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a b s t r a c t

In the traditional analysis schemes of the composite sandwich structures the core is firstly simplified as
an equivalent anisotropic material and then modeled by the plates and shells theories. Its main disadvan-
tage is that the equivalent core will result in large equivalent error especially in the key area and the thick
core will further reduce the analysis accuracy of the plates and shells theories. Therefore, a layerwise/
solid-element method (LW/SE) is proposed in this paper, in which the layerwise theory is used to model
the behavior of the composite laminated facesheets while the eight-noded solid element is employed to
discretize the core. Three models, the full model, the local model and the equivalent model, are presented
to model the core. Several numerical examples are investigated and the static analysis and free vibration
analysis of the composite sandwich plates are tested. The results of proposed method are in good agree-
ment with those of 3D finite element model. A detailed comparative study is conducted to investigate the
performance of three modeling schemes for static analysis and free vibration analysis problems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years the composite sandwich structures, which con-
sist of two thin but stiff composite laminated facesheets bonded to
a lightweight and thick core with low in-plane modulus, are widely
used in transportations, marine, aeronautics and astronautics ow-
ing to the low weight and high rigidity. Similar to the flanged
beam, in the sandwich structures the most of the in-plane mem-
brane and bending forces are carried by the facesheets while the
shear loads are transferred by the core. The complexity of the over-
all and local behavior of the sandwich structures has aroused a
large number of computational methods.

The investigations of the computational models for incompress-
ible sandwich structures started from Reissner [1] and many others
[2–5]. One of the well-known conventional modeling approaches is
the splitting rigidity approach [3–5]. Recently, the modeling
scheme of composite sandwich structures is regarded as following
the same analysis schemes of the composite laminated structures,
such as the equivalent single layer theory (classical laminate the-
ory and shear deformation laminated plate theories) [6–12],
three-dimensional elastic theory (traditional 3-D elastic formula-
tions, layerwise theory, unified formulation and generalized uni-
fied formulation) [13–17] and multiple model methods [18,19].
However, the response of composite sandwich structures is signif-
icantly affected by transverse shear deformation resulted from the

large core thickness and wide variety in material properties along
the thickness direction of the composite laminated facesheets.
These influences cannot be considered adequately by the equiva-
lent single layer theories. Consequently, the analysis of composite
sandwich structures may require the layerwise or 3D elastic the-
ory. Since the number of the exact 3D elasticity solutions is limited
[20] and the 3D finite element analysis may need enormous com-
putational cost, the layerwise theory would be a better choice com-
pared to the equivalent single layer theory and 3D elasticity theory.

Hu [21] assessed the accuracy of the computational models
based on various shear deformation theories and Zig–Zag theories
in predicting the bending behavior of sandwich plates under static
loading and the dynamic problem. It comes out from this assess-
ment process that the Zig–Zag models are more accurate than
the classical laminate theory and shear deformation theories.
Ferreira [22,23] has studied the static deformations and free vibra-
tion problem with the layerwise theory and radial basis functions
for laminated and sandwich plates. Roque [24] developed a trigo-
nometric layerwise deformation theory for modeling symmetric
composite plates and sandwich plates. Theofanis [25] presented a
high-order discrete-layer theory for predicting the damping of
composite laminated sandwich beams, in which the quadratic
and cubic terms were involved when approximating the in-plane
displacement in each discrete layer and the interlaminar shear
stress continuity was imposed through the thickness. In addition,
for the composite sandwich structures there are many other liter-
atures studying the computational modeling by using the layer-
wise theories [26–29].
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The main emphasis of the above methods was to determine the
overall global response. The use of a flexible core in modern sand-
wich structures subjected to partially distributed loads, point load
and point supports yields localized deformations along the panel,
in the form of indents, which are associated with inconsistent dis-
placements of upper and lower facesheets. The detailed local dam-
ages morphology and failure process are very important for the
impact dynamics analysis of the modern sandwich structures. Fur-
ther, there are two more reasons which will lead to low accuracy of
the above analysis schemes of the composite sandwich structures:
one reason is that the material parameters calculated by the equiv-
alent methods (such as sandwich theory [30]) cannot fully reflect
the mechanical behavior of the core; another one is that the thick
core reduces the analysis accuracy of the plates and shells theories
which are usually employed to model the behavior of the face-
sheets and equivalent honeycomb. The core thickness of sandwich
structures usually ranges between 3 and 26 mm [31]. Therefore, it
is very necessary to develop an analysis scheme which not only can
obtain the accurate local displacements and stresses of the face-
sheets and core but also can reduce the influence of the thickness
and equivalent of core on the analysis accuracy at a reasonable
computational cost.

