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SUMMARY

The inherent no-slip contact constraint in the standard material point method (MPM) creates a greater
penetration resistance. Therefore, the standard MPM was not able to treat the problems involving impact
and penetration very well. To overcome these deficiencies, two contact methods for MPM are presented
and implemented in our 3D explicit MPM code, MPM3D. In MPM, the impenetrability condition may
not satisfied on the redefined regular grid at the beginning of each time step, even if it has been imposed
on the deformed grid at the end of last time step. The impenetrability condition between bodies is only
imposed on the deformed grid in the first contact method, while it is imposed both on the deformed grid
and redefined regular grid in the second contact method. Furthermore, three methods are proposed for
impact and penetration simulation to determine the surface normal vectors that satisfy the collinearity
conditions at the contact surface. The contact algorithms are verified by modeling the collision of two
elastic rings and sphere rolling problems, and then applied to the simulation of penetration of steel ball and
perforation of thick plate with a particle failure model. In the simulation of elastic ring collision, the first
contact algorithm introduces significant disturbance into the total energy, but the second contact algorithm
can obtain the stable solution by using much larger time step. It seems that both contact algorithms give
good results for other problems, such as the sphere rolling and the projectile penetration. Copyright �
2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Some physical phenomena arisen from the impact and penetration, such as non-linear wave propa-
gation, friction and abrasion, large deformation, dynamic damage and fracture, are usually analyzed
by hydrocodes. The broad range of available hydrocodes has been reviewed by Anderson [1] and
Benson [2]. Traditionally, the hydrocodes for simulating impact and penetration are developed
based on Lagrangian and Eulerian methods. Eulerian methods suffer from the difficulties to treat
material interfaces and free interfaces. A boundary layer interface algorithm (BLINT) for sliding
interfaces was incorporated into Eulerian CTH hydrocode by Silling [3], and was used to simulate
the impact and penetration problems [3, 4].
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Lagrangian [5, 6] and arbitrary Lagrangian Eulerian methods [7] for the simulation of penetra-
tion have been applied extensively in the solid mechanics community. Lagrangian finite element
method (FEM) has been used to simulate the penetration based on adaptive meshing, explicit
contact/friction algorithm, and rate-dependent plasticity [6]. Although Lagrangian codes have the
advantage to track the material interfaces, the distortion and entanglement of mesh often occur in
the simulation of penetration. Moreover, a non-physical element erosion algorithm has been often
incorporated into Lagrangian codes to model penetration. Recently, the problems involving impact
and penetration were solved using some meshless methods, such as Smoothed Particle Hydro-
dynamics (SPH) [8], Meshless Local Petrov–Galerkin method [9], and Material Point Method
(MPM) [10, 11].

MPM developed by Sulsky et al. [10, 11] is an extension of the particle-in-cell method [12, 13]
to solid mechanics problems. Being a fully Lagrangian particle method, it discretizes a material
domain by using a collection of material points. The momentum equations are solved on a prede-
fined regular background grid, so that the grid distortion and entanglement are completely avoided.
MPM has been applied to solve many complicated engineering problems, such as the upsetting
process [14], Taylor bar impact [15], dynamics crack [16, 17], explosive process [18, 19], hyper-
velocity impact [20, 21] and dynamic analysis of saturated porous media [22]. Although MPM has
been successfully applied to solve hypervelocity problems, the MPM simulations for penetration
problems are still challenging tasks.

Because of using the single-valued mapping functions between background grid nodes and parti-
cles, interpenetration of material particles is precluded in the standard MPM algorithm. A no-slip
contact constraint is inherent in the standard MPM. Sulsky et al. [11] performed a standard MPM
simulation for a steel sphere impacting an aluminum target at a striking velocity of 1160 m/s.
They found that the penetration depth computed by the standard MPM is significantly lower than
the experimental result. Hence, in some problems involving impact and penetration, the inherent
no-slip contact condition in the standard MPM may create a greater penetration resistance, and an
efficient contact algorithm for releasing no-slip contact should be developed.

A simple contact algorithm was proposed by York et al. [23] to allow the release of no-slip
contact constraint in the standard MPM. In York’s method, if the bodies are coming into contact
with each other, the standard MPM method is used to impose the impenetrability condition.
If the bodies are moving away from one another, they move in their own velocity fields to allow
separation. To avoid interpenetration and allow separation in the gear contact process, Hu and
Chen [24] presented a contact/sliding/separation algorithm in the multi-mesh environment. In their
contact algorithm, the normal velocity of each material particle at the contact surface is calculated
in the common background grid, whereas the tangential velocity is found based on the respective
individual grid. Although aforementioned contact algorithms are efficient to separation, the friction
between contact bodies is not considered.

