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ABSTRACT 

Limit equilibrium methods are widely used for the stability analysis of slopes, embankments, and 

excavations. These methods do not satisfy the overall equilibrium conditions, consequently, several 

assumptions regarding the interslice forces must be made for the problem to be solvable. Based on the 

ideas of the limit analysis and the rigid finite element method, a slope stability analysis method is 

proposed in this paper to avoid these drawbacks. A slope is treated as a number of slices with any 

arbitrary polyhedral shape connected by elastoplastic interfaces. All overall equilibrium conditions and 

yielding criteria are satisfied. Without imposing any assumptions regarding the interslice forces, the 

aforementioned shortcomings of limit equilibrium methods are avoided. Furthermore, the interslice 

forces are so adjusted by the limit analysis method that the mechanism of progressive failure of a slope, 

which has s significant effect on the overall factor of safety for brittle soil, is inherently considered in 

the present method. Nonlinear programming is also used to search for the true slip surface, which 

corresponds to the minimum factor of safety, among all possible slip surfaces. The formulation 

proposed here satisfies both the static and kinematic admissibility conditions without requiring any 

assumptions regarding the interslice forces. It can also be used to obtain the failure mechanism of a 

slope. The present method can be used to estimate the factor of safety of a complicated slope, the 

bearing capacity of foundations and the lateral earth pressure between a soil mass and adjoining 

retaining structure.  

 
Keywords Bearing capacity, Earth pressure, Limit state design/analysis, Numerical modeling and 

analysis, slopes 

1.  Introduction 

The determination of stability of slopes is a very important problem in rock and soil engineering. 

The methods of slices and the finite element method are the most frequently used methods for 

estimating the stability of slopes. Although the potential failure parts of a slope can be obtained by 

means of a finite element analysis the determination of a suitable measure and a set of rules from a 

finite element analysis to estimate the stability of slopes need to be further studied. Methods of slices 
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are very simple and a quantitative index for stability, say factor of safety, can also be obtained, 

therefore they are very easily accepted by engineers. 

In methods of slices, the slope is divided into N slices with 6N-2 unknowns. The forces acting on 

a slice within a sliding soil mass are shown in figure 1, where 

 

 

 

 

 

 

 

W = total weight of the slice. 

P = total normal force acting on the base of the slice. 

T = total shear force acting on the base of the slice. 

a = offset distance from the normal force P to the right side of the slice. 

EL, ER = horizontal interslice normal forces on the left and right sides of the slice, respectively. 

SL, SR = vertical interslice shear forces on the left and right sides of the slice, respectively. 

hR, hL= height of the interslice normal forces on the left and right sides of the slice, respectively. 

This problem is indeterminate because only N Mohr-Coulomb failure criteria and 3N static 

equilibrium equations are available. Thus 2N-2 assumptions must be made regarding the interslice 

forces for the problem to be solvable. Some of the conventional methods of slices neglect part of 

equilibrium conditions, and others make assumptions regarding the interslice forces. For example, the 

ordinary method of slices (Fellenius 1936) and Bishop’s routine method (Bishop 1955) do not satisfy 

the condition of overall force equilibrium while the infinite slope analysis (Fredlund and Krahn 1977), 

the wedge analysis and Janbu’s simplified method (Janbu 1954) do not satisfy the condition of overall 

moment equilibrium. Bishop’s routine method (Bishop 1955) assumes that the interslice forces are 
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Figure 1: Forces acting on each slice
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horizontal, Janbu’s method (Janbu 1973) assumes a line of thrust, and Morgenstern and Price (1965) 

assumes a functional relationship between the interslice shear forces and the interslice normal forces. 

In recent years, Many efforts have been made to avoid the assumptions regarding the interslice 

forces (Ching 1992; Chuang 1992a, 1992b; Zhang 1994; Michalowski 1995). To avoid the 

shortcomings of limit equilibrium method, an alternative method for slope stability analysis is 

presented in this paper by combining the ideas of the rigid finite element method (Qian and Zhang 

1991, 1995) and limit analysis (Zhang and Qian 1993). A slope is divided into N slices having any 

arbitrary polyhedral shape connected by elasto-plastic interfaces (Zhang 1992). This model satisfies all 

equilibrium conditions, the yielding criterion and the compatibility condition between the slices 

without requiring any assumptions regarding the interslice forces. The method is therefore 

theoretically more rigorous. 

