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Abstract
The membrane–spring model was proposed by the authors to simulate the
nonlinear mechanical responses of single-walled carbon nanotubes (CNTs).
In order to investigate the complex behavior of multi-walled CNTs or CNT
related structures, the van der Waals interaction between the non-bonded
atoms should be included. In this paper, the van der Waals interaction is
introduced into the membrane–spring model by using the atomic integration
method. The nonlinear interaction is calculated at the atomic level, and then
mapped to nodes. Consequently, the equations of motion are solved on nodes
instead of atoms. The nonlinear deformations of single- and multi-walled
CNTs are investigated by using the proposed model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerical simulation plays an important role in exploring the
properties of carbon nanotubes (CNTs) due to the difficulty of
experiments on such tiny and complex structures. By using
atomic methods including ab initio and molecular dynamics
(MD), the fundamental physical properties of CNTs have been
investigated [1–4], and important prospective applications have
been explored or validated [5, 6]. However, owing to the huge
calculations required for the atomic methods, the space and
time scale of objects analyzed are limited. Some continuum
or quasi-continuum models [7–13] have been proposed to
explore the complex mechanical deformation of CNTs and
CNT-related structures. These models have been used to
analyze many problems, such as the rippling phenomena of
bent nanotubes, the uniaxial compressed deformation of CNTs,
and so on.

The van der Waals (vdW) interactions must be included
in the analysis of multi-walled carbon nanotubes (MWNTs)
or more complex system of CNTs. Several methods have
been put forward to include the vdW effect in the continuum
models. Liu [14] proposed the shell–cobweb model, in which
nonlinear springs were initially set between nodes of shell
elements instead of the vdW interaction between atoms. In

their work, a set of atoms was assumed to be centralized on
nodes in the neighborhood, which would result in errors when
the meshing of elements was coarse. Pantano et al [10] used
an interaction element to simulate the vdW force. The wall-
to-wall shear resistance was ignored in their model, so it was
unable to model the CNTs’ behavior where the wall-to-wall
shear effect was dominant. In the work of Li and Chou [15],
the vdW effect between atoms was modeled by a truss rod. In
their analysis, there were as many nodes of elements as atoms.
Additionally, the effect of the vdW interaction on the uniaxial
compression has been examined in detail through theoretical
analysis [16, 17].

The membrane–spring model was proposed in our
previous work [13] to simulate the nonlinear mechanical
responses of single-walled carbon nanotubes (SWNTs). In this
paper, the atomic integration method is proposed to introduce
the vdW interaction into the membrane–spring model to model
the MWNTs and CNT-related structures. The atoms are
embedded in the membrane elements at their exact position,
and deform together with the membranes. The vdW forces
between atoms are calculated in the same way as in the MD
method, and then mapped to the related nodes. In this method,
the properties of the vdW interaction at the atomic level are
maintained, such as the long-range interaction and the strong
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Figure 1. An SWNT is modeled by the membrane–spring model. In
the figure, solid lines are springs, squares enclosed by lines are
membranes, and hollow circles are finite element nodes.

nonlinear property depending on the atoms’ distance. The total
number of degrees of freedom depends on the number of nodes
instead of atoms. Therefore, the membrane–spring model
with vdW interaction is an efficient method for simulating
the complex mechanical behavior of CNTs or CNT-related
structures.

2. The membrane–spring model

The membrane–spring model [13] was proposed for the single-
atom sheet structure of an SWNT or a graphite sheet. An
SWNT or a single graphite sheet was modeled as a number
of membranes connected by rotational springs, as shown in
figure 1. The membrane models the in-plane behavior while
the spring displays the bending resistance.

