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Abstract
Theoretical studies are made for recent attention-getting super carbon
nanotubes. The so-called ‘super carbon nanotube’ is a self-similar structure
constructed from low-order carbon nanotubes. Based on the Euler beam
theory, the equivalent parameters of super tubes are derived from those of
arm tubes, and verified by finite element simulations. Instead of the Young’s
modulus E , a new equivalent modulus Eβ is adopted, where β is the ratio of
thickness to diameter for arm tubes. The advantage of this equivalent
modulus is that the Young’s modulus and thickness do not need to be
separated in stiffness calculations. The mechanical properties for composites
made of super tubes and matrix are also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, super carbon nanostructures with self-similarities
have been predicted, inspired by experiments on perfect Y-
branched carbon nanotubes (CNTs). Li et al [1] and Biró
et al [2] obtained Y-branched junctions with very straight and
uniform CNTs in their experiments, and the angles between
arms were close to 120◦. Using geometric conservation
laws, Yin et al [3] theoretically proved that the Y-branched
junctions with such perfect symmetric structures satisfied the
equilibrium state with both minimum energy and symmetric
geometry. In construction, the perfect Y-branched junction
is similar to the shape of the sp2 carbon–carbon bond of
graphite. This similarity evokes the proposal of super graphite
(SG) constructed by repeating perfect Y-junction nanotubes
periodically. Additionally, by rolling up SG, a super carbon
nanotube (ST) could be obtained in the similar way of forming
single-walled carbon nanotubes (SWNTs) [4]. This super tube
composed of SWNTs is completely similar to an SWNT itself;
thus a higher-order super tube could be formed obeying these
self-similar rules.

The super tubes are expected to provide special applica-
tions in nanoelectronics and fibre-reinforced composites. The
application of straight CNTs on nanoropes and reinforced

composites is limited by their size scale and the poor capa-
bility of force transfer due to the weak van der Waals intera-
ction between tubes [5]. However, in the construction of the
super tube and super graphite, relatively shorter SWNTs are ar-
ranged into regular net structure through covalent bonds. Wang
et al [6] reported that the SG structures have great flexibility
and outstanding capability in force transfer. Furthermore, the
size scale of a super nanotube will be greatly increased through
the self-similarity. Therefore, macroscale super tubes gener-
ated by self-similarity might have many potential applications.
Currently, the methods of synthesis of these regular and com-
plex structures are the key remaining and challenging issues.
The controlled fabrication of nanostructures inside the pores of
zeolite and other mesoporous materials, used as templates, is
widely used in the process of producing nanomaterial [7, 8].
Recently, hierarchically branched nanotubes have been made
using porous templates [8], which provide a significant
advance in the realization of super structures.

In this paper, ST(N) denotes a super tube obtained through
N times self-similarity from SWNTs. The electrical properties
of ST(1) were explored by using atomic calculations [4],
and the mechanical properties of ST(1) were examined by
employing a shell model [6]. Wang et al [6] indicated that the
SGs were ductile due to their hexagonal honeycomb structures,
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Figure 1. (a) SG with the arms of a lower-order ST, (b) the force
diagram of a representative Y-branched junction when the SG is
subject to y-axis tension.

while the ultimate tensile strength was very high because of the
arms’ stretching. Pugno [9] evaluated the strength, toughness
and stiffness of any order super tubes and fibre-reinforced
composites, by using the hierarchical theory. His work was
based on the force equilibrium analysis in a special cross
section of super tubes.

The geometry parameters, such as arm length and tube
diameter, will determine the properties of super tubes. If the
equivalent parameters of a low-order tube are already known,
what will be the corresponding parameters of its higher-order
tube? In this paper, we are trying to find the relations between
the parameters of higher-order super tubes and those of the
lower order ones.

