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Abstract The equation of state (EOS) plays an

important role in high-velocity impact process since

phase transformation, melting, and even vaporization

may happen under such extreme loading conditions. It

is desired to adopt an accurate EOS covering a large

range of points in the phase space. This paper proposes

a combined molecular dynamics and material point

method approach to simulate the high-velocity impact

process. The EOS data are first obtained from a series

of molecular dynamics computations, and the param-

eters are fitted. Then the EOS parameters are adopted

in the material point method simulation to model the

impact process. Simulation results show that the fitted

EOS can be very accurate compared to experimental

results. The shape of the debris cloud obtained by our

multiscale method agrees well with that of the

experiments. An empirical equation is also proposed

to predict the fraction of melting material in the high-

velocity impact process.

Keywords High-velocity impact � Material point

method � Molecular dynamics � Multiscale �
Equation of state

1 Introduction

The projectile can impact the target with the velocity

of the magnitude kilometres per second, which usually

brings phase changes and even melting and vaporiza-

tion (Zukas 1990). The typical velocity can even rise

to more than 10 km/s in the space debris impact. It is

very important to adopt appropriate equations of state

(EOS) to describe material behaviors under high

temperature and high pressure accurately in the high-

velocity impact (HVI) process. Conventionally, the

parameters of EOS mainly come from physical

experiments, but unfortunately the experiments with

high temperature and high pressure may be difficult

and expensive to carry out. So only a limited part of

points in the state space can be extracted from physical

experiments, and other state points are predicted

empirically based on some theoretical assumptions.

Molecular dynamics (MD) method (Rapaport

2004) provides a numerical way to simulate the

physical process from the bottom atomic scale level.

Some large-scale MD codes, for example, the LAM-

MPS code (Plimpton 1995), has been developed in

recent years. The evolution of micro-structure can be

analyzed by MD computations, and no macro-scale

assumption is needed. The HVI problem being taken

Y. Liu � X. Zhang (&)

School of Aerospace, Tsinghua University, Beijing

100084, People’s Republic of China

e-mail: xzhang@tsinghua.edu.cn

Y. Liu

e-mail: yan-liu@tsinghua.edu.cn

H.-K. Wang

China Special Equipment Inspection and Research

Institute, Beijing 100013, People’s Republic of China

123

Int J Mech Mater Des

DOI 10.1007/s10999-013-9213-2



as example, MD simulation can provide state points of

the temperature and the pressure much higher than that

in the experiments. MD, to some extent, can replace

emprical EOS and material strength models. But the

spatial and temporal scales of MD are still very

limited, and it is not realistic to simulate the whole

impact process with MD even when the size of the

impactor is at microns and the physical time span is

shorter than one microsecond. A macro-scale method

must be included for real HVI simulation.

Even with appropriate EOS, numerical simulation

of HVI problems may be unpractical due to severe

mesh distortion or entanglement if the conventional

mesh-based methods, such as Lagrangian finite ele-

ment method (FEM), are used. The methods based on

Eulerian description, such as the finite difference

method or finite volume method, do not suffer from

the mesh distortion, but the interfaces between differ-

ent materials may diffuse in the computation. Mesh-

free particle methods (Zhang and Liu 2004), which

develop fast in recent years, show advantages over

FEM in HVI simulation owing to no mesh depen-

dence. Meshfree particles methods also show merits

such as high accuracy, easy to deal with discontinuity

and fragmentation, and easier pre-processing and post-

processing.

Material point method (MPM) is one kind of

meshfree particles methods. MPM was proposed by

Sulsky et al. (1994, 1995) based on the idea of Particle-

in-cell (PIC) method. MPM improved the accuracy of

PIC by storing all the physical variables on the

particles. MPM also employs a background mesh only

to calculate gradients and solve equations of motion.

So MPM possesses both the advantages of Lagrangian

and Eulerian descriptions. As a meshfree particle

method, MPM is much appropriate for simulating

problems with large deformation, fragmentation, frac-

ture and even phase changes. Recent studies have

shown that MPM can be very efficient and effective in

simulating impact problems. Chen et al. (2003) studies

the dynamic failure of the brittle material under impact

with MPM. Shen (2009) extends the method to rate-

dependent material model and simulate the failure and

fragmentation of glass. Zhang et al. (2009) applied

MPM into the dynamic analysis of saturated porous

subject to impact of solid bodies. Zhang et al. (2006)

developed a material point finite element method

(MPFEM), which utilized both the advantages of the

MPM and the FEM. The object is initially discretized

by finite element mesh, then the finite elements can be

converted to material points in large-deformation area.