Bardenhagen et al. [25, 26] proposed a contact/friction/separation algorithm in multi-velocity
fields. The impenetrability condition and Coulomb friction between bodies are incorporated into
MPM when the contact occurs. The contact force between bodies is obtained from the relative
nodal velocity at the contact surface. The approach has been demonstrated using the sphere rolling
on an inclined plane and the granular shearing simulation [26]. Recently, Pan et al. [27] proposed
a three-dimensional multi-mesh contact algorithm for MPM. In this contact algorithm, the contact
force between bodies is obtained from the normal nodal acceleration continuity requirement at the
contact surface. The approach presented by Pan et al. [27] was applied to simulate the collision
of plastic spheres and the impact of Taylor bar. The problems involving penetration are more
complicated than the common contact problems, so that the contact MPM algorithms for penetration
simulation are needed to be developed.

The contact conditions in MPM are applied via the background grid, and the contact problems
can be completely described by the nodal variables. In this paper, a general formulation of the
contact-impact problem is first presented, and then two methods are presented to implement the
contact algorithm in the well-known Lagrange multiplier form. The impenetrability condition is
only imposed on the deformed grid at the end of each time step in the first method, whereas it is
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imposed both on the deformed grid at the end of each time step and the redefined regular grid at
the beginning of next time step in the second method. With a particle failure model, two contact
methods are applied to simulate the penetration of steel ball and perforation of thick plate.

This paper is organized as follows. The basic mathematical descriptions of the contact problem
are summarized in Section 2. Two contact methods for MPM are presented in details in Section 3,
and their implementations are described in Section 4. In Section 5, the problems involving impact
and penetration are solved by the presented contact methods, and the computational results are
compared with the experimental results. Finally, some conclusions are presented in Section 6.

2. BASIC DESCRIPTIONS OF CONTACT PROBLEMS

In MPM, each body is discretized by a set of particles, which carry all state variables such as
stress, strain and temperature. The MPM algorithm also uses a background grid. Figure 1 shows an
example of the discrete representation of a two-dimensional material body. Particles are assigned
fixed masses during computation, so that conservation of mass is satisfied implicitly in MPM.
The momentum equations are solved on the background grid. The momentum changes on the
grid are interpolated to the particles, so that the total momentum is conserved in MPM. Energy
conservation errors are dependent on the time step in explicit MPM [28].

Narin [29] compared three numerical schemes of MPM, which are update stress last [10],
modified update stress last [30] and update stress first (USF) [28, 31] schemes. The USF scheme
is similar to the numerical scheme used in explicit FEM, and it is used in this study.

2.1. Contact condition

Consider two continuous bodies (body I and body II ) which come into contact with each other at
time tk . The algorithm can be developed to treat the contact behaviors of any number of bodies,
but we restrict two bodies for simplicity of notation. Let the subscript i denote the value of grid
node i , and let the subscript p denote the value of particle p. Let the superscripts k and k+1
denote the value at time tk and tk+1, respectively. �t is the current time increment, �t = tk+1 − tk ,
Sip and Gip are the shape function and its gradient of node i evaluated at particle p, respectively.

In the contact algorithm [25], the mass and momentum from material points are interpolated to
the computational grid for each individual body, respectively. The contact conditions are applied
by the background grid in MPM. According to the principles of continuum mechanics, the contact
conditions can be described as follows [32, 33]:

2.1.1. Impenetrability condition. Once the contact occurs between two bodies at time tk , the
outward unit normal vectors of two bodies must be in the opposite direction at the contact surface,

Figure 1. Material discretization in MPM.
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namely

2∑
b=1

nbi =0 (1)

where b indexes the bodies, nbi is the outward unit normal vector of the body surface. The nodal
velocity must satisfies the impenetrability condition on the background grid, that is

2∑
b=1

vbi ·nbi =0 (2)

where vbi is the nodal velocity of node i connecting to body b.

2.1.2. Contact force condition. The contact force f ct
bi is applied to body b when the contact occurs.

Based on Newton’s third law, the contact force yields

2∑
b=1

f ct
bi =0 (3)

The normal contact force f nor
i of two bodies is defined by:

f nor
i = f ct

bi ·nbi and f nor
i �0 (4)

The normal contact force f nor
i must be less than or equal to zero because the normal contact

force cannot be tensile.

2.1.3. Momentum equations. The weak form of the contact problem is obtained from the principle
of virtual work by appending the Lagrange multiplier term. After imposing the contact constraints
by using the Lagrange multiplier method, the momentum equations of grid nodes at the contact
surface can be written as

mbiabi = fbi +f ct
bi (b=1,2) (5)

where mbi is the nodal mass, abi is the nodal acceleration, fbi is the sum of the nodal internal and
external forces, and f ct

bi is the nodal contact force.

