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SUMMARY

In this paper, an explicit material point finite element (FE) method is proposed and a computer code
EMPFE-3D is developed for simulating hyper-velocity impact. The material domain is discretized by a
mesh of finite elements. The momentum equations are solved on a predefined computational grid (like
the material point method) in the large deformation zone, and on the FE mesh (like the traditional
FE method) elsewhere. The grid may be fixed in space or moved in a predefined way. The nodes
covered by the grid are treated as material particles, and the remaining nodes are treated as FE nodes.
The proposed method yields the same results as the traditional FE method if the grid vanishes. On
the other hand, it yields the same results as the material point method if the grid covers the entire
material domain at all time steps. The method combines the advantages of Eulerian and Lagrangian
descriptions of motion while eliminates their drawbacks due to element entanglement and numerical
dissipation. The method is computationally efficient and can be easily implemented in an existing
explicit FE code like DYNA3D. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decades, the finite element (FE) method has yielded significant progress and has
been successfully applied to many scientific and engineering problems [1]. Two descriptions,
the Lagrangian and Eulerian, are typically used. In the Lagrangian description, the FE mesh
is embedded in and deforms with the material domain. It presents no convective effects and
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it is ideal for history-dependent materials. However, if the deformation is very large, e.g. in
hyper-velocity impact and metal forming, mesh distortion and element entanglement become
the significant limitations of the Lagrangian description.

An alternative to the Lagrangian description is the Eulerian description in which the material
flows through a grid fixed in space. It completely avoids element distortions but introduces
other difficulties like appropriate representation of free boundary and tracking of the material
deformation history. There are dissipation and dispersion problems associated with the mass
flux between adjacent elements. In addition, many redundant elements may be needed in the
Eulerian grid to enclose the entire physical space that the material domain occupies in the
course of the simulation.

The arbitrary Lagrangian–Eulerian (ALE) formulation [2, 3] alleviates many of the drawbacks
in the traditional Lagrangian and Eulerian descriptions. In ALE, the computational mesh is
continuously moved independently of material deformation to optimize element shapes and
describe the boundaries accurately. However, the convective terms still pose some problems.
Furthermore, designing an efficient and effective mesh-moving algorithm for complicated 3D
problems remains a challenging task.

In recent years, much effort has been devoted to the development of meshfree methods and
more than 10 different meshfree methods have been developed [4–9]. In meshfree methods,
the trial functions are constructed through a set of discrete points instead of a mesh. Thus, the
difficulties arising from mesh distortion and element entanglement are alleviated. The solution
accuracy of the meshfree methods is still dependent on the node regularities, though it is not
as significant as that in the FE method.

The material point method (MPM) [10, 11] is an extension of the FLIP particle-in-cell method
[12, 13] to solid mechanics. Being a fully Lagrangian particle method, it discretizes a material
domain by using a collection of material points, called particles, which carry all state variables
such as displacement, stress, strain, etc. The same computational grid is often used for all the
time steps so that mesh distortion and element entanglement are avoided. Equations of motion
are solved on the grid using the standard Lagrangian FE formulation. The numerical dissipation
normally associated with a Eulerian method is eliminated. However, there is an unavoidable
smoothing in this method that arises from the coarseness of the computational grid relative to
the material point density. Moreover, the two mappings between the particles and grid points
required in each time step increase the computational effort compared with the traditional
FE method.

In this paper, an explicit material point finite element (MPFE) method is proposed and a
computer code EMPFE-3D is developed for the analysis of hyper-velocity impact problems.
The material domain is discretized by a mesh of finite elements. The momentum equations are
solved on a predefined computational grid under the Lagrangian framework (like the MPM)
in the large deformation zone and solved on the FE mesh (like the traditional Lagrangian FE
method) elsewhere. The grid may be fixed in space or moved in a prescribed way. The nodes
covered by the grid are treated as material particles, and the remaining nodes are treated as
FE nodes.

The MPFE method yields the same results as the traditional FE method if there is no
computational grid is defined. On the other hand, it yields the same results as the MPM if the
grid covers the entire material domain at all time steps. The proposed method combines the
advantages of the Eulerian and Lagrangian descriptions of the motion, while overcoming their
drawbacks. It eliminates the difficulty of element entanglement and numerical dissipation. The
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method is computationally efficient and can be easily implemented in an existing explicit FE
code like DYNA3D.