Rigid finite element method (RFEM), which is called the rigid bodies-springs model (RBSM) by 

Kawai (1978), came initially from the discrete element method (DEM) (Cundall, P. A. 1971). The 

DEM is a transient method, in which engineering problems are modeled as a large system of distinct 

interacting general shaped bodies. The dynamic contact topology of the bodies is determined by the 

solution of the equation of motion of every body, consequently, the DEM is a very computationally 

intensive procedure. Connecting the bodies by springs, as proposed in the RBSM of KAWAI (1978), 

significantly reduces the computational effort required. Qian and Zhang (1991) and Zhang and Lu 

(1996) established the mathematical basis of the method and classified it as a kind of finite element 

method where the rigid body displacement is taken as its displacement field, hence it is also called as 

rigid finite element method. Based on the ideas of RFEM, Zhang (1992) proposed a rigid 

body-elastoplastic interfaces model to simulate the mechanical behavior of the rock and soil structures, 

such as the bearing capacity, slope stability, retaining wall, etc. RFEM has been extended to simulate 

the nonlinear behavior of rock and soil structures (Zhang and Lu, 1998). 

In the present method, limit analysis based on the lower bound theorem is used to estimate the 

factor of safety for a given slip surface while nonlinear programming is used to search the true slip 
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surface corresponding to the minimum factor of safety among all possible surfaces. The formulation 

presented here satisfies both the static and kinematic admissibility of a discretized soil mass without 

requiring any assumptions. The method can easily treat more complicated problems, such as a slope 

with inhomogeneous properties, forces acting on the slope, bearing capacity of foundations and lateral 

earth pressure between a soil mass and adjoining retaining structures, etc. 

2.  Basic ideas of the rigid finite element method 

Starting from the equilibrium equation of elastic problems, Qian and Zhang (1991, 1995) derived 

the formulations of the RFEM. Only a brief description of the basic ideas of the RFEM related to limit 

analysis is given in this section. 

In the RFEM, a slope is discretized by a number of rigid slices with any arbitrary polyhedral 

shape connected by interfaces. Interslice surfaces and slip surfaces are all treated as interfaces. The 

displacement vector u( , ) [ , ] )x y u v T (=  at any point P(x,y) within a slice can be expressed by the 

translational displacement ( , )u vg g  at the centroid (xg, yg) of the slice and the rotational displacement 

θ of the slice as 

u N u( , )x y g= ⋅                                                  (1) 

where N =
−

−










1
0

0
1

y y
x x

g

g
;  ug g g

Tu v= [ , , ]θ  

Figure 2 shows schematically the relative deformation of a pair of slices connected by an 

interface. Denoting the relative displacement at the point P in normal direction n between the top and 

bottom surfaces of the interface by δn  and the relative displacement in tangential direction s by δs , 

the relative displacement vector ∆ = [ , ]δ δn s
T  can be expressed as 

∆ = −U Uj i                                                   (2) 

where U i  and U j  are the displacement vector at point i and j in the local coordinate system n-s of 

the interface. Transforming the displacement vector at point i and j from the local coordinate system to 
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the global coordinate system and substituting (1) into (2) gives 

∆ = ⋅B X                                                 (3) 
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, 

 X = [ , , , , , ]u v u vg g g g1 1 1 2 2 2θ θ T , 

 l1, m1, l2 and m2 are the direction cosines in the n and s directions respectively. 

 
 

 

 

 

 

 

       

Figure 2: Relative displacement between slices  

Equation (3) is the condition of compatibility between the slices. The normal stress on interfaces 

in the s direction can be neglected compared with other stress components, consequently, the stress 

vector R is given by 

R = [ ]σ τn s  T                                                 (4) 

Based on the above equations, the variational principle for rigid finite element method (Zhang 

and Lu, 1996) leads to the overall equilibrium equation for elastic static problems. The same 

formulation also can be obtained directly from the equilibrium equation (Qian and Zhang 1991, 1995). 

Because slope failure is a progressive process, the stress obtained from elastic analysis can not be used 

directly to calculate the factor of safety. Instead, a limit analysis or an elasto-plastic analysis should be 

used.  

P 
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3.  Limit analysis 

The conventional methods of slices assumes that the mobilized surfaces are all at the plastic limit 

state if their shear strength is reduced by the factor of safety F. Consequently, the normal and shear 

stresses are not independent on the mobilized surface, but related by the Mohr-Coulomb criteria. The 

mechanism of progressive failure of slopes is not included in the conventional methods of slices. In 

this paper limit analysis based on the lower theorem is used in conjunction with the rigid finite 

element method to obtain a plastic limit state.  

