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A 2-D meshless model for jointed rock structures
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SUMMARY

According to the characteristic structural features of jointed rock structures, a meshless model is proposed
for the mechanics analysis of jointed rock structures based on the moving least-squares interpolants. In this
model, a jointed rock structure is regarded as a system of relatively intact rock blocks connected by joints or
planes of discontinuity; these rock blocks are modelled by general shaped anisotropic blocks while these joints
and planes of discontinuity are modelled by interfaces. The displacement �eld of each block is constructed
by the moving least-squares interpolants with an array of points distributed in the block. To deal with the
discontinuities of rock structures, the displacement �elds are constructed to be discontinuous between blocks.
The displacement �elds and their gradients are continuous in each block, hence no post processing is required
for the output of strains and stresses. The �nite element mesh is totally unnecessary, so the time-consuming
mesh generation is avoided. The rate of convergence can exceed that of �nite elements signi�cantly, and a
high resolution of localized steep gradients can be achieved. Furthermore, the discontinuities of rock structures
are also fully taken into consideration. The present method is developed for two-dimensional linear elastic
analysis of jointed rock structures, and can be extended to three-dimensional and non-linear analysis. Copyright
? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of the presence of joints and planes of discontinuity, the behaviour of jointed rock struc-
tures is largely controlled by the discontinuities. A rock structure can be regarded as a system
of relatively intact rock blocks connected by joints or planes of discontinuity. Many numerical
methods have been proposed, such as Joint Element [1], Discrete Element Method [2], Discon-
tinuous Deformation Analysis [3], Rigid Finite Element Method [4], Block-Interface Model [5],
and several others. All these methods require discretization of rock masses into a great number of

∗Correspondence to: Xiong Zhang, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People’s
Republic of China

†E-mail: xzhang@263.net

Contract=grant sponsor: National Natural Science Foundation of China; Contract/grant number: 59509002

CCC 0029-5981/2000/101649–13$17.50 Received 3 February 1999
Copyright ? 2000 John Wiley & Sons, Ltd. Revised 1 June 1999



1650 X. ZHANG, M. LU AND J. L. WEGNER

�nite elements to achieve reasonable results, consequently, mesh generation for these methods is
a time-consuming task.
Besides the time-consuming mesh generation, mesh-based methods are also not well suited to the

problems associated with extremely large deformations of the mesh and problems associated with
frequent remeshing. Although several strategies have been developed to maintain a reasonable mesh
shape, such as the Arbitrary Lagrangian–Eulerian (ALE) method [6], extra computational e�ort and
di�culties are also introduced. In the simulation of failure processes, frequent remeshing is required
to model the propagation of cracks with arbitrary and complex paths so that the computational
e�ort required is very signi�cant.
Compared with the �nite element method, meshless methods have overcome these di�culties,

and some of them have a number of attractive features. Many researchers were interested in
meshless methods, and about 10 di�erent meshless methods have been developed, such as the
Element-Free Galerkin (EFG) method [7], the Reducing Kernel Particle Method (RKPM) [8], the
Smoothed Particle (SPH) method [9], and several others. The journal, Computational Methods in
Applied Mechanics and Engineering, published a special issue on meshless methods in December,
1996. In these methods, EFG constructs its shape functions by the moving least-squares (MLS)
interpolants.
In the Block-Interface Model proposed in Reference [5], a rock structure is discretized by blocks,

which are in a constant stress state, connected by interfaces. The blocks are used to model the rock
blocks while the interfaces are used to model the joints and planes of discontinuity. For a rock
block with steep stress gradient, it should be further divided into many sub-blocks. Consequently,
the preparation of data is a time-consuming task, and the continuity condition between these sub-
blocks must be imposed by penalty method. Based on paper [5], a meshless model is proposed
by introducing MLS into the Block-Interfaces Model to construct the displacement �elds of the
blocks without dividing them into sub-blocks. According to the characteristic structural features
of rock structures, a rock structure is regarded as a system of relatively intact anisotropic rock
blocks connected by interfaces, and every rock block is modelled by an array of points through the
moving least-squares interpolants (see Figure 1). To reduce the computational e�ort required for a
large-scale rock structure, the major part of the structure, in which stress gradients are moderately
low, can be modelled by a few large anisotropic blocks whose material properties can be obtained
from an equivalent anisotropic continuum model [10–13]. It is unnecessary to divide each block
into sub-blocks, so that the time-consuming mesh generation is avoided. The displacement �elds
and their gradients are continuous in each block, hence no post processing is required for the
output of strains and stresses. Furthermore, the discontinuities of rock structures are fully taken
into consideration in the present method.