2.2. Detection of contact nodes

For each body, the nodal velocity connecting to body b is computed by taking the ratio of momentum
pbi to mass mbi

vbi = pbi

mbi
(b=1,2) (6)

If the velocities of two bodies are projected on to the same node, the contact may occur. The
average mapping velocity of all material points in grid node i is termed the centre-of-mass velocity
and denoted vcm

i

vcm
i = p1i +p2i

m1i +m2i
(7)

Using the surface normal vector, approach and departure of contact bodies can be distinguished.
A body is coming into contact with its neighbor body in the vicinity of grid node i when

(vbi −vcm
i ) ·nbi>0 (8)

If the nodal mass mbi is close to zero, the nodal velocity vbi maybe become a singular value
which causes error during the calculation. A more accurate solution in MPM is obtained using the
nodal momentum rather than the nodal velocity [11].
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2.3. Surface normal vectors

The gradient of the nodal mass mbi in the individual body provides an original computation of the
unit surface normal vector [26]. Hence,

n̂bi = 1∣∣∣∑p Gipmbp

∣∣∣
∑
p

Gipmbp (b=1,2) (9)

where mbp is the mass of particle p in body b.
The normal vectors given by Equation (9) cannot guarantee that the collinearity condition

Equation (1) will be satisfied at the contact surface. Non-collinearity of normal vectors at contact
surface causes non-conservation of momentum in contact algorithms. Following methods are
proposed to determine the modified surface normal vectors nbi which satisfies the collinearity
condition equation (1) at the contact surface.

1. If body I is stiffer than body II, let n1i = n̂1i and n2i =−n̂1i .
2. If body I with a flat/convex surface is expected to come into contact with body II with a

concave surface, let n1i = n̂1i and n2i =−n̂1i .
3. The modified normal vector nbi(b=1,2) can also be obtained by the average value of original

normal vectors, e.g.

n1i =−n2i = 1

|n̂1i − n̂2i | (n̂1i − n̂2i ) (10)

The modified normal vector nbi satisfies the collinearity condition equation (1) at contact surface,
which insures the momentum conservation in the contact computation.

3. CONTACT ALGORITHMS

Contact-impact algorithms are implemented with the explicit time integration method. In MPM,
the deformed grid at the end of each time step is discarded, and a new regular background grid is
redefined at the beginning of next time step. Consequently, the impenetrability condition equation
(2) may not be satisfied on the redefined regular grid at the beginning of each time step, even if it
has been imposed on the deformed grid at the end of last time step. Two methods are presented here
to implement the contact algorithm. The impenetrability condition equation (2) is only imposed
on the deformed grid in the first method, whereas it is imposed both on the deformed grid and the
redefined regular grid in the second method.

At the beginning of each time step, the contact between two bodies may occur at a node if the
velocities of both bodies are projected to the node. The contact algorithm is required to impose
the impenetrability condition equation (2) at the contact node.

3.1. The first contact method

In the first method, the contact conditions are imposed after the two bodies have been updated in
an uncoupled manner [34, 35]. In each time step, the bodies are first integrated independently to
obtain the trial values of nodal variables, as if they were not in contact.

Integrating the momentum equation of bodies independently gives the trial nodal velocity v̄k+1
bi

at time tk+1

v̄k+1
bi =vk

bi +
fbi

mk
bi

�t (11)

At the end of the time step, a body may penetrate its neighbor body in the vicinity of grid node i
when

(v̄k+1
bi − v̄cm,k+1

i ) ·nk
bi>0 (12)
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holds, and the trial values of nodal velocities should be corrected to new values so that the
impenetrability condition equation (2) is satisfied. Otherwise, the trial values of nodal velocities
represent the true solution. In Equation (12), v̄cm,k+1

i is the center-of-mass velocity based on the
trial nodal velocity. That is

v̄cm,k+1
i = mk

1i v̄
k+1
1i +mk

2i v̄
k+1
2i

mk
1i +mk

2i

(13)

This uncoupled solution correctly indicates which parts of the body are in contact at the end of
time step; hence, no iterations are needed to establish the contact interface.

For bodies in contact, the corrected nodal velocity at time tk+1 is given by

vk+1
bi = v̄k+1

bi + f ct
bi

mk
bi

�t (14)

which must satisfy the impenetrability condition

2∑
b=1

vk+1
bi ·nk

bi =0 (15)

Substituting Equation (14) into Equation (15) gives the normal contact force

f nor
i = f ct

bi ·nk
bi =

mk
1i m

k
2i

(mk
1i +mk

2i )�t
(v̄k+1

2i − v̄k+1
1i ) ·nk

1i (16)

Substituting Equation (13) into (16) leads to the following simplified form:

f nor
i = mk

bi

�t
(v̄cm,k+1

i − v̄k+1
bi ) ·nk

bi (17)

The contact algorithm has been finished if there is no friction between bodies. The tangential
contact force, or friction, can be determined according to the similar procedure to the normal
contact force computation. We first calculate the tangential force necessary to cause two bodies to
stick completely. The tangential component of the contact force for no-slip contact is defined by

f tan
i = f ct

bi ·sk
bi (18)

where f ct
bi is the contact force applied to body b, sk

bi is the unit tangential vector, which satisfies
sk

1i =−sk
2i at the contact surface.