The remarkable influence of the transverse shear deformation
resulted from the high core thickness can be removed if the core
is discretized independently by brick elements while the compos-
ite laminated facesheets are still simulated by the layerwise the-
ory. Fortunately, unlike the equivalent single layer theories, the
governing equations of facesheets established by the layerwise
theory can be conveniently coupled with the governing equations
of the core established by the brick elements based on the compat-
ibility conditions at the interface between facesheets and core,

since the degree of freedoms (DOFs) of the layerwise theory is
equal to that of the brick element and the displacements variables
of the upper and lower surface of facesheets appear in the govern-
ing equations. In this modeling scheme, if the overall or one part of
the core is discretized by solid elements, the error introduced by
the equivalent methods about the core properties [29] will disap-
pear or decrease. In addition, the detailed local deformation of
the facesheets and core can be obtained by using this scheme if
the core cells belonging to the special attention area (key region)
are modeled based on the real structure form completely instead
of the equivalent form.

In present work, a layerwise/solid-element method is estab-
lished, in which layerwise theory and the eight-noded solid ele-
ments are used to model the behaviors of the facesheets and the
honeycomb, respectively. Based on the finite element formulation
of the facesheets and the honeycomb, the governing equations of
the composite sandwich plates are assembled by using the com-
patibility conditions at the interface. And the modeling method
of the core is investigated in detail.

2. Layerwise laminate theory for composite laminated plates

In the layerwise laminate theory [18], the displacements at
point (x, y, z) in the composite laminated plates are assumed to be

uðx; y; zÞ ¼
XNþ1

i¼1

uiðx; yÞ/iðzÞ; vðx; y; zÞ

¼
XNþ1

i¼1

v iðx; yÞ/iðzÞ; wðx; y; zÞ ¼
XNþ1

i¼1

wiðx; yÞ/iðzÞ ð1Þ
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Fig. 1. Schematic diagram of the LW/SE method for the composite sandwich structures.

(a) (b) (c)
Fig. 2. Schematics diagram and meshing of three different modeling strategies for the honeycomb. (a) Full model, (b) local model, and (c) equivalent model.

188 D. Li et al. / Composites: Part B 52 (2013) 187–198



Author's personal copy

where u, v and w represent the displacement components in the x, y and
z directions, respectively. /i is a linear Lagrangian interpolation function
through the thickness of the composite laminated plates. The transverse
displacements are defined in terms of one-dimensional finite element

approximation. The laminate thickness dimension is subdivided into
a series of N one-dimensional finite elements (Ne = N + 1 nodes)
whose nodes are located in planes parallel to xy plane in the unde-
formed laminate. ui, vi and wi are the nodal values. N is also the num-
ber of mathematical layers of the laminated plates, which may be
equal or less than the number of physical layers. For laminates con-
taining plies of the same geometrical and material properties, it is of-
ten convenient to group these plies together to reduce the
computational efforts.

In the small deformation problems, the strains associated with
the displacement field Eq. (1) can be calculated as

exx ¼
@u
@x
¼
XNþ1

i¼1

@ui

@x
/i; eyy ¼

@v
@y
¼
XNþ1

i¼1

@v i

@y
/i; ezz ¼

@w
@z
¼
XNþ1

i¼1

wi
d/i

dz
;

cxz ¼
@u
@z
þ@w
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v i
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i¼1

@wi

@y
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ð2Þ

The 3-D constitutive equations of an arbitrarily oriented ortho-
tropic laminate in the laminate coordinate system are

r ¼ C � e ð3Þ

where r ¼ ½rxx ryy rzz ryz rxz rxy�; e ¼ ½exx eyy ezz cyz cxz cxy�; Cijði; j ¼
1; 2; . . . ; 6Þ denotes the elasticity coefficient of material.

In order to develop the finite element formulation, the displace-
ment functions vi and wi are approximated on the i-th plane of the
plate by

ui ¼
Xnen

n¼1

un
i u

nðx; yÞ; v i ¼
Xnen

n¼1

vn
i u

nðx; yÞ; wi ¼
Xnen

n¼1

wn
i u

nðx; yÞ ð4Þ

where nen is the number of nodes in each element, u(x, y) is finite
element shape function, un

i , vn
i and wn

i are the displacement compo-
nents of n-th node of the 2D finite element representing the i-th
plane of the physical laminates element.