The mechanical properties of membranes are the same as
those of a monolayer graphite sheet. The well-known linear
elastic matrix of graphite [18] is

D =

⎡
⎢⎢⎢⎢⎢⎣

1060 180 15 0 0 0
180 1060 15 0 0 0
15 15 36.5 0 0 0
0 0 0 4.5 0 0
0 0 0 0 4.5 0
0 0 0 0 0 440

⎤
⎥⎥⎥⎥⎥⎦

GPa (1)

if the graphite sheet plane is parallel to the x–y plane. Note
that the interplanar spacing of graphite sheets h = 0.34 nm
has been taken as the thickness of a single-layer graphite sheet
in equation (1), so that the in-plane behavior of a single-layer
graphite sheet can be modeled as

N = Dmε, (2)

where N = [ Nx Ny Nx y ]T = [ hσx hσy hσx y ]T is the
internal force, ε = [ εx εy εx y ]T is the strain, and the in-
plane stiffness matrix is

Dm =
[ 360.4 61.2 0

61.2 360.4 0
0 0 149.6

]
N m−1. (3)

It can be seen from the matrix (3) that the material property
of the membranes in the x–y plane is assumed to be isotropic.
The strain energy of the membrane elements is

Vm =
nm∑
i=1

∫
Ai

1
2NTε dA =

nm∑
i=1

∫
Ai

1
2εTDmε dA (4)

where nm is the number of membrane elements.

In the simulation, the total deformation is divided into
many time steps. In every time step, the configuration in the
last step is taken as the reference configuration. εn is defined
as the initial strain matrix of membranes in the reference
configuration (at the time step n). In a single time step (from
step n to n + 1), vector �ue is the incremental displacement
vector of a point in a membrane element in its local coordinate
system, and �u is the incremental nodal displacement vector
of the element in the global coordinate system. They have
the relationship �ue = RN�u = N̄�u, where R is the
transition matrix from the global coordinate system to the local
one, N is the typical shape function in the finite element
method, and N̄ = RN . Consequently, the deformation of
membranes at the current configuration (at the time step n + 1)
is given as

εn+1 = εn + L�ue = εn + LN̄�u (5)

where L is the differential operator of the membranes.
Substituting equation (5) into (4), the stain energy of
membranes is rewritten as

Vm =
nm∑
i=1

∫
Ai

1
2 (εn + LN̄�u)TDm(εn + LN̄�u) dA

=
nm∑
i=1

[
1
2�uTKmi �u + �uTFmi + Vmi

]
(6)

where

Kmi =
∫

Ai

(N̄TLTDmLN̄ ) dA (7)

Fmi =
∫

Ai

(N̄TLTDmεn) dA (8)

Vmi =
∫

Ai

(
1
2εT

nDmεn
)

dA (9)

Kmi , Fmi , and Vmi are the stiffness matrix of membranes, the
internal stress vector of membranes, and the strain energy of
membranes in the reference configuration, respectively.

The stiffness of springs is obtained from the energy
equivalence between the potential energies of the atomic
calculation and the strain energies of rational springs in the
wrapping process from graphite sheets into CNTs. Robertson
et al [19] compared the energies of SWNTs with various
radii with a graphite sheet, using both empirical potentials
and first-principles total-energy methods. They found that
the strain energy per carbon atom relative to an unstrained
graphite sheet varies as 1/r 2. According to the energy
equivalence between the potential energies of atoms and the
strain energies of springs, the stiffness of springs ke can be
obtained [13]. In the membrane–spring model, the rotation
of springs can be determined in terms of the displacements of
their adjacent membranes. The relation θn+1 = θn + B�u
can be obtained [13], where θn and θn+1 are the angles of
springs in the reference and current configurations, and B is
the relational matrix between the incremental displacement of
springs and those of the membranes’ nodes. Consequently, the
strain energy of the springs is

Vs =
ns∑

e=1

1
2 ke[θn + B�u]2

=
ns∑

e=1

[
1
2�uTKse�u + �uTFse + 1

2 keθ
2
n

]
(10)
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where ns is the number of springs. Kse = keB
TB is the

stiffness matrix of the springs, and Fse = keθnB
T the internal

stress vector of the springs.
Combining membranes with springs, the total energy of

the membrane–spring model is

V = Vm + Vs (11)