2. GOVERNING EQUATIONS

Considering the updated Lagrangian description, the material motion is governed by the
momentum equations [14]

�ij,j + �fi = �ẍi ∀xi ∈ V (1)

subject to the traction boundary conditions

�ij nj = ti(t) ∀xi ∈ �t (2)

and the displacement boundary conditions

xi(X�, t) = di(t) ∀xi ∈ �d (3)

where V is the material domain, �t and �d are, respectively, the boundary portions of V

prescribed with traction and displacement, X� is the Lagrangian co-ordinate, �ij is the Cauchy
stress, � is the density, fi is the body force density, ẍi is the acceleration, the comma denotes
covariant differentiation and nj is the unit outward normal to the boundary. The repeated
indices imply a summation over 1, 2 and 3.

The weak form of the momentum equations and the traction boundary condition is given by

�� =
∫

V

�ẍi �xi dV +
∫

V

��s
ij�xi,j dV −

∫
V

�fi�xi dV −
∫

�t

ti�xi d� = 0 (4)

where �s
ij = �ij /� is the specific stress and �xi is the virtual displacement. The displacement

boundary conditions have been assumed to be satisfied as a priori.
Mass conservation is trivially stated

� dV = �0 dV0 (5)

where �0 is the reference density. The energy equation

Ė = J�ij �̇ij (6)

is integrated in time and used for the equation of state evaluations which will be further
discussed in Section 4.2. In (6), J is the determinant of the deformation gradient matrix
Fij = �xi/�Xj , E is the energy per unit initial volume, �̇ij is the strain rate.

3. SOLUTION SCHEME

The formulation presented in this paper is for 3D problems. For the sake of clarity, however,
let us consider the impact problem of a 2D bar as shown in Figure 1. The bar is discretized
by a mesh of finite elements. The lower part of the bar undergoes large deformation, so that
severe element distortion occurs as seen in Figure 1(b). To overcome the difficulty arising from
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computational grid

FE mesh

(a) (b)

Figure 1. FE mesh and computational grid: (a) initial configuration; and (b) current configuration.
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d
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Figure 2. Solution scheme, (a)–(f) are FE nodes, (g)–(i) are particles, A–D are grid points.

element distortion and entanglement, a computational grid fixed in space is incorporated to
serve as an updated Lagrangian frame.

For simplicity, the nodes covered by the computational grid are termed as particles, and the
remaining nodes are termed as FE nodes. The number of particles varies from time to time
because the nodes not covered by the grid currently may move into the grid at the consequent
time steps. In Figure 2(a)–(f) are FE nodes, 2(g)–(i) are particles and A–D are grid points.

3.1. Solution of momentum equations on the grid

For the material subdomain covered by the computational grid, the momentum equations are
solved on the computational grid. During this phase of solution, the particles are attached
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to the grid and they deform with the grid. There is no particle convection through the grid,
so the momentum equations are the same as those in Lagrangian formulation. There are no
advective terms in the momentum equations, so it eliminates the numerical dissipation normally
associated with a Eulerian method. After obtaining the kinematic solution on the grid, the state
variables carried by the grid points are mapped back to the particles to update that of the
particles. The deformed grid is discarded in the subsequent time step and a new regular grid,
which can be the same as the previous undeformed grid, is used. In this light, the difficulty
due to mesh distortion and element entanglement can be eliminated.

Because the particles are rigidly attached to the grid, the kinematic information can be
mapped between the particles and grid points through the shape functions of the grid. For
example, the particle acceleration ẍpi can be obtained by mapping the grid point acceleration
ẍgi to the particle, namely,

ẍpi =
ng∑

g=1
Npgẍgi (7)

where ng is the total number of grid points, Npg = Ng(xpi) is the value of the shape function
associated with the gth grid point at the pth particle. In this paper, the 8-point hexahedron
grid is used. If the pth particle is inside the hexahedron, the shape function is given by

Ng = 1
8 (1 + ��g)(1 + ��g)(1 + ��g) (8)

where �g, �g and �g take on their nodal values of (±1, ±1, ±1) at the grid points. If the pth
particle is outside the hexahedron, Ng = 0.