They successfully simulated hyper-velocity impact

problems with MPFEM. Gong et al. (2012) proposed a

MPM-based reconstruction technique to build true

microstructure of aluminum foam from micro-CT

images. They analyzed the shielding against space

debris impacts with Whipple structure using the

proposed method. Ma et al. (2009) compared MPM

with another particle method, the smoothed particle

hydrodynamics method (SPH), in detail. Their results

show that MPM can be more efficient than SPH.

Though the computational cost of every time step in

MPM is heavier than that of FEM, MPM can even be

more efficient in explicit analysis because large time

step size can be used owing to no mesh distortion.

Some researchers combined MD and MPM to study

localized problems with a multiscale method. Chen and

his group (Shen and Chen 2005) focused on the

delamination of tungsten film from the silicon substrate.

They calculated the delamination problem at different

scales. MD is used for the nano-scale while MPM is used

in the macro-scale. They also proposed a slient bound-

ary treatment to avoid the wave reflection on the

boundaries (Shen and Chen 2006). Guo and Yang

(2006) and Lu et al. (2006) developed handshaking

technique for the concurrent MD-MPM multiscale

method. Guo and Yang (2006) analyzed the generation

and propagation of dislocation when the atom cluster

impacts on the target. Lu et al. (2006) also shows that

the results of the concurrent multiscale method agree

well with the pure MD results. Liu et al. (2007)

proposed an improved MD method, called the smoothed

molecular dynamics (SMD), which employs the basic

idea of MPM. A set of background mesh was introduced

to MD calculation only to solve the equations of motion.

The critical time step size of MD can be increased in

orders, because the high-frequency oscillation was

smoothed out. The overall accuracy of SMD solution

is identical to that of MD since the motions of low

frequency are described accurately (2007).

In this paper, MD and MPM are combined in

another way to simulate the HVI problems from

multiple scales. MD serves as a numerical EOS in

MPM, and the macroscopic impact process is simu-

lated with MPM. Sections 2 and 3 briefly investigate

the theories of MD and MPM. Then the multiscale

method is described in Sect. 4. The multiscale method

is verified and validated in Sect. 6 by comparison with
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experimental results and other numerical results.

Section 7 concludes the whole paper.

2 Brief introduction to MD

MD method solves the following equations of motion

mi€ri ¼ Fint
i ðrÞ þ Fext

i ðrÞ ð1Þ

for each atom in the system. The collected behaviors

of all the atoms will reflect macro properties of the

simulated system. The subscript i is the atom index. mi

is the atom mass, the vector ri denotes the atom

position, and the vectors Fi
int and Fi

ext represent the

internal forces and the external forces exerted on the

atoms, respectively. The forces generally are functions

of the positions of all the atoms, which are represented

by the vector r in abbreviation. The overhead dot

denotes the derivative with respect to time, for

example €ri is the acceleration.

The internal forces between atoms, which are key

factors to performances and reliabilities of MD results,

can be calculated as the gradient of the potential Ei
pot(r)

Fint
i � �

oE
pot
i ðrÞ
ori

ð2Þ

Since the choice of the potential function has critical

influences on MD results, many contributions have

been made to propose appropriate potentials for

different materials. Among many kinds of successful

potentials for metals, the embedded atom method

(EAM) potential (Daw and Baskes 1984; Johnson

1988), is a promising one. In EAM, the potential of

atom i is composed by two parts,

Epot
i ¼ GiðqiÞ þ

1

2

Xnatom

j¼1;j6¼i

/ijðrijÞ; ð3Þ

where /ij is the pair potential between atoms i and j, Gi

(qi) is the embedded potential which can be deemed as

the energy caused by inserting the atom i into the

electron environment. natom is the total number of

atoms. The electron density qi can be calculated by

qi ¼
Xnatom

j¼1;j6¼i

fijðrijÞ ð4Þ

where fij (rij) is a prescribed function of the distance

between two atoms.