For no-slip contact, vk+1
bi must satisfy

2∑
b=1

vk+1
bi ·sk

bi =0 (19)

Substituting Equations (14) into Equation (19) and adopting Equation (13), the tangential compo-
nent of the contact force for no-slip contact is given by:

f tan
i = mk

1i m
k
2i

(mk
1i +mk

2i )�t
(v̄k+1

2i − v̄k+1
1i ) ·sk

1i

= mk
bi

�t
(v̄cm,k+1

i − v̄k+1
bi ) ·sk

bi (20)

The tangential force of non-slip contact can also be obtained by:

f tan
i sk

bi =
mk

bi

�t
(v̄cm,k+1

i − v̄k+1
bi )− f nor

i nk
bi (21)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:498–517
DOI: 10.1002/nme



504 P. HUANG ET AL.

For slip contact, the friction at the contact surface is described by the Coulomb friction model.
We limit the frictional force to have a magnitude less than the tangential contact force of no-slip
contact so that the contact force is obtained as:

f ct
bi =min(0, f nor

i )nk
bi +min(�| f nor

i |, | f tan
i |)sk

bi (22)

After calculating the contact force f ct
bi from Equation (22), the corrected nodal velocity vk+1

bi at
time tk+1 can be obtained from Equation (14).

3.2. The second contact method

In FEM, the same Lagrangian meshes are used in all time steps. Hence, the impenetrability
condition equation (2) will be still satisfied at the beginning of each time step if it is imposed at
the end of last time step. However, in MPM, the deformed background grid is discarded at the end
of each time step, and a new regular background grid is redefined at the beginning of next time
step. The impenetrability condition Equation (2) may be not satisfied at the beginning of each time
step, even if it has been imposed at the end of last time step.

In the second method, the impenetrability condition is forced to be satisfied both at the end of
each time step and at the beginning of the next time step. At the beginning of each time step, if the
velocities of two bodies are projected to the same node, and the initial nodal velocities vk

bi satisfy
the condition

(vk
bi −vcm,k

i ) ·nk
bi>0 (23)

The impenetrability condition equation (2) is not satisfied, and the nodal velocities vk
bi should

be adjusted to new values ṽk
bi so that the condition

ṽk
bi ·nk

bi =vcm,k
i ·nk

bi (24)

holds. In Equations (23) and (24), vcm,k
i is the center-of-mass velocity based on the initial nodal

velocity.
Equation (24) indicates that the normal component of the adjusted nodal velocities is set equal

to the normal component of the center-of-mass velocity. That is

ṽk
bi =

{
vk

bi −[(vk
bi −vcm,k

i ) ·nk
bi]n

k
bi slip contact

vcm,k
i no-slip contact

(25)

The trial nodal velocity v̄k+1
bi at time tk+1 is obtained by integrating the momentum equation of

each body independently as:

v̄k+1
bi = ṽk

bi +
fbi

mk
bi

�t (26)

The remaining steps of the second method are the exactly same as that of the first method.
Note that the stresses on particles are updated based on the nodal velocities at the beginning

of each time step in USF scheme. Therefore, the nodal velocities, vk
bi, used to update the stresses

in the first contact method may violate the impenetrability condition Equation (2). Violating the
impenetrability condition in updating stresses may leads disturbances to the system, which has
been observed in the numerical results presented in Section 5.

4. IMPLEMENTATION OF THE CONTACT ALGORITHMS

The detailed implementation of two contact methods are presented here using USF scheme for one
time step. The beginning of the current time step is tk , and the end of the current time step is tk+1.
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1. Redefine the background grid at the beginning of the current time step. Compute the nodal
mass mk

bi

mk
bi =

∑
p

mbpSk
ip (27)

the nodal velocity vk
bi

mk
biv

k
bi =

∑
p

mbpvk
bpSk

ip (28)

and the normal vector nk
bi connecting to body b.

2. Detect the contact nodes. If the velocities vk
bi of two bodies are projected to the same node,

two bodies contact at the node.
3. For the second method, adjust the nodal velocities vk

bi of contact nodes to new values ṽk
bi

according to Equation (25) if the velocities vk
bi of two bodies satisfy the condition Equa-

tion (23).
4. Compute the strain increments �ebp of particles from the nodal velocities vk

bi (or ṽk
bi in

the second method) connecting to each body, and update the particle stress �k+1
bp using a

constitutive model. Update the particle density �k+1
bp .

The strain increment of each particle can be evaluated by

�ebp = �t

2

8∑
i=1

[Gk
ipvk

bi +(Gk
ipvk

bi)
T] (29)

where Gk
ip =∇Ni |x=xk

p
.