The stability analysis of a slope should be a kind of limit analysis. When a slope is acted on by its 

weight and other applied forces, the failure of parts of the slope does not mean the failure of the 

complete slope, which can still bear the applied forces. The slope would completely lose its bearing 

capacity only when it became a mechanism, resulting from the propagation of the failure parts in the 

slope. This state can be obtained by elastoplastic or limit analysis.  

From the limit analysis point of view, if the stress distributions in a slope satisfy the equilibrium 

conditions and do not violate the yielding criteria, all methods will give a statically admissible solution. 

According to the lower bound theorem of limit analysis, the limit load corresponding to a static 

admissible stress distribution should not be greater than the real one. Hence we should adjust the 

admissible stress distributions for a given slip surface to maximize the factor of safety, and then adjust 

the shape and location of the slip surface to find the true surface corresponding to the minimum factor 

of safety among all possible slip surfaces. This idea is the starting point of the present method. 

A statically admissible stress distribution should satisfy the equilibrium conditions, consequently 

the stress distribution and the applied forces should satisfy the following virtual work equation (Zhang 

and Lu 1996) if they are in equilibrium 

δ δ λ δ
β

εεεε σσσσ ∆∆∆∆T

Ve
j

T
j

T
e

Vej
dV ds dV

j
∫∫∫∑ ∫∫∫∑∫∫∑+ − =( ) R u p 0                 (5) 

where δεεεε represents the virtual strain vector in each slice, σσσσ the stress vector in each slice, δu the 

virtual displacement vector, λ the load multiplier, pe the reference volume load vector, Rj the stress 
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vector on interface j, and δ(∆∆∆∆j) the virtual relative deformation at a point on interfaces. In (5), subscript 

e represents the slice e, and βj the interface j. According to the rigid assumption for slices, the first 

item of the left-hand side of (5) equals zero. Substituting (3) and (1) into (5) leads to 

− + =∫∫∑ ∫∫∫∑δ λ δ
β

X B R u N pj
T

j
T

j
j

g
T T

e
Ve

ds dV
J

0                       (6) 

where Σ
j

 represents the assembly of all the interfaces, including all interslice surfaces and slip 

surfaces, and Σ
e

 the assembly of all slices. 

Substituting (3) and (4) into the first item of the left-hand side of (6) gives 

B R C Vj
T

j j
T

jds
jβ∫∫ =                                          (7) 

where  

  C j
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 Vj j j j
TE S M= [ ]  

 E dsj n
j

= ∫∫ σ
β

, S dsj s
j

= ∫∫ τ
β

, M s dsj n
j

= ∫∫ σ
β

 

where Ej, Sj and Mj are the interslice normal force, interslice shear force and moment of the normal 

stress with respect to the left point of the interface βj, respectively, see figure 3. Considering the 

arbitrariness of the virtual displacement and substituting (7) into (6) leads to 

− + =C V PT λ 0                                               (8) 

where C, V are matrices assembled by Cj and Vj for all interfaces, respectively, and 

P N p= ∫∫∫∑ T
e

Ve

dV . 
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Equation (8) is the overall force and moment equilibrium equation. By choosing the overall 

forces V as the basic variable to describe the interslice stress 

distribution, we do not impose any assumption regarding the 

location and inclination of interslice forces. Furthermore, the overall 

force equilibrium and moment equilibrium conditions are satisfied 

in the present method. After analyzing many slopes we find that the 

interslice moments have very little effect on the factor of safety in 

most cases, so that in these cases, only interslice forces are needed 

for calculating the factor of safety, and the matrix Cj and vector Vj simplify to 

C j
l
l

m
m

l
l

m
m

=
−
−

−
−




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


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1

2

1

2

1

2

1

2
,  Vj

j

j

E
S

=








                               (9) 

Based on the above discussions, we should find a static admissible stress distribution V to 

maximize the load multiplier λ for a given slip surface, that is 









≥
≤⋅

=+−

=

0

0
   

)(  max
?,  

λ

λ
λ
λ

s

T

tosubject

Find

KVM
PVC

V
V

                                       (10) 

The modified Mohr-Coulomb criteria in integral form is shown in figure 4, and the matrix M and 

the vector Ks are given by 

 M M= diag j( ) , 

  K K K Ks
T T

j
T T= [ , , , , ]1 2 ! ! , 

 M j
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Figure 3: Forces acting on a slice  
      in the present method 
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Figure 4: Modified Mohr-Coulomb condition 
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where Lj is the length of the interface j. Equation (10) represents a linear programming problem with 

free variables and can be solved directly by the improved simplex method proposed by Zhang and 

Zheng (1992). It automatically adjusts the statically admissible stress distribution V to obtain the 

maximum limit load multiplier for a given slip surface. 