Numerical schemes are required for time integra-

tion of Eq. (1). The velocity-Verlet scheme, one of the

explicit schemes, is widely used, The velocity-Verlet

scheme provides the procedure to update the positions

and the velocities of the atoms from time level n to

time level n ? 1 explicitly

p
nþ1=2
i ¼ pn

i þ
Dt

2
FiðrnÞ ð5Þ

rnþ1
i ¼ rn

i þ Dtp
nþ1=2
i =mi ð6Þ

pnþ1
i ¼ p

nþ1=2
i þ Dt

2
Fiðrnþ1Þ ð7Þ

where pi ¼ mi _ri is the momentum of atom i, and the

superscript n refers to variables at time level nDt:

Some large-scale MD simulation codes for differ-

ent kinds of materials have been released in recent

years, of which the LAMMPS code (Plimpton 1995) is

a typical one. LAMMPS is capable of dealing with

many types of molecular/atomic systems with differ-

ent kinds of potentials effectively. The LAMMPS

code is adopted for the atomic-scale simulations to

obtain EOS parameters in this paper.

3 MPM for HVI process

3.1 Discretization and evolution of physical

variables

The MPM is a meshfree particle method. A set of

discrete points, called the material points, are used to

discretize the material domain. A set of uniform

background mesh, which can be fixed in the space

during the simulation or move in a designated way, is

also employed to calculate the derivatives and serve as

the scratch pad to solve the equations of motion. The

discretization of the MPM is shown in Fig. 1. In every

time step, the material points are assumed to be

attached to and deform with the background grid, so

that the physical variables on the particles can be

approximated with those on background mesh nodes,

gp ¼
Xne

I¼1

NIpgI ð8Þ

where g is any field variable, and the subscript p

denotes the particle number, the subscript I denotes the

background node number. ne is the total number of
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nodes in the cell. NIp = NI (xp) is the standard finite

element shape function. For three-dimensional solid

element, the shape function can be written as

NIp ¼
1

8
ð1þ nInÞð1þ gIgÞð1þ fIfÞ ð9Þ

where n, g and f are the local coordinates of the

particle, ðnI ; gI ; fIÞ ¼ ð�1;�1;�1Þ are the respective

local coordinates of the nodes.

The discretized equations of MPM can be derived

from the weak form of the governing equations of

updated Lagrangian description
Z

X

dvi;jrijdX�
Z

X

dviqbidX�
Z

Ct

dvi�tidC

þ
Z

X

dviq _vidX ¼ 0 ð10Þ

by approximating the velocity vi with Eq. (8)

vip ¼
Xne

I¼1

NIpvI ð11Þ

and approximating the density with the summation of

discrete point masses by

qðxÞ ¼
Xnp

p¼1

dðx� xÞmp ð12Þ

where d(x) is the Dirac delta function, and mp is the

mass of the particle p. In the above equations, vi is the

velocity vector, rij is the stress tensor, q is the density,

and bi the body force per unit mass. dvi is the virtual

velocity. X is the solution domain, Ct is the traction

boundary. �ti is the prescribed traction on Ct: The

subscript, ‘‘j’’ denotes the spatial derivative with

respect to the coordinate xj. The final form of MPM

discretized equations is

_piI ¼ f ext
iI � f int

iI ð13Þ

where

piI ¼ mIviI ð14Þ

is the momentum of the background node. It should be

noted that the lumped mass mI =
P

p mp NIp has been

adopted to ensure a fully explicit algorithm without

solving a linear algebra system every time step. The

external nodal force f iI
ext and the internal nodal force

f iI
int are defined as follows,

f ext
iI ¼

Xnp

p¼1

NIpmpbip þ
Z

Ct

NIp�tidC ð15Þ

f int
iI ¼

Xnp

p¼1

NIp;jrijp
mp

qp

ð16Þ

The discretized momentum equations, or the equa-

tions of motion, are set up on the nodes of the

background mesh, though the physical variables are

carried along with the material points. So the material

points also serve as the quadrature points, similar to

the Gauss integration in FEM. Detailed flowchart of

the MPM and comparison with other meshfree particle

methods can be found in literature (Ma et al. 2009).