The finite element formulation of the present layerwise theory
can be derived using the principle of virtual displacements in ma-
trix form as
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where i, j = 1,2,. . ., nen. a, b = 1, 2,. . ., N + 1, {u, v, w}T denotes the
interface displacements vectors, and {qu, qv, qw}T denotes the corre-

(a) (b)
Fig. 3. Finite element mesh of the facesheets and the honeycomb of a sandwich structure. (a) Upper and lower facesheets and (b) honeycomb.
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Fig. 4. The coordinate system and boundary conditions of the sandwich structure
(one quarter model).
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Fig. 5. Cell of honeycomb core.
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sponding load vectors that consist of boundary and force contribu-
tions. Stiffness matrix mnMab

ij can be found in Refs. [13,14].

3. Layerwise/solid-element method for composite laminated
sandwich structures

The schematic diagram of the LW/SE method for the composite
sandwich structures is shown in Fig. 1, where the upper and lower
facesheets are discretized with the four-noded quadrilateral ele-
ments and the layerwise theory, while the core is discretized with

the eight-noded solid elements. Based on the finite element formu-
lations of the facesheets and core, the final governing equation of
the composite sandwich structures can be assembled by using
the compatibility conditions to ensure the continuity of displace-
ments at the interface between facesheets and core. In the present
work, the honeycomb is investigated, but other forms of core can
also be solved in a similar way.

All of the displacements variables of the upper and lower face-
sheets can be divided into two groups: interface and internal dis-
placements vector. The finite element model Eq. (5) of the

Table 1
Comparison of the maximum displacement w between the layerwise/solid-element and the 3D elastic method.

Nc Layerwise/solid-element method 3D elastic method

Ns = 1 Ns = 2 Ns = 3 Ns = 4 Ns = 1 Ns = 2

Lower surface 2 3.256 � 10�5 3.295 � 10�5 3.304 � 10�5 3.304 � 10�5 3.523 � 10�5 3.545 � 10�5

3 3.056 � 10�5 3.081 � 10�5 3.085 � 10�5 3.088 � 10�5 3.124 � 10�5 3.165 � 10�5

Honeycomb 2 3.792 � 10�5 3.837 � 10�5 3.849 � 10�5 3.854 � 10�5 4.076 � 10�5 4.092 � 10�5

3 3.765 � 10�5 3.810 � 10�5 3.822 � 10�5 3.830 � 10�5 4.012 � 10�5 4.034 � 10�5

Upper surface 2 8.763 � 10�5 9.004 � 10�5 9.098 � 10�5 9.137 � 10�5 1.123 � 10�4 1.137 � 10�4

3 8.764 � 10�5 9.000 � 10�5 9.093 � 10�5 9.134 � 10�5 1.082 � 10�4 1.103 � 10�4

Table 2
Comparison of the natural frequencies between the layerwise/solid-element and the 3D elastic method.

Mode number Layerwise/solid-element method 3D elastic method

Nc = 2 Nc = 3 Nc = 2 Nc = 3

Ns = 1 Ns = 2 Ns = 3 Ns = 1 Ns = 2 Ns = 3 Ns = 1 Ns = 2

1 601.79 599.14 598.43 605.51 602.84 602.18 589.62 592.19
2 987.84 981.90 980.64 995.32 989.15 987.68 958.33 963.94
3 1027.1 1020.6 1019.1 1034.5 1027.8 1026.2 999.16 1005.0
4 1316.5 1306.5 1304.2 1326.4 1316.2 1313.7 1268.6 1277.6
5 1469.0 1457.0 1454.3 1480.6 1468.3 1465.4 1398.7 1409.8
6 1536.7 1523.0 1519.8 1547.7 1533.9 1530.7 1472.3 1483.6
7 1711.6 1702.6 1698.9 1702.8 1700.9 1700.2 1627.7 1642.4
8 1718.9 1709.1 1708.2 1732.0 1715.5 1711.6 1666.0 1680.6

(a)                        (b) 
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30

35
40

0
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Fig. 6. Deformation of the sandwich structure obtained by. (a) Present layerwise/solid-element method and (b) 3D elastic method.

Table 3
Material properties of the facesheets and honeycomb.