2. DEFORMATION OF BLOCKS

The displacement u(x) at point x is approximated locally by the moving least-squares interpolants as

uh(x)=
m∑
j=1
pj(x)aj(x) ≡ pT(x)a(x) (1)

where coe�cients aj(x) are functions of x, p1(x) = 1 and pj(x) are monomials in the space
coordinates x = [x; y]T so that the basis is complete. A linear basis in a two-dimensional domain
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Figure 1. Block-interface model based on the
moving least-squares interpolants.

Figure 2. The domain of in
uence of x.

provided by

pT(x) = [1; x; y]; m = 3 (2)

and a quadratic basis by

pT(x) = [1; x; y; x2; xy; y2]; m = 6 (3)

In the �nite element method, if linear basis is used, the shape function of a triangle element can
be obtained by letting the nodal value of the local approximation uh(x) at point xI , uh(xI ), equal
that of the function u(x) at the point xI ; uI . The derivatives of the shape functions of this kind of
methods are discontinuous between elements. In the moving least-squares interpolants, coe�cients
aj(x) are obtained at point x by minimizing

J =
n∑
I
w(x− xI )[pT(xI )a(x)− uI ]2 (4)

where n is the number of points in the neighbourhood of x for which the weight function w(x−xI )
6= 0. This neighborhood of x is called the domain of in
uence of x, or circle of in
uence in two
dimensions (see Figure 2). The domain of in
uence of a point never extends across any boundaries,
thus the domain of in
uence of the point x is limited to those points xI which are located in the
same block as the point x. For computational e�ciency, the weight function w(x− xI ) should be
compactly supported, that is to say, the in
uence domain of x should be relatively small.
The stationarity of J in (4) with respect to a(x) leads to

A(x)a(x) = B(x)ua (5)

where

A(x) =
n∑
I=1
wI (x)p(xI )p(xI )T (6)

B(x) = [w1(x)p(x1); w2(x)p(x2); : : : ; wn(x)p(xn)] (7)

uTa = [u1; u2; : : : ; un]; (8)

wI (x)≡w(x− xI ) (9)
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Solving (5) for a(x) and then substituting a(x) into (1), we have

uh(x) = �(x)ua (10)

where the shape function �(x) is de�ned by

�(x) = pT(x)A−1(x)B(x) (11)

The interpolation function uh(x) obtained from (10) is a local approximation of the function
u(x) at point x, and it is calculated by the interpolation of the nodal values of the function u(x)
at those points distributed in the domain of in
uence of x. The interpolation function uh(x) is a
patch function, hence the global sti�ness matrix is a sparse matrix.
The function uh(x) needs to be calculated at every quadrature point for assembly of the global

sti�ness matrix and load vector, consequently, equation (5) also needs to be solved at every
quadrature point. If p(x) is an orthogonal basis, the matrix A(x) will be a diagonal matrix so that
(5) can be solved easily. However, the computational e�ort required for the orthogonalization of
p(x) is almost equal to that required for solving (5) directly. In this paper, the basis given in (2)
and (3) are used.
In the �nite element method, the coe�cient matrix a(x) in (1) is a constant matrix within each

element, but it is not the case with the moving least-squares interpolants. The partial derivatives
of the shape function �(x) can be obtained as follows:

�;i(x) = pT;i (x)A
−1(x)B(x) + pT(x)A−1(x)[B;i(x)− A;i(x)A−1(x)B(x)] (12)