3.2 Johnson–Cook material strength model

The Johnson–Cook plasticity material model has been

widely used to describe material behaviors under high

strain rate. The plastic flow stress ry are related with

the effective plastic strain �ep; the effective plastic

strain rate _�e; and the temperature T in the following

form

ry ¼ r0 þ B�epð Þ 1þ C ln
_�e
_e0

� �
1� T�mð Þ ð17Þ

where _e0 is a reference strain rate to normalize _�e; and

its value depends on the unit system. If the SI unit is

used, _�e ¼ 1; if the g–mm–ms unit system is used, the

value will be 1,000. T* is the normalized temperature

defined by

T� ¼ T � Tr

Tm � Tr
ð18Þ

Background Mesh

Material Point

Fig. 1 Discretization in the MPM. A set of particles (denoted

by circles) are used to discretize the domain (denoted by the area

enclosed with solid line). Another set of background mesh

(denoted by dotted lines) is used to calculate the derivatives and

solve the equations of motion in every time step
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where Tr and Tm are the room temperature and the

melting temperature, respectively. r0, B, C, n and m

are material parameters that can be determined by

experiments.

The failure of the material can be considered in

Johnson–Cook model through accumulating the dam-

age to one,

D ¼
XD�ep

ef
ð19Þ

where the fracture strain is determined by

ef ¼ D1 þ D2 exp D3r
�½ � 1þ D4 ln _e�½ � 1þ D5T�½ �

ð20Þ

where r* is the stress triaxiality p/reff. p is the pressure,

and reff is the von-Mises effective stress. D1 to D5 are

the material parameters.

3.3 GRAY equation of state

Some types of EOS, such as the Grüneisen equation of

state, have been successfully used in the simulation of

impact process, but very high impact velocities will

pose more requirements on the equation of state. The

ability to model complex phenomena of phase

changes, melting, even vaporization may be required

to analyze the HVI process accurately.

The GRAY equation of state, which was proposed in

the techinical report reference (Royce 1971), is appro-

priate for different phases of solid, liquid and gas of

metals. The GRAY equation of state also has the ability

to model transformations between phases. The phase

diagram can be divided into a solid–liquid region and a

liquid-vapor region. The boundary between the two

regions are defined by V = VJ, any material beyond

the specific volume VJ will be considered as vapor. The

basic assumptions in GRAY model include

1. The melting entropy DSm is independent of

pressure, and it is approximately constant for a

majority part of metals. DSm ¼ 1:16R for copper,

where R is the gas constant.

2. The specific heat capacity, CV, is the constant 3R

for solid. While in the liquid regime, CV decreases

linearly with the temperature as the following,

Cliq
v ¼ 3R� a

T

TmðVÞ
ð21Þ

3. The melting temperature Tm follows the modified

Lindermann law

� dln TmðVÞ
dln V

¼ 2cmðVÞ �
2

3
ð22Þ

The scaling-law is used for material in solid–liquid

region in GRAY EOS,

EsðT ;VÞ ¼ E0ðVÞ þ E1ðVÞT þ E2ðVÞT2 ð23Þ

PsðT ;VÞ ¼ P0ðVÞ þ P1ðVÞT þ P2ðVÞT2 ð24Þ

where Es and Ps are the internal energy and the

pressure, respectively. E0 is the cold energy, P0 is the

cold pressure, T is the temperature, and V is the specific

volume. E1, E2, P1 and P2 are coefficients relying on

the specific volume, which are different in solid,

melting, liquid, and hot liquid regimes. cs(V) = c0 -

ax and ce = 2/3 are the Grüneisen coefficients. The

parameters to be determined are G, a and c0. Detailed

formulation of Ei(V) and Pi(V) can be found in Ref.

(Royce 1971).

The vapor phase is described by Young–Alder

equation

E ¼ 3

2
RT � ay

V
ð25Þ

P ¼ RT

V

1þ zþ z2 � z3

ð1� zÞ3
� ay

V2
ð26Þ

where z = Vb/V. And ay and Vb are material constants.

The formulations for the liquid and for the vapor are

linked by smoothing functions FE(V) and Fp(V),

E ¼ 3

2
RT � ay

V
þ FEðVÞ C1 � C3T2

� �

þ D1 þ D2T þ D3T2
� �

ð27Þ

P ¼ RT

V

1þ zþ z2 � z3

ð1� zÞ3
� ay

V2

þ FpðVÞ C1 þ C2T þ C3T2
� �

ð28Þ

where

FEðVÞ ¼
Vbðh� zJÞ3

2z3
J

2z� 2þ h

ð1� zÞ2
� 2zJ � 2þ h

ð1� zJÞ2

" #

ð29Þ

FpðVÞ ¼
z

zJ

h� zJ

h� z

� �3

ð30Þ

The coefficients C1, C2, C3, D1, D2, D3 can be deter-

mined by the requirement that the equations of scaling
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law and the Young–Alder equations should be seam-

lessly linked at V = VJ.