The density of a particle is updated by:

�k+1
bp =

�k
bp

1+ tr(�εbp)
(30)

5. Compute the nodal force fbi from the updated stresses of particles belonging to body b by

fbi =−∑
p

Gk
ip ·rk+1

bp
mbp

�k+1
bp

+f ext
bi (31)

where

f ext
bi =∑

p
mbpSk

ipbk
bp +

∫
�t

Sk
i tkb d� (32)

is the external force of grid node i , b is the specific body force, and t is the prescribed traction
on boundary �t .

6. Compute the trial nodal velocity v̄k+1
bi from Equation (11) (or from Equation (26) in the

second method) by integrating the momentum equation of each body independently.
7. Loop over all grid nodes. Calculate the contact forces f ct

bi from Equation (22) for contact
nodes if the trial nodal velocity satisfies Equation (12).

8. If two bodies are in contact at node i , compute the final nodal velocity vk+1
bi at time tk+1 from

Equation (14). Otherwise, the trial solution represents the true solution, namely vk+1
bi = v̄k+1

bi .
9. For each body, update the particle position and velocity. The position of particle p belonging

to body b is updated by

xk+1
bp =xk

bp +�t
8∑

i=1
vk+1

bi Sk
ip (33)

and the velocity of particle p belonging to body b is updated by:

vk+1
bp =vk

bp +�t
8∑

i=1

fbi +f ct
bi

mk
bi

Sk
ip (34)
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The explicit time integration is used in the contact algorithms of MPM, hence the Courant
stability restriction is applied to the time step to ensure numerical stability. The time step size is
calculated from

�tcr =��x/cp (35)

where � is the time step scale factor, �x is the cell length, cp is the wave speed.

5. APPLICATIONS

The contact algorithms presented in this paper have been implemented in our explicit 3D MPM
code, MPM3D. Collision of two elastic rings and sphere rolling is first simulated using MPM3D to
investigate the accuracy of two contact methods. Then, the penetration of steel ball and the perfo-
ration of thick plate are solved, and numerical results are compared with the experimental results.

5.1. Collision of two elastic rings

The collision of elastic rings is simulated for verifying our contact algorithms and code. This
problem has been used to study the tensile instability and unphysical fracture in SPH [36, 37]. The
large deformation provides a challenging test of code, and these rings should bounce off each other
without disintegration. The inner and outer radiuses of the ring are 30 and 40 mm, respectively.
Both of rings are simulated as compressible Neo-Hookean material models with a bulk modulus
of 121.7 MPa, a shear modulus of 26.1 MPa and a density of 1.01g/cm3. The rings are launched
with a speed of 30 m/s so that the relative speed is 60 m/s. The frictional coefficient between the
elastic rings is set to 0.1. In this simulation, the grid is uniform with equal spacing in all directions
and eight material points per cell. The initial particle space is 1 mm, and the cell size is set equal
to 2 mm. Each ring includes 29 760 particles.

Figures 2 and 3 compare the configurations at various time steps obtained by the first contact
method and the second contact method, respectively, where the time step scale factor �=0.25.
In these figures, (a) shows the initial configuration, and the following frames show subsequent
impact and rebound. Figures 2 and 3 show that the contact surface obtained from the second
contact method is better than that obtained from the first method. Therefore, the accuracy of the
second contact method is higher than that of the first contact method. In Figures 2 and 3, the stress
wave propagation pattern is shown to illustrate the collision process.

Figure 4 plots the time history of total energy with different time step scale factors. Compared
with the first contact method, the second contact method can obtain a stable solution with a much
larger time step scale factor. As aforementioned, violating the impenetrability condition in updating
stresses in the first contact method may introduce disturbance into the system. This has been clearly
shown in Figure 4(a), in which many steep steps have been observed in the time history of the
total energy before the separation of two rings at time t =3.4ms.

5.2. Sphere rolling simulation

An elastic sphere on an inclined elastic plane [26] as shown in Figure 5(a) is simulated. The
sphere will roll and slip when tan�>3.5�, otherwise, the sphere will roll and stick. For an initial
stationary rigid sphere on an inclined rigid surface, the x-component of the center-of-mass position
xcm(t) is given by

xcm(t)=
⎧⎨
⎩

x0 + 1
2 gt2(sin�−�cos�), tan�>3.5� (slip)

x0 + 5
14 gt2 sin�, tan��3.5� (stick)

(36)

where x0 is the x-component of the initial center-of-mass position, and g is the magnitude of the
gravity acceleration.
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Figure 2. Configurations of elastic rings at various time steps obtained by the first contact
method (�=0.25): (a) t =0 ms; (b) t =0.2 ms; (c) t =0.4 ms; (d) t =0.8 ms; (e) t =1.8 ms;

(f) t =2.8 ms; (g) t =3.8 ms; and (h) t =4.8 ms.