Similar to the MPM, the material mass is lumped at particles. Therefore, the density � at
any point xi in the material domain can be approximated as

�(xi) =
np∑

p=1
Mp�(xi − xpi) (9)

where � is the Dirac delta function, np is the total number of particles and xpi are their
co-ordinates. The mass Mp carried by node p can be approximated by

Mp = 1

8

∑
e

�eVe (10)

where �e and Ve are the density and volume of the elements connected to node p. The factor
‘1/8’ is for 3/D and it should be changed to ‘1/4’ for 2/D.

Substituting (7) and (9) into (4), and invoking the arbitrariness of �xhi lead to

ṗhi = f int
hi + f ext

hi (11)

where

phi =
ng∑

g=1
mghẋgi (12)

is the momentum of the hth grid point in the ith direction. Moreover,

f int
hi = −

np∑
p=1

VpNph,j�pij (13)
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and

f ext
hi =

np∑
p=1

MpNphfpi +
∫

�t

Nhti d� (14)

are the internal and external forces at hth grid point in the ith direction. Vp = Mp/�p, �p and
�pij are the current density and stress tensor at the pth node, respectively, fpi is the body
force density at the pth node in the ith direction. In (12), grid mass matrix mgh is given by

mgh =
np∑

p=1
MpNpgNph (15)

If a lumped grid mass matrix is used, Equation (12) can be rewritten as

phi = mhẋhi (16)

where mh is the lumped grid mass matrix given by

mh =
np∑

p=1
MpNph (17)

Although Mp remains constant at all time, the grid point mass mh varies with time and
must be recalculated at the beginning of each time step.

3.2. Solution of momentum equations on the FE mesh

For the part of the material domain not covered by the computational grid, the momentum
equations are solved on the Lagrangian FE mesh like the traditional FE method. The position
of a material point X� is given by the interpolation of FE nodal position as

xi(X�, t) =
nf∑

p=1
	pxpi(t) (18)

where nf is the total number of FE nodes, 	p is the value of the standard element shape
function at the point xi associated with the pth FE node. xpi is the nodal co-ordinate of the
pth FE node in the ith direction. The integration over V in (4) can be approximated by the
summation of the integration over all elements. Substituting (18) into (4) and using the lumped
mass matrix result in

Mpẍpi = f int
pi + f ext

pi (19)

where

f int
pi = −∑

e

∫
Ve

	p,j�ji dV (20)

f ext
pi = ∑

e

(∫
Ve

�	pfi dV +
∫

�te

	pti d�

)
(21)

It should be noted that the elements partially covered by the grid will contribute to the nodal
forces of the particles. For example, element d-e-h-g in Figure 2 contributes to the nodal force
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(a) (b)

Figure 3. Hourglass modes: (a) without hourglass control; and (b) with hourglass control.

of particles g and h. This contribution must be mapped to the grid points when establishing
the momentum equations. Consequently, Equation (14) should be rewritten as

f ext
hi =

np∑
p=1

Nph(Mpfpi + f ele
pi ) +

∫
�t

Nphti d� (22)

where f ele
pi is the contribution to the nodal force of pth node in the ith direction from those

elements partially covered by the grid, which can be evaluated by (20).
Although the proposed MPFE method can be implemented as an implicit method, this

paper focuses on the explicit implementation, which is often used for simulating problems like
hyper-velocity impact. The 1-point quadrature is used to evaluate the volume integration in (20)
and (21), namely

f int
pi = −∑

e

	ep,j�ejiVe (23)

f ext
pi = ∑

e

Me	epfei + ∑
e

∫
�te

	epti d� (24)

where Me = �eVe. The subscript e represents the value at the centre of element e.
Numerical studies show that the hourglass modes can easily be excited in the proposed

EMPFE method as shown in Figure 3(a). Hence, a hourglass control scheme [14, 15] must be
employed. In this paper, the following hourglass-resisting forces are added to the right side
of (19):

f �
pi = −

4∑
�=1


hhi���p (25)
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where


h = 1
4Qhg�V

2/3
e c (26)

hi� =
8∑

k=1
vki��k (27)

in which c is the material sound speed, and Qhg is a user-defined non-dimensional constant
usually set to a value between 0.05 and 0.15. Lastly, ��k (� = 1, 2, 3, 4; k = 1, 2, . . . , 8) are
the hourglass base vectors.