Consequently, the equilibrium equation for the membrane–
spring model is

∂V

∂�u
= P , (12)

where P is the external applied load. Substituting the
expression in equations (6) and (10), the equilibrium
equation (12) is rewritten as

nm∑
i=1

(Kmi �u + Fmi ) +
ns∑

e=1

(Kse�u + Fse ) = P . (13)

It was reported that the relation between the strain energy
of an SWNT relative to an unstrained graphite sheet and the
radius r is insensitive to other aspects of the lattice structure.
This means that the wrapping process of SWNTs does not
depend on the chirality. From the above discussion, it can be
seen that the deformation of graphite sheets in their plane is
isotropic. Therefore, the chirality of SWNTs has no effect on
the membrane–spring model without vdW interaction.

3. The atomic integration method for vdW
interaction

The vdW interaction acts between non-bonded pairs of atoms,
and it is a strong nonlinear interaction subject to the distance
of the atom pairs. Generally, the vdW energy can be described
in two types of expression, namely, the Lennard-Jones (LJ)
potential and the Morse-type potential. The classical LJ
potential [20] is given as

Uvdw = A

(
1

2

r 6
0

r 12
− 1

r 6

)
(14)

with the parameters r0 = 0.3834 nm and A = 24.3 ×
10−25 J(nm)6. In equation (14), r is the distance between the
atom pair. The Morse-type potential obtained on the basis of a
local density approximation calculation [21] can be expressed
as

Uvdw = De[(1 − e−β(r−re ))2 − 1] + Ere
−β ′r (15)

where De = 6.50×10−3 eV is the equilibrium binding energy,
Er = 6.94 × 10−3 eV is the hard-core repulsion energy,
re = 0.405 nm, β = 10.0 nm−1, and β ′ = 40.0 nm−1.

Qian et al [22] analyzed two types of expressions, and
compared them with the published experimental data and the
result of the ab initio method. They concluded that the
LJ expression was appropriate for the vdW potential in the
attractive range while the Morse type was relatively close to
the experimental results in the repulsive one. Therefore, a
combined formation was proposed for the vdW interaction.
When the distance between non-bonded atoms is less than
0.33 nm, the Morse-type potential was applied; the LJ potential

(d)
(b) (c)

(a)

Figure 2. (a) An MWNT is modeled by the membrane–spring model
with vdW interaction. (b)–(d) schematic illustration of the atomic
integration method: (b) mapping the vdW force from atoms to nodes;
(c) solving nodal velocities and displacements; (d) updating the
position of atoms on the basis of nodal displacements. In this figure,
solid circles are atoms.

is used if the distance is larger than 0.34 nm; and in the
transition region from 0.33 to 0.34 nm, an interpolation is
carried out to ensure the continuity of the potential and force.
In most of the following simulations, this combined formation
(named the LM potential) with the cutoff range from 0.2 to
1.13 nm is adopted to calculate the vdW force between atoms
not only located on different walls, but also on the same wall.

The vdW force Fi exerted on atom i can be easily
determined from the potential energy Uvdw as

Fi =
∑
∀ j

(
−∂Uvdw

∂ri j

)
(16)

where ri j = ri − r j , ri and r j are the displacement vectors of
atom i and j .