Facesheets EXX = 156500 MPa, EYY = EZZ = 13,000 MPa, GYZ = 4540 MPa, GXY = GXZ = 6960 MPa, vYZ = 0.4, vXY = vXZ = 0.23, q = 2700 kg/m3

Honeycomb E = 68,000 MPa, v = 0.3, q = 2700 kg/m3

Equivalent properties of the honeycomb
[30]

EXX = EYY = 101.5758 MPa, EZZ = 5888.8 MPa, GYZ = GXZ = 1307.7 MPa, GXY = 25.4978 MPa, vYZ = 0.0, vXY = 1.0, vZX = 0.3,
q = 360 kg/m3
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laminated composite plates can be rewritten for the upper and
lower facesheets as follows

Mt
11 Mt

12

Mt
21 Mt

22

" #
€Ut

1

€Ut
2

( )
þ K t

11 K t
12

K t
21 K t

22

" #
Ut

1

Ut
2

( )
¼

0
F t

2

� �
þ T t

1

0

( )

ð6aÞ
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11 Mb
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€Ub
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€Ub
2

( )
þ

Kb
11 Kb
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Kb
21 Kb

22

" #
Ub

1

Ub
2

( )
¼

0
Fb

2

� �
þ Tb

1

0

( )

ð6bÞ

where the superscript t and b denote upper and lower facesheet,
respectively. The subscripts 1 and 2 denote the interface displace-
ments vector and internal displacements vector, respectively. U €U,

Fig. 7. Finite element discretization of the sandwich structure. (a) Local model and (b) equivalent model.

Table 4
The DOFs of the LW/SE method based on the full model, the local model and the
equivalent model.

Full model Local model Equivalent model

Facesheets 35,544 15,576 7176
Honeycomb 7578 4896 2691
Total 43,122 20,472 9867
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Fig. 8. In-plane distributions of the displacement u in the upper facesheet obtained by the LW/SE methods based on three different modeling schemes. (a) Lower surface, (b)
interface between the first layer and second layer, (c) interface between the second layer and third layer, and (d) upper surface.
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F and T are the displacements, accelerations, external loads vector
and interaction force between the facesheets and core, respectively.

Similarly, all of the displacements variables of the honeycomb
can also be divided into three groups so that the finite element for-
mulation of the core can be expressed as

Mc
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Fig. 9. In-plane distributions of the displacement v in the upper facesheet obtained by the LW/SE methods based on three different modeling schemes. (a) Lower surface, (b)
interface between the first layer and second layer, (c) interface between the second layer and third layer, and (d) upper surface.
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interface between the first layer and second layer, (c) interface between the second layer and third layer, and (d) upper surface.

192 D. Li et al. / Composites: Part B 52 (2013) 187–198



Author's personal copy

where the superscript c denotes honeycomb of the sandwich struc-
tures. Uc

1;t and Uc
1;b are the interface displacement

vectors of the honeycomb at the upper facesheet and the lower face-
sheet, respectively, and Uc

2 is the internal displacements vector.
According to the compatibility relations between the upper

facesheet and core (Ut
1 ¼ Uc

1;t and T t
1 þ Tc

1;t ¼ 0), the summation
of the first row of Eqs. (6a) and (7) yields

ðK t
11 þ Kc
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2 þ Kc

12Uc
1;b þ Kc

13Uc
2
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According to the compatibility relations between the lower
facesheet and core (Ub

1 ¼ Uc
1;bTb

1 þ Tc
1;b ¼ 0), similarly we have
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The final discrete equations of the composite sandwich struc-
tures can be obtained by combining Eqs. (8a) and (8b), the second
row of Eqs. (6a) and (6b), and the third row of Eq. (7) as
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If all details of the honeycomb structures are discretized (see
Fig. 2a, referred as full model), it will result in unacceptable com-
putational cost since the element size is determined by the charac-

teristic length of the honeycomb cells which is much smaller than
that of the sandwich structures. In order to remedy this limitation,
the honeycomb can be firstly integrally considered as the aniso-
tropic material by using some equivalent theories (such as sand-
wich plate theory [30]) and then discretized by brick elements in
equivalent model as shown in Fig. 2c. Although the equivalent
model greatly reduces the computational cost and the difficulty
of the algorithm, at the same time, compared to the full model it
reduces the analysis accuracy and cannot obtain the detailed local
deformation which is resulted from the point load and point
supports.

The local model illustrated in Fig. 2b, in which the honeycomb
cells in the key region are modeled based on the real microstruc-
ture form completely instead of the equivalent anisotropic materi-
als, is a combination of the full model and equivalent model. The
local model possesses the advantages of the full model and equiv-
alent model. The LW/SE method based on the local model reduces
the computational cost compared to the full model and at the same
time ensures the accuracy of the key area compared to the equiv-
alent model.

