained in the
present method are the true radiation damping ratios if �h is equal to zero, which are obtained
directly from the equations of motion of free vibration of the dam–foundation system and
cannot be used to decouple the equations of the motion of the system. Hence, the damping
ratios and the imaginary part of mode shapes obtained in the present method are di�erent from
those obtained by Touhei and Ohmachi.
To verify the results obtained by the present method, the force pulse,

P=
(
1− cos 2�

T
t
)
; t 6 T (23)
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Figure 5. A dam–foundation system.

Figure 6. Finite element model of the dam–foundation system.

Table I. Case analysis.

Shear wave velocity cs (m=s) Impedance
Dam Foundation ratio

Case 1 300 1000 0.3
Case 2 2000 0.15
Case 3 3000 0.10
Case 4 500 1000 0.50
Case 5 2000 0.25
Case 6 3000 0.17

where T is the duration of the pulse, is applied at the top of the dam for case 4 (impedance
ratio equals 0.5). An analysis is performed for two values of the duration T , namely, 0:6 s, and
0:05 s. Figure 8 shows the displacement responses at the top of the dam to the force pulses (23)
and the amplitudes of their Fourier transform. For the force pulse with duration T =0:6 s, only
the �rst mode of vibration is excited, while for the force pulse with duration T =0:05 s, many
modes of vibration are excited. The fundamental frequency and the corresponding radiation
damping ratio calculated from Figure 8(a) are 1.633 and 1.03 per cent, which are very close
to those obtained by the present method.
To study the e�ect of the unbounded soil on the free vibration of a dam, the free vibration

of the same dam laid on a rigid foundation is analysed. The fundamental frequencies and the
corresponding damping ratios for the six cases are listed in Table III.
A comparison of Tables II and III shows that the fundamental frequency and the corre-

sponding damping ratio of the dam–foundation system are very close to those of the same
dam laid on a rigid foundation when the impedance ratio of the dam–foundation system
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54 J. L. WEGNER AND X. ZHANG

Figure 7. Vibration shapes for �h=0, for case 4.

Figure 8. Displacement response at the top of the dam to the force pulse for case 4. In (a) and (b),
the duration of the pulse equals 0:6 s, while in (c) and (d), the duration of the pulse equals 0:05 s.

is less than 0.3. However, due to the e�ect of the radiation damping of the non-rigid foundation,
the response of these two systems to the same applied load is quite di�erent, as shown in
Figure 9.

4.2. Free vibration of a hemispherical cavity

The fundamental frequency and the corresponding radiation damping ratio of a hemispherical
cavity are studied. In this case, only the surface of the cavity is discretized. The surface of
the cavity is modelled by 12 eight-node two-dimensional isoparametric elements. Figure 10
illustrates the front view of the �nite element mesh. The Poisson’s ratio is assumed to be 0.25,
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Table III. Fundamental frequencies and the corresponding damping ratios
of the dam laid on a rigid foundation.

Hysteretic damping ratio �h
cs (m=s) 0.0 0.1 0.2 0.3 0.4 0.5

300 Freq. (Hz) 1.03 1.03 1.05 1.07 1.10 1.13
Damp (%) 0.0 9.85 18.91 26.69 33.10 38.27

500 Freq. (Hz) 1.71 1.72 1.75 1.78 1.83 1.88
Damp (%) 0.0 9.85 18.91 26.69 33.10 38.27

Figure 9. Displacement response at the top of the dam to the pulse force for case 4. The duration of
the pulse force equals 0:5 s.

Figure 10. The front of view of the �nite element mesh for the hemispherical cavity.

and the non-dimensional frequency, �p, is de�ned as

�p =
!R
�cp
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Figure 11. A quarter of the �nite element mesh for the hemispherical deposit.

where R is the radius of the cavity, cp is the dilatational wave velocity in half-space, !
is the circular frequency. The non-dimensional fundamental frequency and the corresponding
radiation damping ratio are obtained as

�pD = 0:097
�=0:686

Wave scattering by the same hemispherical cavity was studied in the time domain in
Reference [5], in which the numerical studies show that the numerical results are in good
agreement with those obtained by the wave function expansion method for incident waves
with low frequencies, say �p 6 0:5, which equals about 5 times the fundamental frequency
of the cavity. Hence, this restriction on frequency does not prevent the application of the
procedure proposed in Reference [5] in earthquake engineering problems.

4.3. Free vibration of a hemispherical deposit

Material properties for the deposit R and the half-space E are assumed to be related by
GR=0:3GE and �R=0:6�E , where G is the shear modulus and � is the density, with Poisson’s
ratio �R=0:3 and �E =0:25, respectively. The soil–structure interface is modelled by 12 eight-
node two-dimensional isoparametric elements, while the deposit is modelled by 24 twenty-node
three-dimensional isoparametric elements. Figure 11 illustrates a quarter of the �nite element
mesh. The non-dimensional fundamental frequency and the corresponding radiation damping
ratio are obtained as

�pD = 0:105
�=0:653

The wave scattering by the same deposit was analysed numerically in Reference [5], for
the non-dimensional frequency �p = 0:5. The ratio of the non-dimensional frequency, �p, to
the non-dimensional fundamental frequency, �pD, is less than 5, hence the numerical results
obtained in Reference [5] are in good agreement with analytical results.
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5. CONCLUDING REMARKS

Owing to the frequency dependence of the radiation damping, the orthogonality condition for
the modes is not satis�ed for a soil–structure system, hence the classic mode-superposition
method is not applicable to the soil–structure system. However, it is still of interest in earth-
quake engineering to evaluate the fundamental frequency, and the corresponding radiation
damping ratio.
The fundamental frequency obtained in this paper is very close to that obtained by Touhei

and Ohmachi, but the corresponding damping ratio and the imaginary part of modal shape are
signi�cantly di�erent. This is due to the di�erent de�nition of the damping ratio. The damping
ratio obtained by Touhei and Ohmachi is an equivalent damping ratio, which can be used
to decouple the equations of motion of the dam–foundation system. However, the damping
ratio obtained in the present paper is the actual radiation damping ratio, which is obtained by
solving the non-linear eigenvalue problem.
The procedure proposed in this paper can be used to evaluate e�ciently the fundamental

frequency, and the corresponding radiation damping ratio as well as the modal shape. It is easy
to extend the present procedure to obtain all free-vibration frequencies and the corresponding
radiation damping ratios as well as modal shapes by employing a scheme, such as Newton’s
method, to solve the non-linear eigenvalue problem.
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