4 Multiscale framework

MD can simulate the behavior of the material from the

atomic scale, but its ability is very limited. MPM can

simulate the macroscopic scale phenomena, and an

appropriate EOS is necessarily needed but difficult to

measure. A natural way is to combine the advantages

of the two methods. In this paper, MPM is selected as

the macroscopic solver for HVI process, and MD is

used to construct the EOS for MPM simulation.

A series of MD simulations are carried out to obtain

the whole phase space. The system are initialized at a

given temperature and a given volume. The system is

relaxed to equilibrium to obtain the initial configuration.

Then the temperature and the pressure of the system are

changed step by step, and MD computations are run at

each temperature and volume. The internal energy and

other state variables are extracted from each simulation

to obtain one point on the phase surface.

For current study of metal copper as example, one

system consisting of 32,000 copper atoms is used

throughout the simulation, and it should be pointed out

that other kinds of metals can be simulated in the same

procedure. All the atoms are set at ideal FCC sites with

the lattice distance a0 = 0.3615 nm. The periodic

boundary conditions are applied at all the three direc-

tions so that a bulk material, from the macroscopic view,

is simulated. At the beginning, the temperature of the

system is set at room temperature, and then the system is

relaxed with NVE ensemble for 30.0 ps. The temper-

ature and the pressure of the system after relaxation are

denoted by T0 and P0 respectively. Then we increase the

pressure of system to P1 ¼ P0 þ DP; where the

pressure increment DP ¼ 2:0 GPa. The system after

pressure increase is relaxed with NPT ensemble to

obtain a system with the temperature T0 and the

specific volume V1, which is set as the starting point to

obtain the state points with fixed specific volume V1

but variable temperatures. The temperature of the

system is increased to T1 ¼ T0 þ DT ; where the

temperature increase DT ¼ 100 K. And one NVT

simulation is executed at V1 and T1, and one state point

is recorded. After that another NVT simulation is

executed at V1 and T2 ¼ T1 þ DT : Then the temper-

ature is increased and more computations are executed

until the desired temperature TnT
is obtained. Then the

system pressure is increased again to and another loop

for the temperature T1 � TnT
are computed. The

similar procedure is repeated with increasing the

pressure until the designated pressure is reached.

Therefore, one loop for the pressure and one loop for

the temperature are employed to construct the surface.

Totally nT 9 nP state points will be obtained. Figure 2

shows the procedure how to compute the phase points

by MD simulation.

Then the data from MD simulation are used to

construct the EOS. These data can be used to set up a

table which supplies the state points by interpolation,

or the data can be used to fit the parameters of specific

EOS. The GRAY parameters are calculated in the

current paper by the simulation points.

The fitted GRAY EOS is used in MPM to simulate

the HVI problems. In the above framework, MD

simulation serves as the numerical EOS, and MPM

plays the role to simulate the whole impact process.

Therefore a sequential multiscale framework is devel-

oped since the parameters for the macroscopic simu-

lation is extracted from the microscopic simulations.

5 Projection technique for illustration

of numerical results

The numerical results are usually compared with

experimental results by configurations, such as the

shape of the debris cloud, at different time points.

Traditionally the numerical configurations are extracted

from the results by clipping or viewing from specific

angle. Though such configurations are natural to

generate for comparison, they are actually different

from the snapshots in the experiments. During the HVI

experiment, X-rays are projecting to the path of the

debris and make the film behind the specimen exposed.

If more masses exist in some project direction, then

more X-rays are scattered, and the projected image on

the film will be darker. The schematic process to

generate experimental images are shown in Fig. 3a.