With the hourglass control scheme, Figure 3(b) shows that the hourglass modes have been
suppressed in a typical simulation.

4. NUMERICAL IMPLEMENTATION

It can be concluded by comparing (11)–(16) and (19)–(24) that the solution equations for
the grid points and FE nodes are almost the same, except that (11)–(16) are solved at grid
points while (19)–(24) are solved at FE nodes. In (11)–(16), the internal forces are mapped
from the particles to the grid points to establish the momentum equations at the grid points.
After solving the momentum equations, kinematic solutions are mapped back to the parti-
cles to update their material properties. In (19)–(24), the material data are always carried
by the quadrature point of the elements. In other words, the particles play the roles of
both the FE nodes and the quadrature points which carry the kinematic and material data,
respectively.

4.1. Time integration

The central difference method with variable time step size is employed to integrate (11)
and (19), see Figure 4. It can be noted in the figure that tk+1 = tk + �tk+1/2, tk+1/2 = tk +
1
2�tk+1/2 = tk−1/2 + �tk and �tk = 1

2 (�tk−1/2 + �tk+1/2).
Let the superscripts k and k − 1/2 denote the value at time tk and tk−1/2, respectively.

Suppose xk
pi and ẋ

k−1/2
pi are known, and we are seeking for the solution at time tk+1. The

energy equation (6) can be integrated as

Ek+1 = Ek + 1
2J k(�k

ij + �k+1
ij )�̇k+1/2

ij �tk+1/2 (28)

4.1.1. Time integration on the FE mesh. From (19), the acceleration of FE nodes at time tk

can be obtained as

ẍk
pi = (f

k,int
pi + f

k,ext
pi )/Mp (29)

The nodal velocity at time tk+1/2 and the nodal position at time tk+1 are given by

ẋ
k+1/2
pi = ẋ

k−1/2
pi + ẍk

pi�tk (30)

xk+1
pi = xk

pi + ẋ
k+1/2
pi �tk+1/2 (31)
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tt = 0 t k-1 t k t k+1
t k-1/2

∆ t k-1/2 ∆ t k+1/2

t k+1/2

∆t k

Figure 4. Time integration.

where the time step size, �tk+1/2, is determined by

�tk+1/2 = min(Le/c) (32)

where Le = Ve/Ae max is the characteristic length of element e, Ae max is the area of the largest
side of element e and c is the material sound speed.

4.1.2. Time integration on the grid. Similar to (30), the grid momentum at time tk+1/2 can be
obtained from (11) as

p
k+1/2
hi = p

k−1/2
hi + �p

k+1/2
hi (33)

where
�p

k+1/2
hi = (f

k,int
hi + f

k,ext
hi )�tk (34)

The particle velocity at time tk+1/2 and the particle position at time tk+1 can be obtained
by mapping the momentum from the grid points to the particles as

ẋ
k+1/2
pi = ẋ

k−1/2
pi +

ng∑
h=1

�p
k+1/2
hi Nk

ph/mk
h (35)

xk+1
pi = xk

pi + �tk+1/2
ng∑

h=1
p

k+1/2
hi N

k+1/2
ph /m

k+1/2
h (36)

In (36), N
k+1/2
ph and m

k+1/2
h are the value of the shape function Nph and grid point mass

mh at time step tk+1/2, which are unknown. However, N
k+1/2
ph /m

k+1/2
h can be approximated

by Nph/mk
h.

4.2. Stress update

After obtaining the positions and velocities of all FE nodes and particles at time tk+1 from
time integration, the stress can be updated by using a constitution model. Stress update is
carried out at the particles in the material subdomain covered by the grid, and carried out at
the element centres elsewhere. The stresses at time tk+1 can be obtained by

�k+1
ij = �k

ij + �̇k+1/2
ij �tk+1/2 (37)

where �̇ij is the material time derivative of the stress, and given by

�̇ij = �∇
ij + �il�lj + �j l�li (38)

in which �ij = 1
2 (ẋi,j − ẋj,i ) is the spin tensor, and �∇

ij is the Jaumann (co-rotational) stress rate

and determined from the strain rate �̇ij = 1
2 (ẋi,j +ẋj,i ) by a constitution model. Substituting (38)
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into (37) leads to