The weight functions wI (x) play an important role in the present method. They should be
constructed so that they are positive and that a unique solution of a(x) is guaranteed; they should
be relatively large for the xI close to x, and relatively small for the more distant xI . The weight
function,

wI (dI ) =



e−(dI =c)

2 − e−(dmI =c)2
1− e−(dmI =c)2 if dI6dmI

0 if dI ¿ dmI
(13)

proposed in [7] is used in this paper. In (13), c is a constant which determines the shape of the
weight functions, dI = ‖x − xI‖ is the distance between the two points x and xI ; dmI is the
size of the support for the weight function wI (dI ) and determines the domain of in
uence of x.
Figure 3 shows the weight functions for dmI =c = 2; 5 and 8. In this paper, dmI =c is selected as
26dmI =c68.
If the size of the domain of in
uence of x; dmI , is too small, the matrix A(x) will be singular.

However, very large domains of in
uence result in a global sti�ness matrix with large band
widths, so that the computational e�ort required is increased signi�cantly. The choice of dmI
should guarantee that the total number of points located in the domain of in
uence of x; n, is not
less than the order of the basis, m, and these n points are not in a straight line.
For a two-dimensional problem, the displacement vector, u = [u; v]T, at point x in a block can

be obtained from (10) as

u = Nub (14)

where

N=
[
�1(x) 0 �2(x) 0 · · · �n(x) 0
0 �1(x) 0 �2(x) · · · 0 �n(x)

]
(15)
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Figure 3. The weight functions wI (dI ) for di�erent values of dmI =c.

ub = [u1; v1; u2; v2; : : : ; un; vn]T (16)

The strain � and stress � at point x in a block are given by

�=Bbub (17)

�=DbBbub (18)

where Db is the elasticity matrix of the block,

Bb =


 �1; x 0 �2; x 0 · · · �n; x 0

0 �1; y 0 �2; y · · · 0 �n; y
�1; y �1; x �2; y �2; x · · · �n;y �n; x


 (19)

�= [�x; �y; 
xy]T; �= [�x; �y;�xy]T (20)

3. DEFORMATION OF INTERFACES

Consider the deformation at point P in the interface shown in Fig. 4. Generally speaking, the
width h of an interface is much less than its length L, hence the strain in the n direction in
the interface can be assumed to be constant. The relative deformation vector � at point P in the
interface between its top and bottom surfaces is given by

�= [�n; �s] = �uj − �ui (21)

where �n and �s are the normal and shear relative deformation at point P in the interface between
its top and bottom surfaces, respectively, �ui and �uj are the displacement vectors in the local
co-ordinate system n–s at points i and j, respectively. They are related to the displacement vectors
ui and uj in the global coordinate system x–y by

�u=Lu (22)
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Figure 4. A interface.

Figure 5. The domain of in
uence of points i and j.

where L is the co-ordinate transform matrix composed of the direction cosines of vectors n and s.
Introducing (14) and (22) into (21) leads to

�=Bsus (23)

where

Bs = [−LNi ;LNj] (24)

us = [uTbi ; u
T
bj]
T (25)

ubi and ubj are the displacement vectors composed of displacement at all points in the domains
of in
uence of points i and j, respectively. Note that points are only distributed within each rock
block, and no points are put in interface zone. The domain of in
uence of points i and j are limited
within block i and j, respectively, and cannot be extended to the interface zone (see Figure 5).
Consequently, the displacement vector us in (25) is composed of displacement of points distributed
within the domain of in
uence of points i and j.
Compared with other strain components, the normal strain component in the s direction can be

neglected, hence the strain vector in the local co-ordinate system n–s at point P in the interface
can be de�ned as

�′=
1
h
� (26)

where �′= [�n; 
ns]T, �n is the normal strain in the n direction, and 
ns is the shear strain.
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The normal stress in the s direction also can be neglected compared with other stress components.
The stress vector R composed of the normal stress �n and the tangential shear stress �s in the
interface is related to the relative deformation vector � by

R=Ds� (27)

where

Ds =
1
h




E
1− �2 0

0
E

2(1 + �)


 for plane strain problems (28)