4. Numerical examples

The meshing of the facesheets and honeycomb is carried out by
MSC.Patran.

4.1. Validation of the present layerwise/solid-element method

The accuracy of the LW/SE method is validated by studying the
honeycomb of a rectangular sandwich plate which consists of six
regular hexagons honeycomb cells in x-direction and seven regular
hexagons honeycomb cells in y-direction. The finite element dis-
cretization of the facesheets and honeycomb is shown in Fig. 3,
where the discretization of the upper and lower facesheets should
be consistent with that of the honeycomb in the interface. The
sandwich plate with four clamped edges is subjected to a central
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Fig. 11. In-plane distributions of the displacement u in the lower facesheet obtained by the LW/SE methods based on three different modeling schemes. (a) Lower surface, (b)
interface between the first layer and second layer, (c) interface between the second layer and third layer, and (d) upper surface.
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point load of the magnitude F = 1 N on the upper facesheet. The
coordinate system and the boundary conditions are shown in
Fig. 4. The sizes of regular hexagons honeycomb cells are
l = h = 4 mm, H = 6 mm, and t = 0.3464 mm. The schematic diagram
of the cell of the honeycomb is shown in Fig. 5. Material properties

are taken as E = 68,000 MPa, v = 0.3 and q = 2700 kg/m3. The face-
sheets and honeycomb have the same material properties.

For comparison purpose, a 3-D finite element analysis model is
constructed using MSC.Patran and solved by MSC.Nastran, in
which both of the facesheets and the honeycomb are discretized
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Fig. 12. In-plane distributions of the displacement v in the lower facesheet obtained by the LW/SE methods based on three different modeling schemes. (a) Lower surface, (b)
interface between the first layer and second layer, (c) interface between the second layer and third layer, and (d) upper surface.
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by 8-node Hex Solid64 elements. The LW/SE method and the 3D
elastic analysis model have the same meshing in the xy plane.

The maximum displacement w and the natural frequencies ob-
tained by LW/SE method and 3D elastic method are compared in
Tables 1 and 2, respectively, where Ns and Nc are the mathematic
layer number of the facesheets and the element number of the
honeycomb along the thickness direction respectively. The defor-
mation of the sandwich structure obtained by the two methods
with Nc = 3 and Ns = 2 is shown in Fig. 6. It can be seen from Tables
1 and 2 that the values of the maximum displacement w and the
natural frequencies obtained by the present LW/SE method are in
good agreement with those obtained by the 3D elastic method.
The mathematic layer number of honeycomb Nc has a more signif-
icant effect on the results than the mathematic layer number of
facesheets Ns. An important reason may be that the thickness of
the honeycomb is greater than that of the facesheets. Under the
load conditions in this example, the displacements of the upper
facesheet are much larger than those of the lower facesheet, which
means that the area around concentrated load would appear evi-
dent localized deformation in the form of indent. In the LW/SE
method, because the details of the honeycomb structures are dis-
cretized by the solid elements instead of the equivalent anisotropic

materials, the analysis accuracy for both the maximum displace-
ment w and the natural frequencies is improved greatly compared
to the traditional sandwich analysis methods.

4.2. Comparative analysis of the present three different equivalent
schemes

The purpose of this example is to investigate the performance of
the present three different modeling schemes shown in Fig. 2. The
composite sandwich plate employed in this numerical example
and that employed in Section 4.1 have the same geometry and
boundary conditions. The stacking sequence of the upper and low-
er facesheets is [0/90/0]. All layers of the upper and lower face-
sheets have the same material properties. Material properties of
the upper and lower facesheets, honeycomb, and the equivalent
honeycomb are listed in Table 3.

The finite element discretization of the composite sandwich
plate based on the full model is shown in Fig. 3. The finite element
discretization of the composite sandwich plate based on the local
model and the equivalent model are shown in Fig. 7, where the fi-
nite element discretization of the upper and lower facesheets is
also consistent with that of the honeycomb in the contact area.
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Fig. 14. Stresses of the upper facesheet of the sandwich structure obtained by the LW/SE methods based on three different modeling schemes. (a) rxx, (b) rxy, (c) ryy, (d) rxz,
(e) ryz and (f) rzz.
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The DOFs of the LW/SE models based on the full model, the local
model and the equivalent model are listed in Table 4, where
Ns = 3 and Nc = 3. The LW/SE method based on the equivalent mod-
el has lowest computational cost and difficulty of implementation.
But the computational cost and difficulty of implementation of the
LW/SE method based on the local model would close to that of
equivalent model, if the size of the area of special attention is very
small compared with the size of the whole sandwich plate.