�k+1
ij = �k

ij + (�k
il�

k+1/2
lj + �k

j l�
k+1/2
li )�tk+1/2 + �∇k+1/2

ij �tk+1/2 (39)

Four kinds of constitution models have been implemented in our code EMPFE-3D. They
are the elastic model, the elastic-perfectly plastic model, the elasto-plastic hydrodynamic model
with isotropic hardening (LS-DYNA material mode 10) and the Johnson–Cook plasticity model
[14, 16] (LS-DYNA material mode 15). In the Johnson–Cook model, the equivalent tensile flow
stress is expressed as [17]

�y = (A + B�n)(A + C ln �̇∗)(1 − T ∗m) (40)

where � is the equivalent plastic strain, �̇∗ = �̇/�̇0 is the dimensionless plastic strain rate for
�̇0 = 1.0 s−1 and T ∗ = (T − Troom)/(Tmelt − Troom) ∈ [0, 1] is the homologous temperature.
A, B, n, C and m are the material constants. The effects of temperature are ignored in this
paper by omitting the last set of parentheses in (40).

The Mie–Gruneisen equation of state [18] is implemented for the last two material models
to update the pressure for the hyper-velocity impact problems

P = (C� + D�2 + S�3)
(

1 − �

2

)
+ E (41)

where � = �/�0 − 1 = V0/V − 1,  = 0�0/�, C = �0c
2
0, D = C(2� − 1), S = C(� − 1)(3� − 1),

c0 is the sound wave speed, � and 0 are the Gruneisen coefficients, and E is the internal
energy per initial volume. C, D and S are the material constants.

In the implementation of the constitution models, the strain rate �̇ij is required to be calculated
at the particles and at the element centres not covered by the grid. The strain rate at the element
centre can be readily evaluated by using the FE mesh as that in the traditional FE method.
Because the particles are attached to the grid and deform with the grid, the strain rate at the
particles can be evaluated based on the velocities of the grid points as

�̇pij = 1

2

ng∑
g=1

(Npg,j ẋgi + Npg,i ẋgj ) (42)

4.3. Description of the algorithm

The implementation of the proposed method is very similar to that of the traditional FE method,
and can be easily implemented in an existing FE code like DYNA3D. The method can be
implemented as follows.

1. Input phase: read FE nodal co-ordinates, element connectivities, material properties, and
initial conditions.

2. Initializing phase: calculate the mass Mp carried by all nodes using (10), create the
computational grid, which is fixed in space in this paper.

3. Solution phase: Loop until the current time tk is greater than the termination time tf :

(a) Loop over all nodes to calculate the kinetic energy of the system.
(b) Loop over all nodes to set their flags for identifying the FE nodes and particles.
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(c) Loop over all nodes including FE nodes and particles to calculate their external
forces.

(d) Loop over all particles to update their stresses.
(e) Loop over all FE elements not fully covered by the grid to update stresses at their

centres; to calculate the internal and hourglass-resisting nodal forces according to (23)
and (25) for FE nodes; to determine the new time step size �tk+1 according to (32).

(f) Loop over all particles to calculate the internal and external grid point forces
according to (13) and (22).

(g) Loop over all grid points to integrate the momentum equations to (33) and apply
the displacement boundary conditions.

(h) Loop over all particles to update their velocities and positions according to (35)
and (36).

(i) Loop over all FE nodes to calculate their accelerations according to (29) and apply
the displacement boundary conditions.

(j) Loop over all FE nodes to update their velocities and positions according to (30)
and (31).

(k) Update the time by tk+1 = tk + �tk+1.

4. End loop.

5. NUMERICAL EXAMPLES

5.1. Elastic bar impact on a rigid wall

To illustrate the basic idea of the MPFE method, an elastic bar impacting on a rigid wall
is investigated, as seen in Figure 5. The material properties of the bar are taken to be � =
8.9 × 103 kg/m3, E = 105 MPa, and � = 0.3. The initial velocity of the bar is 200 m/s.

In the computation, the momentum equations are solved on the computational grid fixed in
space in the material subdomain covered by the grid, and solved on the FE mesh elsewhere,
see Figure 5(a). The nodes covered by the gird are termed as particles and the remaining nodes
are termed as FE nodes. The particles inside the grid and element centres not covered by the
grid carry all state variables as discussed in Section 3.