2. Model for super graphite and super tube

Li and Chou [10] presented the molecular structural mechanics
method, in which the covalent bond between atoms was
modelled by a beam with parameters determined through
energy equivalence. Here, the beam assumption is used
to analyse SG and STs as well. For the super graphite
structures as shown in figure 1(a), each arm is a lower-
order super tube. The arms are simplified as annular section
Euler beams, having rigid connections at the joints. For the
small deformation case, this assumption will have acceptable
accuracy, especially when the ratio of length to diameter of the
arm tube is large. Supposing the mechanical properties and
geometry parameters of a lower-order ST are already known,
the structural mechanics method could be adopted to analyse
the super graphite and super tube structures. By employing
solid sectional beams with rigid connections, this method
is widely adopted in the analysis of cellular solids used as
lightweight structures and energy-absorbing devices [11, 12].

In previous work [6], the mechanics of super structures
with arms of SWNTs have been examined using the shell
model, which is more appropriate for Y-branched nanotubes.
It was indicated that the connection of the Y junction based
on SWNTs has different properties from those of the general
joint of framework such as a rigid connection or hinge
joint. However, during a small deformation, the effect of
local deformation at the junction and the change of angle
between arms are not very significant, and the changes in
atomic level such as bond breaking or recomposing are
negligible. Consequently, the beam model is adopted here
in the theoretical analysis. It should be noted that the beam
model is limited to analysing the mechanical properties of
super structures with slender arms in a small deformation.

By self-similarly assembling, the arms of super tubes
could be SWNTs or low-order STs. Their equivalent diameter
D and equivalent thickness t are defined as D = (Do + Di)/2
and t = (Do − Di)/2, where Do and Di are the diameters of
the outer and inner circles. The wall thickness of the annular
section t is small compared with diameter D. Suppose that
the equivalent Young’s modulus of the arm tube is E , and
the arm length is l . On normalizing the length and thickness
by the diameter D, two important non-dimensional geometry
parameters are defined as

α = l/D, β = t/D. (1)

Here, the slenderness ratio α > 5 for slender beam, while the
thickness ratio β � 1 for a thin thickness tube. The cross-
section area A, inertia moment I and flexural section modulus
W of an annular section beam are given by

A = 1
4π(D2

o − D2
i ) = π D2β, (2)

I = 1
64π(D4

o − D4
i ) = 1

8π D4β(1 + β2), (3)

W = I

Do/2
= 1

4
π D3β(1 − β + β2 − β3)(1 − β2). (4)

For a thin cylinder, β is small, so the effect of β2 and its
higher orders can be neglected. Hence, equations (2)–(4) can
be approximated as

A = π D2β, (5)

I = 1
8π D4β, (6)

W = 1
4π D3β(1 − β). (7)

3. Super structures subject to uniform tension

3.1. The stress of a Y junction under tension

If a piece of super graphite structure is wide enough, the
deformation of each Y-branched junction is the same under
uniaxial tension. The reaction force of a representative Y-
branched junction under y-axis tension is analysed as displayed
in figure 1(b). The reaction forces at the three ends are obtained
through equilibrium analysis. Under the uniaxial loading in the
y-direction, arm 1 bears tension only. The uniform stress is

σ1 = F

A
= P

π D2β
. (8)
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Under the equilibrium condition, the bending moment at the
ends of arms 2 and 3 is M = √

3Pl/8. Arms 2 and 3 bear both
tension and bending, thus the arms will have maximum stress
at the junction due to the summation of tension and bending:

σ2 = F

A
+ M

W
= P

π D2β

[
1

4
+

√
3α

2(1 − β)

]
. (9)

For a slender beam, α > 5 and 0 < β < 1, it is clear that
1
4+

√
3α

2(1−β)
> 1. Comparing equation (9) with (8), we have σ2 >

σ1, which means that under uniaxial tension the maximum
stress of super graphite locates right at the Y junction, and
is the combination of bending and tension. From magnitude
estimation, the bending effect is equally important or even
more important than tension. Thereby the stress contribution
of bending cannot be ignored in the analysis.