Inspired by the imaging process in the experiments,

a density projection technique is proposed to draw

numerical ‘image’. All the material points are pro-

jected to a plane parallel to the projectile path of the

debris. The gray scale of one pixel in the plane is

obtained by converting the number of material points

projected to the pixel. Large grey scale denotes more

Y. Liu et al.
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material points and is darker. The density of the

debris cloud can be easily shown as a 2-D image by

this method. Also, the projecting process is very

similar to the exposure process of the film. So the

numerical image and the experimental image can be

comparable. The density projection method is shown

in Fig. 3b.

6 Numerical examples

6.1 MD simulation results and fitted parameters

The copper system, which is described in Sect. 4, is

calculated for nT 9 nP = 42 9 51 = 2142 points.

The obtained surface in the phase space is shown in

Fig. 4. A obvious belt of pressure jump can be

observed, which corresponds to the melting region.

The left lower region corresponds to the solid, while

the right upper one is the liquid regime. The isothermal

P–V curves, the isobaric V–T curves, and the adiabatic

compressing curves can be extracted from the surface

and compared to the experimental results.

The computed MD data can be used as a tabular to

replace the EOS. Also, parameters in the EOS can be

fitted by such data. We fitted the constants in GRAY

EOS by running the following two optimization

problems

min f ðC; S; c0; aÞ ¼
XNs

i¼1

ðP� PiÞ2 ð31Þ

S:t: : S [ 0; C [ 0; c0 [ 0; and a [ 0 ð32Þ

and

min f ðTm; geÞ ¼
XNs

i¼1

ðT � TiÞ2 ð33Þ

S:t: : Tm [ 0; ge [ 0 ð34Þ

where c0, a, Tm, ge are EOS parameters, and C and

S are coefficients of the Hugoniot curve. They are

catagorized into two optimizations since the former

four parameters influence much on pressure and the

latter two are more related with temperature. The

calculated parameters are compared with measured

constants from experiments in Table 1. It is shown that

V0, C, S, c0 and a are close to the values reported in

Start

NVE

NPT

NPT

NPT

NPT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

V1

V2

V3

V4

T1 T2 T3 T4
Relaxation

Fig. 2 The procedure to

compute state points with a

series of MD simulations

X Ray

Film

Pixel
Material Particle

Material 
Point

Fig. 3 Schematic

illustration of (a) X-ray

image and (b) the density

projection technique
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(Royce 1971). The differences of ge and Tm are

noticeable, which may be caused by the defects or

inclusions, which exist in the true material but were

not considered in the perfect lattice.

6.2 Validation of numerical EOS

Typical experiments to obtain EOS parameters can be

categorized to dynamical experiments, such as a flyer

impacting a thin plate, and quasi-static experiments

such as indentation. Dynamical experiments can

generate very high pressure but the loading time is

very limited, so they are mainly used for Hugoniot

curves. Quasi-static experiments can obtain high

pressures in small spaces to construct the isothermal

compression curve. The results from the dynamical

and the quasi-static experiments will be compared

with MD results.

Figure 5 compares the Hugoniot curve of the

experimental results and the computational results.

Solid line denotes MD results while the discrete

triangles and circles denote the experimental results

(Mitchell and Nellis 1981). It can be seen in the figure

that the two results agree very well. MD results are

only slightly lower than experimental results when the

specific volume is less than 0.085 cm3/g.

The isothermal pressure–volume curves are com-

pared in Fig. 6. MD results (solid line) also agree well

with experimental results (Pharr and Oliver 1992)

(solid squares and solid triangles) and quantum

mechanics results (Wang et al. 2000) (hollow circles).

When the specific volume is less than 0.090 cm3/g,

MD results indicate small deviation from the exper-

imental results, but the difference is less than 10 %.
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Fig. 4 The pressure-internal energy-specific volume surface.

(The color denotes the temperature. The data are scaled by 1 g

material). (Color figure online)

Table 1 Fitted parameters of GRAY and comparison with experimental measurements (Royce 1971)

Parameters V0 (cm3/g) C (cm/ls) S c0 a ge (kJ/mole K2 ) Tm (K)

Experiment 0.1118 0.394 1.489 1.97 1.5 4.9 9 10-7 1790

Numerical 0.1119 0.398 1.301 1.86 1.7 8.3 9 10-7 2006

Volume(cm )

Pr
es

su
re

(G
Pa

)

3

Fig. 5 Comparison of Hugoniot curves. Triangles and circles
are experimental results (Mitchell and Nellis 1981). Solid curve
denotes MD results

Volume(cm )3
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su
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)

Fig. 6 Comparison of isothermal compression curves. Solid
squares and solid triangles are experimental results (Pharr and

Oliver 1992). Solid curve denotes MD results. Hollow circles
are quantum mechanics results (Wang et al. 2000)
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It can be concluded from the above results that MD

computation can extract identical results with exper-

iments when the compression is not very large. Large

compression brings noticeable but acceptable differ-

ence, which may come from the influences of MD

potential and the defects. The potential parameters are

obtained from the situation that the atoms are not far

away from the equilibrium position, which may lead to

some deviations under high pressure and high

temperature.