In this simulation, the radius of sphere is R =1.6m, the dimensions of plane are a length
of 20 m, a width of 4.0 m and a thickness of 0.8 m. The magnitude of gravity acceleration is
taken to be 10m/s2. The sphere has a bulk modulus of 7 MPa, a shear modulus of 1.5 MPa and
a density of 1g/cm3. The plane has bulk modulus 70 MPa, shear modulus 15 MPa and density
10g/cm3. Both the materials have same wave speed 95 m/s. The bottom of plane is fixed in the
simulations. The grid is uniform with equal spacing in all directions and eight material points
per cell. The initial maximum particle space is 0.1 m, and the cell size is set equal to 0.2 m.
The sphere is discretized by 49 560 particles, whereas the plane by 64 000 particles, as shown in
Figure 5(b).

Two cases are analyzed. In the first case, the inclined angle is �=�/4 and the frictional coefficient
is �=0.4, so that the sphere will roll and stick, whereas in the second case, the inclined angle
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Figure 3. Configurations of elastic rings at various time steps obtained by the second
contact method (�=0.25): (a) t =0 ms; (b) t =0.2 ms; (c) t =0.4 ms; (d) t =0.8 ms;

(e) t =1.8 ms; (f) t =2.8 ms; (g) t =3.8 ms; and (h) t =4.8 ms.

is �=�/3 and the frictional coefficient is �=0.2 so that the sphere will roll and slip. Figure 6
compares the numerical results of the center-of-mass position of sphere obtained by two contact
methods with the analytical solutions of rigid sphere.

The analytic solutions of rigid sphere give an upper bound of the x-component of the center-
of-mass position for these computations. The potential energy is converted both to strain energy
and to kinetic energy in the simulations due to the elasticity of sphere and surface, whereas the
potential energy is only converted to kinetic energy in the analytic solutions. Figure 6 shows
that both contact methods give sufficient accuracy solutions for both slip and stick cases in this
simulation.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:498–517
DOI: 10.1002/nme



CONTACT ALGORITHMS FOR THE MATERIAL POINT METHOD 509

0
18

20

22

24

26

28

30

To
ta

l E
ne

rg
y 

(J
)

Time (ms)

=0.4
=0.3
=0.25
=0.15
=0.1

18

20

22

24

26

28

30

To
ta

l E
ne

rg
y 

(J
)

Time (ms)

=0.4
=0.3
=0.25
=0.15
=0.1

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) (b)

Figure 4. Time history of total energy with different time step scale factors obtained by: (a) the first
contact method and (b) the second contact method.
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Figure 5. Geometry and MPM models for simulation of a sphere on an inclined
plane: (a) geometry configuration and (b) MPM model.
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Figure 6. Time history of sphere center-of-mass x-position for both the slip and stick cases obtained by:
(a) the first contact method and (b) the second contact method.

5.3. Penetration of steel ball

A steel ball with a diameter of 10 mm impacting a thin circular steel plate with a thickness
of 1 mm and a diameter of 178 mm is simulated using MPM3D with the contact algorithms.
The impact speed of the steel ball is 200 m/s and the direction of impact is normal to the target
plate.

In the simulations, the deviatoric stress is updated by the elastic–plastic constitutive model with
isotropic hardening

�y = A+ B ēnp (37)
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where A, B and n are the material constants, �y is the flow stress and ε̄p is the effective plastic
strain. The pressure p is updated by the Mie-Grüneisen equation of state

p=

⎧⎪⎨
⎪⎩

�c2
0�(1+�)

[1−(s−1)�]2

(
1− ��

2

)
+�0 En, �>0

�c2
0�+�0 En, �<0

(38)

where �, c0, s and �0 are the material constants, � is the compression ratio of relative volume, � is
the Grüneisen coefficient and En is the internal energy per initial volume. The material constants
of the steel are taken from Reference [38], and listed in Table I. According to De Vuyst [39] and
Wingate [40], the particle failure is taken into account by setting the deviatoric components of the
stress tensor to zero when the effective plastic strain reaches the failure strain. The failure strain
εfail for steel is set equal to 0.57.

One-fourth of the model is considered in the calculation due to symmetry. The projectile and the
target are discretized by 33 664 particles and 398 184 particles, respectively. The grid is uniform
with a cell size of 0.5 mm and eight particles per cell. The initial particle space is 0.25 mm.

This problem is solved by the standard MPM and the proposed contact methods, respectively.
The time step scale factor �=0.4, and the frictional coefficient � between the projectile and target
is set to zero. The configurations with equivalent plastic strain obtained by different algorithms
are illustrated in Figures 7, 8 and 9, respectively.

As shown in Figure 7, the inherent no-slip contact condition in the standard MPM creates a
greater penetration resistance so that the target has not been perforated by the projectile, which
does not agree with the experiment results [38]. In contrast, the target is perforated by the projectile
in the two contact simulations, as shown in Figures 8 and 9, respectively. The projectile’s residual
velocities Vr obtained from the two contact methods are 89.4 and 85.8 m/s, respectively.