R= [�n; �s]T (29)

The matrix Ds can also be de�ned by the normal sti�ness coe�cient Kn and the tangential shear
sti�ness coe�cient Ks of the interface as

Ds =
[
Kn 0
0 Ks

]
(30)

4. VARIATIONAL PRINCIPLE

The modi�ed variational principles for discontinuous mediums, such as rock structures, was estab-
lished in [14] and [5]. The static equilibrium equations of a rock structure can be obtained from
these variational principles. The functional of the overal potential energy of a rock structure is
given by

�∗=�e + �s + �f + �p (31)

where �e and �s are the elastic strain energy of blocks and interfaces, respectively, �f and �p
are the potential energy of the surface force fe and the concentrated force pm applied in blocks,
respectively. They are given by

�e =
∑
e
te

∫∫

e

1
2
�TDb� dx dy=

1
2
∑
e
uTb

(
te

∫∫

e
BTbDbBb dx dy

)
ub (32)

�s =
∑
k
tk

∫
�k

1
2
�TDs� ds=

1
2
∑
k
uTs

(
tk

∫
�k

BTsDsBs ds
)
us (33)

�f =−∑
e

∫∫

e
uTfe dx dy=−∑

e
uTb

(∫∫

e
NTfe dx dy

)
(34)

�p = −∑
m
uTpm =−∑

m
uTb (N

Tpm) (35)

where te and tk are the thickness of the block e and the interface k, respectively. The stationarity of
the modi�ed functional �∗ leads to the following static equilibrium equation for the block–interface
system:

KU=P (36)
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where

K=
∑
e
te

∫ ∫

e
BTbDbBb dx dy +

∑
k
tk

∫
�k

BTsDsBs ds (37)

P=
∑
e

∫ ∫

e
NTfe dx dy +

∑
m
NTpm (38)

U= [u1; v1; u2; v2; : : : ; uN ; vN ]T (39)

and N is the total number of points in the system. In the above equations,
∑

presents matrix
assembling.

5. ESSENTIAL BOUNDARY CONDITION

Unlike the �nite element method, the nodal value of the interpolation function uh(x) at each point
x is not equal to the nodal value of the function u(x) at the point x unless the weighting functions
are singular, namely

�I (xJ ) 6= �IJ (40)

consequently, the essential boundary condition should be imposed by Lagrange multipliers or
penalty method. The essential boundary condition is

u= �u on �u (41)

where �u is the prescribed displacement boundary, �u is the prescribed displacement vector on
boundary �u. To impose the essential boundary condition by Lagrange multipliers, constraint (41)
should be removed by adding a Lagrangian term,

�L =−
∫
�u
�T(u − �u) d� (42)

in functional (31). Actually, the Lagrange multiplier � in (42) represents the traction on the
boundary �u, hence (42) can be rewritten as

�L =−
∫
�u
uTbB

T
bD

T
bT

T(Nub− �u) d� (43)

where

T=
[
nx 0 ny
0 ny nx

]

and nx, ny are the direction cosines of the outward normal to the prescribed displacement boundary
�u. The contribution of �L to the global sti�ness matrix and load vector is given by

KL =−
∫
�u
BTbD

T
bT

TN d�−
∫
�u
NTTDbBb d� (44)

PL = −
∫
�u
BTbD

T
bT

T �u d� (45)
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Figure 6. Distribution of points: (a) in a triangle
block (l=3); (b) in a quadrilateral block (l=3;
m=4) and (c) in a polygon block (l=2; k =6).

Figure 7. Integration scheme: (a) an arbitrary poly-
gon block (l=1); and (b) a quadrilateral block

(l=3; m=4).