6.3 HVI examples

Two examples, including an aluminum projectile

impacting on a copper target and a copper projectile

impacting on an aluminum plate, are studied to further

validate our method. In the first example, the projectile

is a sphere of the diameter 20 mm and the impacting

velocity is 5.75 km/s. The thickness of the target is

1.5 mm. The setup of the first example is illustrated in

Fig. 7. The Johnson–Cook strength model is used for

both copper and aluminum, and the material param-

eters are shown in Table 2. The EOS parameters for

copper are extracted from MD simulation, and those

for aluminum are from the references, which are listed

in Table 3.

Figure 8 displays the debris cloud at 20 ls after the

impact. The numerical configuration is very similar to

the experimental snapshot. The numerical configura-

tion is obtained by the density projection technique

proposed in Sect. 5. Configurations and the phase

distribution at t = 1, 2 and 5 ls are shown in Fig. 9.

The center region of the debris cloud is melted or even

becomes the hot liquid. But the melting region is

limited and the border of debris cloud still remains

solid though the materials are cracked and fragmented.

The second example is a copper cylinderical flyer

impacting on an aluminum plate. As shown in Fig. 10,

The diameter of the cylinder is 7.72 mm, and the

height is 2.26 mm. The thickness of the target is

1.5 mm

20.0mm

v = 5.75 km/s

Al

Cu

D

t

Fig. 7 Schematic illustration of the example of an aluminum

sphere impacting on a copper plate

Table 2 Material parameters of Johnson–Cook plasticity model for the HVI examples

Parameters E (GPa) Poisson ratio A (MPa) B (MPa) n C m

Alumunium 69 0.35 324 114 0.41 0.0 0.859

Copper 117 0.3 90 292 0.31 0.025 1.09

Table 3 Parameters of GRAY EOS for aluminum

Parameters V0 (cm3/g) C (cm/ls) S c0 a ge (kJ/mole K2) Tm (K)

Aluminum 0.359 0.533 1.338 2.18 1.7 8.7 9 10-7 1220

Fig. 8 Comparison of the experimental configuration (left) and

the numerical configuration (right) of the debris cloud after an

aluminum sphere impacting on a copper plate. The configura-

tions are rotated clockwise for 90�
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2.03 mm. The impact velocity is 6.23 km/s, which is a

little larger than the previous example. As the impact

process lasts very short time, it is difficult to change

the films for different exposure, so one film is used

throughout the experiment for multiple exposures. All

the three experimental snapshots are shown in Fig. 11,

of which the second snapshot, enclosed by the dotted

line, is compared to the numerical configuration also

shown in Fig. 11. The numerical results show the

concentration of the material along the center line of

the debris cloud. The phase and the configurations at

other times are shown in Fig. 12, where the phase

marked by the number ‘‘0’’ is the solid phase, ‘‘1’’

denotes the melting regime, ‘‘2’’ denotes the liquid

phase, and ‘‘3’’ denotes the hot liquid.

Fig. 9 Configurations and the phase distribution at t = 1, 2 and

5 ls (from the top to the bottom) of aluminum projectile

impacting on copper target. The number 0, 1, 2, and 3 denote the

solid regime, the melting regime, the liquid regime, and the hot

liquid regime respectively

Al

2.03mm

7.72m
m

v = 6.23 km/s

2.26mm

Cu

h

D

t

Fig. 10 Schematic illustration of the example of an copper

cylinder impacting on an aluminum plate

Fig. 11 Copper projectile impacting on aluminum target: the

experimental configurations (top, enclosed by dotted line) and

the numerical configuration (bottom)
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6.4 Empirical formulae of phase change and its

validation

The fraction of the phase change of the material in the

HVI process is studied. A copper sphere is projectiled

onto a copper plate of the thickness t = 2.5 mm as

shown in Fig. 13. The impact velocity and the size of

the projectile are varied to investigate their effects on

the phase change. The velocity varies from 1.0 to

8.0 km/s, and the diameter of the projectile are from

1.6 to 12.6 mm. The parameters of the material

strength model and the EOS are the same as in the

previous examples. The mass fraction of the phase

change material of the projectile is shown in Fig. 14.