An alternative limit analysis method, the thermos-parameters method (Qian and Wang, 1990), 

can be used to reduce the total number of variables and constraints (Zhang and Qian 1993). 

The dual linear programming of (10) can be expressed as 









≥

=
=−

=

0

1
0

  

  min

,  

β

β

βλ
β

"
"

""

"
""

PU
MUC

K
U

T

T

T
s

tosubject

Find
                                     (11) 

Where "U  is the velocity of each slice when the slope is at a limit state. It defines the failure 

mechanism of the slope. Equation (11) also defines a linear programming problem with free variables 

which can be solved by the improved simplex method. The failure mechanism of a slope can be obtain 

from it. 

For a stratified soil or if there is seepage, every slice can be sub-divided into sub-slices by the 

phreatic surfaces and the soil strata interfaces as shown in figure 5. The stress distribution on the 

sub-slice interfaces are also treated as free variables so that we can obtain the limit load multiplier for 

this complicated case. Figure 6 illustrates the complete subdivision of a slope. 

A soil mass can be divided into slices, wedges, or arbitrary polyhedra, and the slip surface can 

also take any arbitrary shape in the present method. Consequently this method can be used to calculate 

the factor of safety of a complicated slope, the bearing capacity of foundations and the lateral earth 

pressure between a soil mass and adjoining retaining structure, etc. 
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4.  The factor of safety 

The limit load multiplier λ defined here indicates that a slope will be at a limit state if it is acted 

on by load λP (where P is a reference load), hence it is not the factor of safety F defined in the 

conventional methods of slices. The factor of safety F means that a slope will be in limit state if the 

shear strength of soil is reduced by F along the slip surface. For computational convenience, we 

introduce a reduction factor F into (10), that is 

M j

tg F
tg F= −

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
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


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/
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0
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,   K j j
TL

C
F

C
F= ⋅ [ , , ]0                       (12) 

There are two ways to calculate the factor of safety F. Firstly, we can treat F as a variable and let 

λ equal 1 in (10), namely, 









≥
≤

=+−

=

0

0
   

)(  max
?,  

F
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F
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V
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                                   (13) 

where the sub-matrices of M and Ks are given in (12). Equation (13) defines a nonlinear programming 

problem and significant computational effort is required to obtain its solution. Secondly, to avoid 

solving the nonlinear programming problem, an initial value of F is chosen, and then the linear 

programming problem (10) is solved. The factor of safety will be obtained if λ solved from (10) is 

equal to 1. Otherwise modify the value of F and solve (10) again until λ is equal to 1. After a few 

phreatic surface

Soil interface
Soil 2

Soil 1

 

Figure 5: A slice is divided into several 
sub-slices for stratified soil or soil with 

seepage

 

Figure 6: Every slice is divided into several sub-slices in 
vertical direction to obtain a more precise result 
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iterations, the factor of safety F is obtained with the value of λ is equal to 1. 

5.  Numerical examples 

Two numerical examples are given in here to investigate the accuracy and the scope of 

applicability of the present method. 

1) Taylor (1948) analyzed the stability of dry homogeneous material for the slope shown in 

figure 7 by using the ordinary method of slices, the friction circle and log spiral methods of analysis. 

Chen (1975) compared the results of each limit equilibrium analysis with an upper bound analysis. 

The comparisons show that the results of the limit equilibrium method are very close to the upper 

bound solutions. The same slope is also analyzed by using the present method with a circle slip 

surface passed through toe and the results are compared with those obtained by the limit equilibrium 

methods and upper bound analysis in Table 1. It can be seen that the 

present method gives lower factors of safety for the slopes with slope 

angle β > 75°, but gives higher solutions if the slope angle β is smaller 

than 60°. This means that the slip surface will pass below the toe if the 

slope angle is smaller than 60° in the present method.  