Along the centerline in the x or y direction, the displacement
distributions of the upper and lower facesheets of the composite
sandwich plate obtained by three different modeling schemes are
shown in Figs. 8–13 respectively, where the displacements u and
w is distributed along the centerline in the x direction, while the
displacement v is distributed along the centerline in y direction be-
cause the displacement v on the centerline in y direction equals
zero. It can be seen from Figs. 8–13 that:

1. The displacements obtained by the local model and the equiva-
lent model are in good agreement with those obtained by the
full model.

2. The local model can provide accurate displacements in entire
problem domains especially in the local area around the con-
centrated load and the surface of the facesheets. So the results

of the local model are more reasonable than that of the equiv-
alent model.

3. As a result of the behavior of the local model, the displacements
obtained by the local model agree with those obtained by the
full model in the area where the honeycomb cells are modeled
based on the real structure form completely. However, in the
area where the honeycomb cells are equivalent to anisotropic
materials by using sandwich theory, the results of the local
model are in good agreement with that of the equivalent model.

4. In the area where the honeycomb cells are equivalent to the
anisotropic materials, for the local model and the equivalent
model the displacements in the upper facesheet are closer to
those of the full model than that in the lower facesheet. The
point load is subjected on the upper facesheet and the direction
is vertically upward, so the influence of the equivalent of the
honeycomb on the analysis results of the upper facesheet is less
than that of the lower facesheet.

5. In the area where the honeycomb cells are modeled based on
the real structure form completely, the LW/SE method based
on the equivalent model in the lower facesheet is more accurate
than in the upper facesheet. One important reason is that local
effect resulted from the point load is not significant in the lower
facesheets (see Figs. 9–12).
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At the center points of the upper and lower facesheets, the
thickness distributions of out-plane and in-plane stresses in the
thickness direction obtained by three different modeling schemes
are shown in Figs. 14 and 15. It is important to notice that the cen-
ter points of the upper and lower facesheets belong to the interface
where the honeycomb cells are modeled based on the real struc-
ture form completely. It can be seen from Figs. 14 and 15 that:

1. At the center point of the upper and lower facesheets, the stresses
obtained by the local model are in good agreement with those
obtained by the full model. Furthermore, the distribution curves
of the shear stressesrxy,rxz andryz in the upper facesheet and the
shear stress rxz in the lower facesheet obtained by the local
model coincide with those obtained by the full model.

2. For the equivalent model, but only the distribution of the nor-
mal stresses of the equivalent model agree with that obtained
by the full model. Therefore, under the concentrate load the
analysis schemes based on entire equivalent of honeycomb
would be unable to provide reasonable stresses in the local area
nearby the concentrate load.

3. Similar to the displacements, for the local model and the equiv-
alent model (especially the local model), the stresses in the
upper facesheet are closer to those of the full model than that
in the lower facesheet.

The first 8 natural frequencies of the sandwich structure ob-
tained by the LW/SE methods are listed in Table 5. It is obvious that
the natural frequencies of the LW/SE methods based on the local
model and the equivalent model are very close and differ slightly
from the results of the full model. Compared to the full model,
the errors of the local model and the equivalent model are resulted
from the equivalent material properties of the honeycomb. Since
the natural frequencies represent the overall characteristic of the
sandwich structures, it stands to reason that the performance of
the LW/SE methods based on the local model and the equivalent
model are very close for the free vibration analysis.

5. Concluding remarks

A LW/SE method is established based on the layerwise laminate
theory and 3D solid finite element method for the composite sand-
wich plates. And the modeling approach of the honeycomb is also
investigated in detail.

For the problems of linear static and free vibration analysis the
LW/SE method is reliable compared with the 3D elastic method.
Furthermore, the LW/SE method can obtain accurate displace-
ments and stresses in the static problem for the composite lami-
nated facesheets with various forms of complex core. So the
present analysis scheme can be further generalized for structures
such as foam and truss core sandwich.

For the static problem under concentrate load, the LW/SE meth-
od based on the full model possesses the best accuracy but is the
most time-consuming, while the LW/SE method based on the
equivalent model provides the least computational cost and the
worst accuracy especially in the area nearby the concentrate load.

The LW/SE method based on local model has the balance between
the accuracy and the computational burden. However, the
performance of the LW/SE methods based on the local model and
the equivalent are very close for the free vibration analysis.
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