After impacting, the bar is bounced back and moves at velocity of around 200 m/s and the
kinematic energy of the bar is shown in Figure 6. The computation is aborted at the position
shown in Figure 5(c), at which all particles have moved out of the computational grid. To
resume the computation, a new computational grid should be exploited which can cover all
particles.

5.2. Taylor’s impact

The cylinder-impact test is a simple and inexpensive test introduced by Taylor in 1948. It
provides data for the appropriate range of strains and strain rates, so several researchers have
used this test to estimate the dynamics flow stresses for various materials [17]. This test has
also been used to validate computer codes, such as Eulerian wavecode [11, 19], CSQ, HEMP
and FLIP.
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(a) (b) (c)
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Figure 5. Elastic bar impact on a rigid wall.
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Figure 6. Kinematic energy of the bar.

To quantify the degree of agreement between the computed cylinder shapes and the experi-
mental data, Johnson and Holmquist [17] introduced the following average error:

�̄ = 1

3

( |�L|
L

+ |�D|
D

+ |�W |
W

)
(43)
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D

W
0.2L0

L

Figure 7. Geometry of the deformed cylinder in Taylor’s test.

Table I. Material constants of the cylinder.

� (kg/m3) E (MPa) � A (MPa) B (MPa) n C

8930 117 × 103 0.35 157 425 1.0 0.0

Table II. Comparison between numerical results and test data
for the cylinder-impact problem.

L (mm) D (mm) W (mm) �̄

Test data 16.2 13.5 10.1 —
FEM 16.27 13.33 10.18 0.008
MPM 16.35 13.4 9.9 0.012
MPFE 16.38 13.4 9.9 0.013

where L, D and W are, respectively, the deformed length, diameter of the deformed end and
diameter at 0.2L0 from the deformed end from the test results, see Figure 7. �L, �D, and
�W are the differences between the computed and experimental results.

The cylinder is made of OFHC copper and its material constants with respect to the
Johnson–Cook model are listed in Table I [17]. The initial length, diameter and velocity
of the cylinder are L0 = 25.4 mm, D0 = 7.6 mm and v0 = 190 m/s, respectively. The cylinder
is discretized by 299 × 67 elements with 332 × 68 nodes, see Figure 8(a). Three different
computational attempts are taken. In the first attempt (FEM), no computational grid is used,
so that the solutions are identical to that of the traditional FE method. In the second attempt
(MPM), a 21×21 × 26 hexahedral grid with 1mm grid point spacing is used to cover the whole
cylinder. Thus, the solutions are identical to that of the MPM. In the third attempt (MPFE),
a 21 × 21 × 13 hexahedral grid with 1 mm grid point spacing is used to cover the lower half
of the cylinder. Table II compares the numerical results with the experimental data. It can be
seen that the numerical results agree well with the experimental data. The final configuration
of the cylinder is shown in Figure 8(b).
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Figure 8. (a) Discretization; and (b) the final shape of the cylinder.

Table III. Mesh distortion and time step size.

�max �min �tmax (ms) �tmin (ms) Time steps CPU time (s)

FEM 7.849 × 10−2 8.298 × 10−6 9.264 × 10−6 7.893 × 10−7 17 987 5969
MPFE 7.849 × 10−2 7.573 × 10−2 9.264 × 10−6 9.242 × 10−6 5443 1744

To investigate the mesh distortion, the following measure is employed:

� = min
e

Ae min/Ae max (44)

in which Ae min and Ae max are the area of the smallest and largest side of element e. Due to
the material hardening effect, the mesh distortion is not severe.

To further investigate the effects of mesh distortion on the proposed method, the copper is
taken to be elastic-perfectly plastic, i.e. B is set to zero in Table I. Table III compares the
mesh distortion, time step size and CPU time consumed at t = 50.4 �s for FEM and MPFE.
Figure 9 shows the deformed configurations obtained by FEM and MPFE. Despite the of

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:689–706



AN EXPLICIT MATERIAL POINT FINITE ELEMENT METHOD 703

Figure 9. Comparison of the configuration at t = 50 �s: (a) FEM; and (b) MPFEM.