Table I. Material constants of steel.

� (kg/m3) E (GPa) 	 A (MPa) B (MPa) n c0 (m/s) s �0 εfail

7850 200.0 0.30 600.0 275.0 0.36 3600 1.90 1.70 0.57

Figure 7. The configurations at various time steps obtained by the standard MPM, where
epef represents the equivalent plastic strain. The target is not perforated by the projectile:

(a) t =60�s; (b) t =120�s; (c) t =180�s; and (d) t =240�s.
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Figure 8. The configurations at various time step obtained by the first contact method, where epef represents
the equivalent plastic strain. Vr =89.4m/s: (a) t =60�s; (b) t =120�s; (c) t =180�s; and (d) t =240�s.

Figure 9. The configurations at various time step obtained by the second contact
method, where epef represents the equivalent plastic strain Vr =85.8m/s: (a) t =60�s;

(b) t =120�s; (c) t =180�s; and (d) t =240�s.

Figure 10 compares the final deformed target plate obtained from the experiment [38] and
simulations. In Figure 10, h is the height of the final deformed plate and D is the diameter of
penetrated hole. The value of h/D obtained in the experiment is 0.84, and those obtained from
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Figure 10. Final deformed shape of the target plate: (a) experimental graph; (b) obtained by the first
contact method; and (c) obtained by the second contact method.

Table II. Effect of grid cell size on the simulation results.

Dcell Dp Particles
1st contact method 2nd contact method

Model (mm) (mm) per cell Vr (m/s) h/D Vr (m/s) h/D

M1 0.66 0.33 8 50.4 0.99 72.6 0.94
M2 0.60 0.20 27 70.6 0.88 74.0 0.87
M3 0.50 0.25 8 89.4 0.85 85.8 0.86
Experiment — — — — 0.84 — 0.84

the two contact methods are 0.85 and 0.86, respectively. The final deformed target plate obtained
by the contact methods appears to be consistent with the experimental result.

The constitutive model used in this section is a local one in nature, without considering the
plastic strain gradient. The computational results are affected by the cell size of background grid.
To investigate the effect of the cell size and particle space on computational results, a convergence
analysis is conducted using three models with different cell sizes and particle spaces, and numerical
results are listed in Table II, in which Dcell represents the cell size and Dp represents the initial
particle space. The projectile’s residual velocity Vr increases and the target shape parameter h/D
approaches the experimental result with the decrease of the cell size and particle space. The final
deformed target obtained by M3 model is showed in Figure 10.

5.4. Perforation of thick plate

The final example is the impact of an ogive-nose high strength steel projectile against an aluminum
target [41]. The projectile impacts a target obliquely with an angle of 30◦. The projectile has a
length of 88.9 mm and a diameter of 12.9 mm with a 3.0 caliber-radius-head. The target is an
A6061-T651 plate of 26.3-mm thickness.

The projectile is modeled as an elastic material with the Young’s modulus E =200GPa, the
Poisson ratio 	=0.3 and the mass density �=7.85g/cm3. The target is modeled as an elastic–
plastic material, whose deviatoric stress is updated using the Johnson Cook constitutive model

�y = (A+ B ēnp)(1+C ln ė∗)(1−T ∗m) (39)

where A, B, C , n and m are the material constants, ε̇∗ is the effective plastic strain rate and T ∗ is
the dimensionless temperature. The pressure of target material is updated by the Mie-Grüneisen
equation of state. The material constants for A6061-T651 are obtained from References [41] and
[42], which are listed in Table III. When the effective plastic strain of a particle reaches the failure
strain εfail, its deviatoric stress is set to zero.
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Table III. Material constants of A6061-T651.

� (kg/m3) E (GPa) � A (MPa) B (MPa) n C m εfail

2700 69 0.3 262 52.1 0.41 0 0.859 1.6

c0 (m/s) s �0 Tmelt(K) Troom(K)

5350 1.34 2.0 875 293

t = 82.9 s t = 152.8 s t = 194.4 s

t = 82.9 s t = 152.8 s t = 194.4 s

t = 82.9 s t = 152.8 s t = 194.4 s

t = 82.9 s t = 152.8 s t = 194.4 s

(a)

(b)

(c)

(d)

Figure 11. Projectile-target interaction at a striking velocity of V0 =575m/s. Vr represents the
projectile’s residual velocity: (a) experimental photographs, Vr =455m/s; (b) simulation of the
standard MPM, Vr =334.1m/s; (c) simulation of the first contact MPM, Vr =442.8m/s; and

(d) simulation of the second contact MPM, Vr =453.4m/s.