Adding KL to the right-hand side of (37) and PL to the right-hand side of (38) results in the
global equilibrium equation of the system. If the penalty method is used to impose the essential
boundary condition, the penalty term,

�a =
�
2

∫
�u
(u − �u)T(u − �u) d� (46)

where � is the penalty, should be added in functional (31). The contribution of �a to the global
sti�ness matrix and load vector is given by

Ka = �
∫
�u
NTN d� (47)

Pa = �
∫
�u
NT �u d� (48)

6. DISTRIBUTION OF POINTS IN BLOCKS

In the present method, displacement �elds in blocks are constructed by the moving least-squares
interpolants with an array of points. More points should be distributed in the blocks with deep
stress gradient than in the others to achieve high accuracy. In this paper, points are distributed
automatically according to the following rules:

(i) For a triangle block, l+ 1 layers of points are distributed so that there is one point in the
�rst layer, two points in the second layer, three points in the third layer, and so on. Total
number of points distributed in the block is (l+ 1)(l+ 2)=2 (see Figure 6(a)).

(ii) For a quadrilateral block, there are lm points distributed in the block, where l is the number
of points distributed on the �rst and third sides of the block, while m is the number of
points allocated on the second and fourth sides (see Figure 6(b)).

(iii) For an arbitrary polygon block with k sides, it is �rst divided into k triangles by connecting
the centroid of the block and its k vertexes, and then put points in these k triangles
according to rule 1. There are kl(l + 1)=2 + 1 points distributed in the arbitrary polygon
block with k sides (see Figure 6(c)).
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7. INTEGRATION SCHEME

Unlike the �nite element method, no mesh exists in the present method, hence extra treatment is
required in the calculation of integrals in (37) and (38). In order to obtain the integrals, a cell
structure, which is independent of the points and arranged in a regular pattern in both dimensions,
is used in [7]. In each cell, Gauss quadrature is used. In this method, if a quadrature point is
outside the physical domain, the contributions of the quadrature point to (37) and (38) are simply
neglected.
In this paper, a block is automatically divided into a number of subdomains according to accuracy

requirement, and Gauss quadrature is used in each subdomain. For a triangle block, it is divided
into three quadrilateral subdomains by connecting its centroid and the midpoints of its three sides.
If it is required, each quadrilateral subdomain could be further divided into four quadrilateral
subdomains. For an arbitrary polygon block with k (k¿4) sides, it is �rst divided into k triangle
blocks by connecting its centroid and its k vertexes, and then these k triangle blocks are divided
into a number of quadrilateral subdomains according to the aforementioned method. There are
3k4l−1 quadrilateral subdomains obtained (see Figure 7(a)).
For a quadrilateral block, it is divided into lm quadrilateral subdomains, where l is the number

of divisions on the �rst and third sides, and m is the number of divisions on the second and fourth
sides (see Figure 7(b)).
Because all blocks are divided into subdomains, all interfaces are also automatically divided

into a number of subinterfaces. Gauss quadrature is used in every subinterface.
After dividing all blocks and interfaces into subdomains and subinterfaces, Equations (37) and

(38) can be rewritten as

K=
∑
e
te
∑
i

∫ 1

−1

∫ 1

−1
BTbDbBb |J| d� d�+

∑
k
tk
∑
i

Li
2

∫ 1

−1
BTsDsBs d� (49)

P=
∑
e

∑
i

∫ 1

−1

∫ 1

−1
NTfe |J| d� d�+

∑
m
NTpm (50)

where |J| is Jacobi determinant, Li is the length of subinterface i of interface k. The integrals in
(49) and (50) can be evaluated by Gauss quadrature.

8. NUMERICAL EXAMPLES

8.1. A jointed rock mass

Singh proposed an equivalent anisotropic elastic model [13] for jointed rock masses which had
given excellent results, except in the region of steep stress gradients near the loaded area. The
jointed rock mass shown in Figure 8 is analysed for the plane strain case by using the present
method. The tangential and normal sti�nesses of the vertical joints are 438:8 and 395:9GPa=m,
respectively; while those of the horizontal joints are 438:8 and 531:9GPa=m. The elastic modulus
of the rock blocks is 89GPa=m and the Poisson’s ratio �r = 0:26. According to the theory given
by Singh [13], the equivalent anisotropic material properties of the rock mass are obtained as
E1 = 52:55 GPa=m, E2 = 41:9 GPa=m and Poisson’s ratios �1 = 0:1535; �2 = 0:1224.
The anisotropic continuum model proposed by Singh is ideally suited to this problem, because

the size of the loaded area is quite large compared to the size of the blocks. The mean strain
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Figure 8. A jointed rock mass.

values of the jointed rock mass obtained by the present method are in excellent agreement with
those given by Singh’s theory; the maximum error in mean strain is less than 0:5 Per cent. Due
to the discontinuities of the jointed rock mass, the displacement �elds obtained by the present
method are totally di�erent from those obtained by Singh’s theory. Compared with Singh’s theory,
the discontinuities of the rock mass are explicitly taken into account in the present method.