Table IV. Material constants of the projectile and plate.

� (kg/m3) E (MPa) � A (MPa) B (MPa) n C

8930 117 × 103 0.35 90 392 0.5 0.0

geometric similarity of the deformations, the time step size (= min(Le/c)) for FEM becomes
very small due to the severe mesh distortion, and it is prohibitively expensive to continue
the computation. On the other hand, the time step size for MPFE remain practically constant
during the computation. The CPU time consumptions are in the ratio of 3:1.

5.3. Orbital debris shielding

Due to the extreme mesh distortion, conventional FE codes have been proven to be inefficient
in the simulation of hyper-velocity impact problems like the design of orbital debris shielding.

To illustrate the capability of the EMPFE-3D code in the simulation of hyper-velocity impact
problems, the impact of a spherical projectile with velocity of 6.6 km/s on a thin plate is
examined. The diameter of the projectile is 8 mm and the plate thickness is 3 mm. The projectile
and plate are made of copper, which is modelled by the Johnson–Cook plasticity model with
the material constants given in Table IV. The Mie–Gruneisen equation of state is used with
constants listed in Table V to update the pressure. A contact–impact algorithm similar to that
proposed in Reference [20] is implemented in EPFE-3D to deal with the contact between the
projectile and plate.

The projectile and the centre part of the plate, as shown in Figure 10, are expected to undergo
severe deformation. To eliminate the difficulties arising from the pertinent mesh distortion, the
momentum equations of them are solved in a computational grid with 1 mm grid-point spacing,
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Table V. Constants in the Mie–Gruneisen equation of state.

c0 (m/s) � 0

3600 1.49 1.96

Figure 10. Impact of a projectile on a thin plate.

Figure 11. Comparison of the debris cloud at 9 �s: (a) experimental
result [21]; and (b) EMPFE-3D result.

and are solved in the FE mesh elsewhere. The projectile is modelled by 4984 tetrahedron
elements with 1085 nodes, and the plate is modelled by 30 000 hexahedron elements with
36 057 nodes. The total number of degree of freedom is 111 426.

Figure 11(a) shows a typical debris cloud from hyper-velocity impact of a spherical projectile
into a thin plate [21]. The computed debris cloud by EMPFE-3D is shown in Figure 11(b).
The computational result compares favourably with the experiment in that the configuration of
the debris clouds agree.

In MPM, there is no interaction between material particles separated by grid cells, such
as particles A′ and B ′ in Figure 12. Therefore, the interaction between particles A and B
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A′ B′

A

B

Figure 12. Fracture simulation in MPM.

will vanish when they move to the positions of A′ and B ′, which is similar to the fracture
phenomena. It implies that the MPM possess a intrinsical fracture analysis capacity whose
fracture criteria is the maximum space criteria, namely fracture occurs when the space between
two particles is greater than the grid spacing. Hence, fracture can be simulated approximately
in MPM without using any special material model.

We have investigated several other hyper-velocity impact problems using MPM, such as
impact of projectile on thin plates and thick plates, and found that the numerical results agree
well with those obtained by experiments and other numerical methods. A material model
including fracture will be included in EMPFE-3D to refine the fracture analysis.

6. CONCLUSION

An explicit material point finite element method is proposed and a computer code EMPFE-3D
is developed. Numerical examples have been presented to demonstrate the capability of the
EMPFE-3D code for 3D impact problem with impact velocity from 190 to 6600 m/s.

The proposed method is very simple and straightforward to be implemented in an existing FE
code, such as DYNA3D. It combines the advantages of the Lagrangian and Eulerian description,
and is free from difficulties arising from severe mesh distortion. The method is promising in
the simulation of hyper-velocity impact problems.

Although the computational grid is taken to be fixed in space in the computation, it might
be updated adaptively to further improve the accuracy of the solution.

It should be noted that the MPFE method connects MPM and FE by using the FE nodes
in the distorted region as material points. Therefore, the FE mesh is quite fine compared
to the background MPM computational grid. Since the resolved length scale in MPM is the
background grid spacing, this leads to a less refined calculation in the more highly deformed
region and a fine mesh in the regions that are only deforming slightly. An adaptive scheme
can be used to refine the computational grid in the highly deformed region.
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