It is easy to imagine the deformation process of the SG
or ST’s under tension load. At the beginning, a remarkable
change of angles between arms occurs mainly due to bending,
and the stiffness of the structure is low; as the tension load
increases, the arms start stretching, which results in strong
stiffness hardening. The process has been proved by finite
element simulation using the shell model [6]. Bending
and stretching are confirmed to act together throughout the
deformation process.

3.2. Uniaxial tension analysis of super structures

In figure 1(b), the lengths along the x-axis and the y-axis of
the Y-branched junction are lx = √

3l and ly = 3l/2. The
elongations along the two directions are

�lx =
√

3Pl

12Eπ D2β
(3 − 2α2)

�ly = Pl

8Eπ D2β
(9 + 2α2).

(10)

So that the equivalent strains are calculated as

εx = �lx

lx
= P

12Eπ D2β
(3 − 2α2)

εy = �ly

ly
= P

12Eπ D2β
(9 + 2α2).

(11)

Therefore, the equivalent Poisson’s ratio is

ν̃ = −εx

εy
= 2α2 − 3

2α2 + 9
. (12)

Equation (12) shows that the Poisson’s ratio of SG or STs only
depends on the slenderness ratio of arms, α. The equivalent
tensional rigidity of a representative cell is obtained as

k̃cy = P

�ly
= 8π Eβ D

α(9 + 2α2)
. (13)

SG with the size Lx × L y can be constructed by repeating
the Y-branched structure in its plane, as shown in figure 1(a),
m times along the x-axis and n times along the y-axis. The
net structure can be considered as a plate with the equivalent
thickness t̃ , equivalent Young’s modulus Ẽ and Poisson’s ratio

ν̃. Wrapping the SG with the y-direction as the axis, a higher-
order zigzag ST is obtained. According to the equivalence
of the ST’s circumference and the SG’s width, the equivalent
diameter of the ST is calculated from D̃ = Lx/π = m

√
3l/π .

The slenderness ratio and thickness ratio of the ST are defined
as α̃ = l̃/D̃ = nly/D̃ and β̃ = t̃/D̃, respectively.

The slight change of angles between arms due to wrapping
can be ignored except for STs with very small diameters.
For simplicity, the results obtained based on SG are extended
to STs. Therefore, the total deformation along the length
direction is �L y = n�ly = n Pα

8π EβD (9+2α2), and the tensional
rigidity of the tube is

k̃y = m P

�L y
= 8mπ Eβ D

nα(9 + 2α2)
. (14)

The axial rigidity of the ST is defined as

Ẽ Ã = k̃y

nly
= 12mπ Eβ D2

9 + 2α2
, (15)

where Ã is the equivalent cross-section area of the super tube.
By adopting the expression of the arms’ area, A = π D2β , the
ratio of axial rigidity between the ST and m arms is

Ẽ Ã

m E A
= 12

9 + 2α2
. (16)

The ST is supposed as a hollow cylinder and its cross-section
area is Ã = π D̃t̃ = π D̃2β̃. Thus equation (15) can also be
derived as

Ẽ β̃

Eβ
= 4π2

mα2(9 + 2α2)
, (17)

which is defined as the ratio of equivalent modulus.
In equation (17), the thickness ratio β is used to express

the material parameter of a super tube by those of arm tubes.
Generally, in finite element simulation of SWNTs by the shell
model, the commonly used thickness and elastic modulus are
obtained from the molecular dynamics method [13]. The
equivalent thickness of 0.066 nm is quite different from the
graphite interplanar spacing of 0.34 nm, and even smaller
than the diameter of a carbon atom. Actually, it is hard and
unnecessary to define a proper thickness of the single-atom
sheet or super tube net, that is suitable for both tension and
bending stiffness. From equations (5) and (6), we know that
the axial tension stiffness E A and bending stiffness E I both
linearly rely on β . This means that instead of Young’s modulus
E , an equivalent modulus Eβ could be adopted to describe
the modulus of a nanotube or super tube. The advantage of
this equivalent modulus Eβ is that, it is no longer necessary
to separate the Young’s modulus and thickness in stiffness
calculations. In addition, the ratio of equivalent density can
be obtained in terms of the equivalence of mass, expressed as
ρ̃β̃/(ρβ) = 2π2/(3mα2). If the parameters of conductance
and heat transmission also depend on the thickness of the
nanotube, the thickness ratio β may be widely used instead
of the thickness.