One half of the model is analyzed due to symmetry. The projectile is modeled with 13 314
particles, and the target is modeled with 187 550 particles. The cell size is set to 2.0 mm. The
projectile has an initial particle space range from 0.6 to 1.0 mm, whereas the target has an initial
particle space of 1.0 mm and eight material points per cell. The frictional coefficient � between
the projectile and the target is set to zero.

Figure 11 shows the projectile–target interaction in the experiment and simulation at a striking
velocity of V0 =575m/s. Figure 11(a) shows a sequence of X-ray photographs from experiments
at different post impact times. The projectile’s residual velocity Vr in the experiment is 455 m/s.
Figure 11(b) shows the projectile–target interaction in the standard MPM simulation. The projec-
tile’s residual velocity Vr by the standard MPM simulation is 334.1 m/s, which is significantly
lower than the experimental data of 455 m/s. MPM simulations with the contact methods are
shown in Figures 11(c) and (d), respectively. The projectile’s residual velocities obtained by two
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t = 43.3 s t = 204.3 s t = 421.1 s

t = 43.3 s t = 204.3 s t = 421.1 s

t = 43.3 s t = 204.3 s t = 421.1 s

t = 204.3 st = 43.3 s t = 421.1 s

(a)

(b)

(c)

(d)

Figure 12. Projectile-target interaction at the striking velocity V0 =400m/s. Vr represents
the projectile’s residual velocity: (a) experimental photographs, Vr =217m/s; (b) simu-
lation of the standard MPM, Vr =127.9m/s; (c) simulation of the first contact MPM,

Vr =207.8m/s; and (d) simulation of the second contact MPM, Vr =220.4m/s.

contact algorithms are 442.8 and 453.4 m/s, respectively, which agree well with that obtained by
experiments. The CPU time for the simulation is about 173 min on a PC with Intel E7200 CPU
(2.52 GHz) and 2 GB memory.

The residual velocity and the deformed shape of projectile are dependent on the striking velocity
V0. Figure 12 shows the results of the experiment and simulation at the striking velocity V0 =
400m/s. Figure 12(a) shows the experimental photographs at different post impact times, and the
projectile’s residual velocity Vr in the experiment is 217 m/s. Figure 12(b) shows the projectile-
target interaction in the standard MPM simulation, and Vr is 127.9 m/s. MPM simulations with the
contact methods give more reasonalbe results, as shown in Figures 12(c) and (d). The projectile’s
residual velocities obtained by two contact algorithms are 207.8 and 220.4 m/s, respectively.
Figure 12(a) shows that the steel projectile of the experiment is severe bent and yawed at V0 =
400m/s. The projectile’s shape obtained by the contact methods (Figures 12(c) and (d)) is bent,
whereas the projectile’s shape obtained by the standard MPM (Figure 12(b)) is visibly undeformed
at V0 =400m/s. The projectile’s shapes obtained by the contact methods appear to be more
consistent with the experimental data than the standard MPM.

The penetrations of projectile with different striking velocities V0 are simulated by using different
MPM algorithms, and the projectile’s residual velocities Vr are compared with the experimental

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:498–517
DOI: 10.1002/nme



CONTACT ALGORITHMS FOR THE MATERIAL POINT METHOD 515

Table IV. The projectile’s residual velocities for different striking velocities (m/s).

V0 Experiment Standard MPM 1st contact MPM 2nd contact MPM

340 91.0 0.0 83.8 96.5
400 217.0 127.9 207.8 220.4
446 288.0 197.5 280.0 291.1
575 455.0 334.1 442.8 453.4
730 655.0 478.4 623.9 634.5

results in Table IV. The projectile’s residual velocities obtained by the standard MPM are signifi-
cantly less than the experiment results, whereas the results obtained by proposed contact methods
are in good agreement with the experimental results. The inherent no-slip contact condition in
the standard MPM creates a greater penetration resistance, so that the target absorbs more impact
energy and decreases the projectile’s residual velocity significantly. In contrast, MPM simulations
with contact methods give more reasonalbe results.

6. CONCLUSIONS

Two contact methods are presented for MPM in impact and penetration simulation. Numerical
studies show that the first contact method introduces significant disturbance into the total energy in
the collision of two elastic rings due to the violation of the impenetrability condition in updating
stresses on particles, and the second method can achieve stable solution by using much larger time
step than the first contact method. However, it seems that both contact methods give good results
for other problems, such as the sphere rolls and slips on a inclined plane, in which the velocity
is low so that the magnitude of the discontinuities of normal velocities at contacted nodes on the
redefined regular grid is small.

In the penetration simulations, the inherent no-slip contact condition in the standard MPM
creates a great penetration resistance, so that the target absorbs more impact energy and decreases
the projectile velocity. The projectile’s residual velocity obtained by the standard MPM simulation
is significantly lower than the experimental data. Numerical studies show that the projectile’s
residual velocities obtained by the proposed contact methods are higher than those obtained by
the standard MPM method, and are closer to the experimental results.
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