Nearly no phase change happens when the impact

velocity is less than 2 km/s, and hot liquid only appear

when the velocity is higher than 6 km/s. The mass of

the phase change material of the target, which is also

scaled by the mass of the projectile, is shown in

Fig. 12 Numerical results of copper projectile impacting on

aluminum target at t = 2, 3 and 5 ls (from the top to the

bottom). Different colors (numbered from zero to three) denote

solid phase, melting regime, liquid phase and hot liquid phase,

respectively. (Color figure online)

Cu

2.5 mm

v = 1.0 ~ 8.0 km/s

1.6 ~ 12.6 mm

Cu

t

D

Fig. 13 The example for phase change investigation: a copper

sphere impacting on a copper plate

2
4

6
8 1

2
3

4
5

0

0.1

0.2

0.3

0.4

0.5

Velocity(km/s) D/t

Hot liquid
Liquid
All solid

M
   

 /M
liq

Fig. 14 The mass of the phase change material of the projectile,

which is normalized by the total mass of the projectile. Red color
denotes liquid metal, green color denotes hot liquid metal, and

blue color denotes solid metal. (Color figure online)
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Fig. 15. An interesting conclusion is that the fraction

of the phase change of the target is much less than that

of the projectile. Very little material changes to hot

liquid only when the impact velocity is very high.

Obvious phase changes are observed when the impact

velocity is higher than 3 km/s.

The simulated data are fitted with the formula

g ¼ ðav2 þ bvÞ D

t

� �c

ð35Þ

where g is the phase change fraction of the projectile.

The fitted parameters a, b and c are listed in Table 4.

Figure 16 compares the values calculated from the

emprical formulae (35) and the computed results of the

multiscale method. It can be seen that the formula can

describe the phase change fraction at different impact

velocities and diameters well. The emprical formula is

further validated with the thickness of the plate

t = 5.0 mm, which is shown in Fig. 17. The results

at relative low velocities (v = 2.5 km/s and

v = 4.2 km/s) can estimate the fraction of phase

change well. The results of higher velocities

(v = 5.9 km/s and v = 7.5 km/s) show some devia-

tions, but the trend can be predicted.

7 Conclusion

As summary, we propose a computational framework

combining MD and MPM to simulate the HVI

processes. The EOS is constructed from a series of

MD calculations, and the parameters of a specific EOS

can be fitted from computed results. The numerical

EOS is used in MPM computation for HVI simulation.

The computational framework is validated in various

ways by comparing Hugoniot curves and the isother-

mal compression curves from other references. The

debris cloud of the HVI process is also compared, and

the similar configurations to the experimental results

can be obtained.
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Fig. 15 The mass of the phase change material of the target plate,

which is nondimensionalized by the total mass of the projectile.

Red color denotes liquid metal, green color denotes hot liquid

metal, and blue color denotes solid metal. (Color figure online)

Table 4 Parameters of the empirical formula

Parameters a (km-2 s2) b (km-1 s) c

Value 6.480 9 10-3 -7.515 9 10-3 -0.6963
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Fig. 16 Comparison of the emprical formula (marked by stars)

and the simulated results (marked by circles)
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Fig. 17 Comparison of the emprical formula (marked by stars)

and the simulated results (marked by circles) for the case the

thickness is 5.0 mm
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The phase changes in the HVI process are also

investigated with the proposed multiscale method. An

emprical formula is proposed to estimate the mass

fraction of the phase change material of the projectile.

The proposed formula is validated by the results of

different thickness of the target.

The multiscale framework can be applied to the

HVI process where the experimental results are

difficult or expensive to carry out. MD simulations

can provide state variables under high pressure and

high temperature, and MPM has the ability to simulate

problems of large deformation, crack, and fragmenta-

tion. The framework will be extended to other metal

materials and the material with complex strctures as

the future development.
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