If m = 10 and α = 5, then ν̃ = 0.8, Ẽ Ã/(m E A) = 0.2,
and Ẽ β̃/(Eβ) = 0.0027 according to equations (12), (16)
and (17). The results indicate that there is great shrinking in
the radial direction for STs with slender arms, which results
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Table 1. The results of equivalent tensional rigidity ( Ẽ Ã
m ) and Poisson’s (ṽ) ratio for SGs. Subscripts T and N mean theoretical analysis and

numerical simulation. ‘Error’ denotes the relative error between the numerical and theoretical results.

Beam α β ( Ẽ Ã
m )T ( Ẽ Ã

m )N Error (%) ṽT ṽN Error (%)

Timo 5 0.033 463.9 370.5 20.1 0.797 0.838 5.2
Timo 8 0.053 122.0 109.9 9.9 0.913 0.926 1.4
Euler 5 0.033 463.9 452.7 2.5 0.797 0.802 0.6
Euler 8 0.053 122.0 119.0 2.5 0.913 0.920 0.8

y

z

Figure 2. The scheme of a zigzag super tube.

in the significant decrease of the STs’ tensional rigidity and
modulus compared with those of arm tubes. From the results of
macroscopic mechanical analysis [11], Poisson’s ratio is equal
to 1.0 for regular-hexagonal honeycomb structures with solid
rectangular sectional beams. It can be seen that the effect
of angular rigidity of arms with annular sections is stronger
than of those with solid sections. The value of Poisson’s
ratio depends on the slenderness ratio of the arms, known
from equation (12). Thus the effect of angular stiffness will
increase with the decrease of the slenderness ratio. It had been
concluded in previous work [6] that, in small deformation, the
SG structure is flexible, while in a finite deformation range,
the hardening effect results in high rigidity. However, the
material parameter expressions in the theoretical analysis here
are limited to small deformation only.

3.3. Numerical simulation for uniaxial tension

In the above theoretical analysis, the Euler beam model is
adopted. The Euler beam model ignores the shear deformation,
which is only appropriate for slender arms. If the arms are
not slender, the Timoshenko beam model should be used to
incorporate the transverse shear deformation. In table 1, the
numerical results obtained by Euler and Timoshenko (Timo)
beams are compared with the theoretical predictions. In the
simulation, super graphite with 20 cells in the width direction,
m = 20, is subjected to a uniaxial tension strain of εy = 0.005.
The arms of super graphite are two types of nanotube, SWNTs
(15, 15) and (9, 9), with diameters of D = 2.0 and 1.24 nm,
respectively. The thickness of SWNTs is t = 0.066 nm [13]
and the arm length is l = 10 nm. The other parameters
of the SWNTs come from the shell model [13]. As shown
in table 1, the numerical results from the Euler beam model
are quite close to theoretical predictions, while those from
the Timoshenko (Timo) beam are slightly weaker due to the
shear effect. It is clear that the discrepancy decreases with the
increase of α.