8.2. A semi-in�nite jointed rock mass subjected to strip load

The semi-in�nite jointed rock mass subjected to strip load shown in Figure 9 is studied. The
spacing of the joints is assumed to be S2 = 10 m, the normal and shear sti�nesses of the joints
are Kn=Ks = 0:555 GPa=m. The rock material is assumed to be isotropic with an elastic modulus
Er = 50 GPa, and Poisson’s ratio �r = 0:20.
This problem is of special interest. Firstly, the strip width is small in comparison with the joint

spacing, hence the rock layers will be subjected to a high stress gradient. Further, each layer
will behave as a beam, but the bending stresses cannot be taken into account in an anisotropic
continuum model. Consequently, an anisotropic continuum model will result in a signi�cant error
in the region of steep stress gradients near the loaded area. If a mesh based method is used, the
mesh should be su�ciently �ne to simulate a high stress gradient in each rock layer.
In the present method, each rock layer is modelled by one block in which 25× 5 points are

automatically distributed to construct the displacement �eld. The space integration is performed by
using 10 zones in the horizontal direction and three zones in the vertical direction in each rock
layer. 3× 3 Gauss quadrature is used in each zone to evaluate the sti�ness matrix.
To verify the results obtained by the present method, the semi-in�nite rock mass is also analysed

by using the block–interfaces model [5]. In this analysis, each rock layer is divided into 92 blocks
which are connected by interfaces with a very large sti�ness to enforce the continuity in the rock
layer. The dimensionless vertical de
ection, ErU=S2p, at the left upper corner obtained by the
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Figure 9. A semi-in�nite jointed rock mass subjected to a strip load.

Figure 10. Comparison of the dimensionless vertical de
ections computed by the present method and a
standard �nite element analysis using the anisotropic continuum model proposed by Singh [13].

present method is 1:987, while that obtained by the block–interfaces model is 2:004. They are in
excellent agreement.
To study the di�erence between the present method and an anisotropic continuum model, the

semi-in�nite rock mass is analysed again by using the standard �nite element method with an
anisotropic material, whose properties are given by Singh’s theory as E1 = 50GPa, E2 = 5GPa,
�1 = 0:2; �2 = 0:02, and G12 = 4:3825GPa. The dimensionless vertical de
ections, ErU=S2p, of the
rock mass obtained by the present method and the anisotropic continuum model are compared
in Figure 10. It shows that the anisotropic continuum model gives good results for jointed rock
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MODEL FOR JOINTED ROCK STRUCTURES 1661

mass, except in the region of steep stress gradient near the loaded area. Based on this study, a
large scale jointed rock structure can be analysed e�ciently by considering the major part of the
structure, in which the stress gradients are moderately low, as anisotropic continuum modelled by
a few meshless blocks.

9. CONCLUDING REMARKS

Based on the moving least-squares interpolants, a meshless model is proposed in this paper for the
mechanics analysis of jointed rock structures. In this model, no �nite element mesh is required and
only a number of points are distributed in each block to construct the displacement �eld, conse-
quently, the time-consuming mesh generation is avoided. The displacement �eld and its gradients
are continuous in each block, hence no post processing is required for the output of strains and
stresses. The rate of convergence can exceed that of �nite elements signi�cantly and a high resolu-
tion of localized steep gradients can be achieved. Furthermore, the discontinuities of rock structures
are fully taken into consideration. The present model can be used in the mechanics analysis of
complex rock structures, and can be extended to three-dimensional and non-linear analysis.
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