Table 1: Comparison of Stability Number N = γH/C 
Limit equilibrium Limit analysis This paper 

Slope angle β(°) Friction angle φ(°) Slices φ circle Logspiral  Logspiral Circle 
0 3.83 3.83 3.83 3.83 3.49 
5 4.19 4.19 4.19 4.19 3.83 

15 5.02 5.02 5.02 5.02 4.62 90 

25 6.06 6.06 6.06 6.06 5.60 
0 4.57 4.57 4.57 4.56 4.41 
5 5.13 5.13  5.14 4.99 

15 6.49 6.52  6.57 6.46 75 

25 8.48 8.54  8.58 8.55 
0 5.24 5.24 5.24 5.25 5.58 
5 6.06 6.18 6.18 6.16 6.56 

15 8.33 8.63 8.63 8.63 9.23 60 

25 12.20 12.65 12.82 12.74 13.68 
0 5.88 5.88* 5.88* 5.53* 6.77 
5 7.09 7.36  7.35 8.35 

15 11.77 12.04  12.05 13.37 45 

25 20.83 22.73  22.90 24.74 
* Critical failure surface passes below toe. 

β
 

Figure 7: A homogeneous slope 
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2) Figure 8 shows the section of a strip footing on a homogeneous, weightless, purely cohesive 

soil, together with the failure mechanism proposed by Drucker 

(1953). Six triangular slices (rigid finite elements) are used to to 

calculate the bearing capacity p, see figure 8. Table 2 compares 

the bearing capacity obtained by the present method with 

Prandtl’s value and Chuang’s value, and they are in excellent 

agreement. Figure 9 shows the interslice forces of every slice 

obtained from (10), and figure 10 shows the velocity of every slice obtained from (11), which gives 

the failure mechanism of the strip footing. In this study, the interslice moments have no effect on the 

value of the bearing capacity p.. 

Table 2: Bearing capacity of the strip footing 
Prandtl’s value Chuang’s value Present method

23.5708 23.5760 23.5759 
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Figure 9: Inter-slice forces  
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Figure 8: A strip footing 
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Figure 10: Velocity of every slice 

7.  Concluding Remarks 

All conventional methods of slices have to make assumptions regarding the interslice forces to 

solve a slope stability problem, hence experience is required to make reasonable assumptions 

regarding the locations and inclinations of the interslice forces. In the present method, the overall 

interslice forces and moments are used to describe the interslice stress distribution and they are 

adjusted by linear programming to satisfy overall force and moment equilibrium as well as the 

Mohr-Coulomb criterion and no assumptions are imposed on the interslice forces. Furthermore, the 

progressive failure mechanism is inherently taken into account via limit analysis and the solution 

obtained is both kinematically and statically admissible. In this way, the present method is 

theoretically more rigorous and simple. The method can be used in slope stability analysis as well as in 

bearing capacity and earth pressure analysis.  
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List of notations 

 

N - number of slices 

W - total weight of a slice 

P - total normal force acting on the base of the slice. 

T - total shear force acting on the base of the slice. 

a - offset distance from the normal force P to the right side of the slice. 

EL, ER - horizontal interslice normal forces on the left and right sides of the slice, respectively. 

SL, SR - vertical interslice shear forces on the left and right sides of the slice, respectively. 

hR, hL - height of the interslice normal forces on the left and right sides of the slice, respectively. 

u, v - the translational displacements at any point P(x, y) within the slice 

ug, vg - the translational displacements at the centroid (xg, yg) of the slice 

θ - the rotational displacements of the slice 

U i  - the displacement vector at point i in local coordinate system n-s of the interface 

∆ - the relative displacement vector between the top and bottom surfaces of the interface 

l1, m1 - the direction cosines of n direction 

l2, m2 - the direction cosines of s direction 

σn, τs - the normal stress and the tangential stress on the interface, respectively. 

δε - the virtual strain vector of the slice 

σ - the stress vector of the slice 

δu - the virtual displacement vector 

pe - the reference volume load vector 

λ - the load multiplier 

δ(∆j) - the virtual relative deformation at a point on the interface j 

Rj - the stress vector of the interface j 

Ej - the interslice normal force 

Sj - the interslice shear force 

Mj - the moment of the normal stress with respect to the left point of the interface j 

Lj - the length of the interface j 

C, tgφ - shear strength of the soil 

RT – Tensile strength of the soil 

F - factor of safety 

"U  - velocity of each slice 