As shown in figure 2, STs can be wrapped from SG, taking
the zigzag type for example. Under uniaxial tension, a serials
of STs with arms of different slenderness ratio α are examined.
The thickness ratio β is kept constant for the same type of arm.
In figure 3, the variation of equivalent tensional rigidity and
Poisson’s ratio with slenderness ratio α are drawn for super
tubes with m = 10. The difference between the theoretical and
numerical results is quite small. It can be concluded that the

200

300

400

500

600

700

 E
A

/m

 theoretical
 numeric

4 5 6 7 8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 numeric
 theoretical

~
~

~ ν

α

Figure 3. (a) Equivalent tensional rigidity and (b) Poisson’s ratio
changing with α for STs with m = 10.

wrapping process from SG to STs has no obvious effect on the
equivalent material parameters. The equivalent Poisson’s ratios
of super tubes are very high, close to 1, which means that the
STs have great flexibility at the small deformation scale due
to the angle change between arms. As the slenderness ratio
α increases, the equivalent rigidity decreases, while Poisson’s
ratio has a tendency to increase.

The influence of the thickness ratio β on the tensional
rigidity and Poisson’s ratio is investigated by examining
different STs with arms of SWNTs (18, 18), (15, 15),
(12, 12) and (9, 9), respectively. Keeping the slenderness
ratio α as a constant, the corresponding results of STs
with different thickness ratio β are shown in figure 4. As
predicted by equation (12), β almost has no effect on the
equivalent Poisson’s ratio for the super tubes. As regards
the axial tensional rigidity, there is the relationship of
Ẽ Ã = ( 12mπ Et2

9+2α2 ) 1
β

, which is derived from equation (15) by
substituting t/β for D. The curves of equivalent rigidity in
figure 4 have exhibited this relationship, Ẽ Ã linearly relying
on 1/β .

4. Bending analysis of a super tube

A super tube wrapped from super graphite is still supposed to
be a hollow cylindrical tube with thin thickness. For a thin
thickness ST, β̃ � 1, the bending rigidity can be estimated as

Ẽ Ĩ

Ẽ Ã
= π D̃4β̃(1 + β̃2)/8

π D̃2β̃
= 1

8
D̃2(1 + β̃2) ≈ 1

8
D̃2. (18)
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Figure 4. (a) Equivalent tensional rigidity and (b) Poisson’s ratio
changing with β for STs with m = 10.

Table 2. The numerical results for λ = ( Ẽ Ĩ
Ẽ Ã

)/( D̃2

8 ).

Load type Beam type λ Beam type λ

(a) Timo 1.005 Euler 0.969
(b) Timo 1.005 Euler 0.952
(c) Timo 0.998 Euler 0.963

From equation (18), the bending rigidity of an ST is given
without knowing the exact value of the tube thickness. It can
be concluded that for a thin thickness super tube, β̃ � 1,
the bending stiffness Ẽ Ĩ could easily be estimated from the
axial tension stiffness Ẽ Ã, through simply multiplying by the
parameter D̃2/8.

The accuracy of equation (18) is validated by finite
element simulation. A first-order zigzag super tube with arms
of SWNT (15,15) is examined by numerical simulation. In
the wrapping process, m = 10, n = 30, and the length
of arms is l = 10 nm; thus the diameter and length of the
ST are D̃ = 55.13 nm and l̃ = 900 nm. For a clamped
super tube, with all the node degrees fixed on the clamped
end, three types of loading are applied, respectively: (a) apply
displacement load on the free end; (b) apply force on each
node of the free end; (c) apply force on the up-surface nodes
along a straight line parallel to the tube’s axis. Having obtained
the corresponding responses of the ST under each type of
loading, the equivalent bending rigidity Ẽ Ĩ can be calculated
by using the formulae for a cantilever beam1. The axial tension
stiffness Ẽ Ã has been obtained in above section. Therefore, the
parameter λ = ( Ẽ Ĩ

Ẽ Ã
)/( D̃2

8 ) is calculated, as shown in table 2.

The results indicated that ( Ẽ Ĩ
Ẽ Ã

)/( D̃2

8 ) ≈ 1, which means

that β̃2 ≈ 0 is confirmed by finite element simulations. The

1 In Euler beam theory, there are three widely used formulae relating the
deflection w and the bending rigidity E I for a cantilever beam with length
l: w = −Pl3/(3E I ) when a concentrated force P is applied on the free end;
w = −Ml2/(2E I ) when a flexural torque M is applied on the free end; and
w = −ql4/(8E I ) when a uniformly distributed load q is applied along the
beam.

P

1

2 3

P P

(a)

= +

(b)

Figure 5. (a) Super graphite with no shrinking, (b) the force diagram
of a Y-branched junction when the SG is subject to biaxial tension.

network structures of STs can be considered as thin hollow
cylinders as long as the arms are slender enough.

Compared with a super tube, super graphite acts as a
membrane, generally subject to in-plane tensile load. The
bending rigidity of super graphite will be very low, thus no
detailed discussion of its bending stiffness will be processed
here.

5. Super tube with filling materials

From lower-order STs to higher-order STs, the reduction
of stiffness and modulus are significant according to
equations (16) and (17). Theoretical analysis and the finite
element calculation tell us that stiffness reduction is caused
by great radial shrinking of STs. If the shrinking could be
suppressed, the deformation of STs will be greatly decreased.
To achieve this modification, composite material needs to be
considered. Suppose that STs are filled with matrix material
having high bulk modulus, then the shrinking resistance will be
significantly increased due to the inner support provided by the
matrix. Thus a composite made up of super carbon nanotubes
and high compressive rigidity matrix will have very good load-
carrying capability.

Consider an extreme case of super graphite: there is no
shrinking in the width direction. This stress condition is the
superposition of two stress situations: uniaxial tension and
biaxial tension, as shown in figure 5(a). Because of the
great shrinking in an empty super tube, the biaxial tension
loading condition will be the majority condition. The force
diagram of a Y-branched junction in the biaxial tension case is
shown in figure 5(b). In this case, each arm of the structure
is under tension force P only, without any bending effect.
The maximum total stress in the super graphite is just the
tensile stress given by equation (8); there is no bending stress
contribution expressed in equation (9). From the analysis
in section 3.1, the bending stress is generally higher than
tensile stress; thus the maximum total stress in the SG is
remarkably reduced. The reduction of maximum stress will
greatly increase the final strength of super graphite.

Besides the increase of strength, the stiffness will also be
increased under the equal biaxial tension loading condition.
The equivalent rigidity and modulus are obtained through

5
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equilibrium analysis in a similar way to that above, and
expressed as

Ẽ Ã

m E A
= 1, (19)

and
Ẽ β̃

Eβ
= π2

3mα2
. (20)

Comparing equations (19) and (20) with equations (16)
and (17) for unfilled STs, the rigidity of the biaxial loading
case will be strengthened greatly. Although the stiffness of
the SG/ST is low, it will be improved by matrix material.
Consequently, the mechanical properties of the ST composite
are not the simple sum of the super tube and the filling
materials. It will be improved by the interaction between
ST/SG and matrix. As we know, a composite made up of CNTs
and matrix is not as strong as expected, since CNTs always
act as defects instead of reinforcement. A composite made of
a regular network of ST/SG and matrix is predicted to have
positive potential applications.

6. Conclusion

In summary, the equivalent mechanical properties of high-
order super tubes are derived from the parameters of the low-
order ones, in which each arm of the super tube is assumed
to be a slender Euler beam. This derivation is applicable
for any order of super tubes. The super tubes are assumed
to be hollow cylinders with a thin thickness wall; thus a
new equivalent modulus Eβ instead of Young’s modulus E is
defined for the tubes. The advantage of this equivalent modulus
is that the Young’s modulus and thickness do not need to be
separated in stiffness calculations. The analytical results are
verified by finite element simulations. Under the slender beam
assumption, the effect of stretching and bending are equally
important for super tube deformation. Although the stiffness
of super graphite and super tubes is low, it will be improved

by matrix material. Composites made of ST/SG and matrix are
predicted to have high load-carrying capability.
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