In the membrane–spring model, the equations of motion
are established on nodes of membranes. In order to include the
nonlinear vdW interaction and keep the number of degrees of
freedom constant, the atomic integration method is proposed.
In this approach, atoms are assumed to be attached to
membranes as shown in figure 2(a); they deform with the
elements in the same manner. The vdW forces on atoms
are mapped to nodes according to the relationship of atoms
and nodes, and the force on nodes can be considered as the
external applied load to be included into the solving equation.
The process in every time step is described in detail, as
shown in figures 2(b)–(d). The vdW forces on atoms are
calculated according to the current position of the atoms,
and they are mapped to the nodes as shown in figure 2(b).
Together with the contribution of membranes and springs, the
nodal displacements and velocities are calculated from the
equations of motion as illustrated in figure 2(c). The positions
of the atoms are updated in the same manner as the nodal
displacements, as shown in figure 2(d).
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In the numerical calculation, the position vector of atom i ,
ri , can be determined by

ri =
n∑

J =1

NJ irJ (17)

where NJ i is the typical finite element shape function of node
J evaluated at atom i , and rJ is the position vector of node J . n
is the number of nodes in the membrane element that the atom i
resides in, which equals three for triangular elements, and four
for quadranglular elements. The relationship between atoms
and elements can be determined as the meshing of elements is
set. The finite element shape function NJ i is given by

NJ i = AJ i/A (18)

for triangle elements, and given by

NJ i = 1
4 (1 + ξJ ξi)(1 + ηJ ηi ) (19)

for quadranglular elements. In equation (18), A is the area of
the membrane element that the atom i resides in, and AJ i is
the J th area coordinate of atom i . In equation (19), ξi and ηi

are the normalized coordinates of atom i , so ξJ and ηJ take on
their nodal values of (±1, ±1) at the nodes.

The force vector of node J due to the vdW interaction is
obtained by

FvdwJ =
n J∑
e

ne∑
i=1

NJ iFi (20)

where FvdwJ is the force vector of node J , n J is the number
of elements connected to node J , and ne is the number of
atoms residing in element e. This procedure is termed as
the atomic integration in this paper, because the calculation
of equation (20) is similar to the numerical integration in the
finite element method. In this method, the vdW interaction is
calculated in the same way as that in the MD method. However,
the mapping procedure in equation (20) smoothes the atomic
force, which is of great benefit to the stability of the time
integrator because the high-frequency components are filtered
out from the response.

In this way, the vdW interaction is included into the
membrane–spring model. On adding the vdW force on nodes
as in equation (20) into (13), the equilibrium equation is
rewritten as

nm∑
i=1

(Kmi �u + Fmi ) +
ns∑

e=1

(Kse�u + Fse ) = P +
nn∑

J =1

FvdwJ

(21)
where nn is the number of nodes in the simulation. Using
the membrane–spring model with vdW interaction, both the
small and large deformation mechanical responses of CNTs
and their related structures can be analyzed. In the following
sections, the nonlinear deformations of SWNTs and MWNTs
are simulated, and compared with other methods.

4. The complex deformation of CNTs

4.1. Buckling of SWNTs subject to radial compression

It has been reported that the diameters of SWNTs are
mostly dispersed in the range 0.7–3.0 nm with a peak at
1.7 nm [23]. Those with larger diameters were found in

(40,40) (80,0)(20,20) (40,0)

(10,10) (20,0)

Figure 3. The final relaxed configurations of tubes’ cross sections.
The dots in the figure are nodes rather than atoms.

flattened configurations or even could not exist stably due to
vdW attraction. Chopra et al [24] first discovered the fully
collapsed CNT in experiments, and explained the phenomenon
in theoretical analysis. Using the MD method, Gao et al
[25] explored the stability of SWNTs in the radial direction
through comparing the circular and collapsed cross section
configurations of SWNTs. They provided two tradeoff radii,
R1 = 1.0 nm and R2 = 3.0 nm. For SWNTs with radius
below R1, only the circular configurations can exist, while for
those with radius larger than R2, the collapsed ones are stable.
For SWNTs with radius between the two critical values, the
collapsed configurations can exist but they are only metastable
because the circular ones are energetically favorable.

In an actual situation, SWNTs usually contact with the
substrate or other CNTs, which may promote the buckling
phenomenon. Therefore, a difference of critical radii
existed between the experimental and the MD simulation
results [25]. For simplicity, the interaction of SWNTs with
the substrate or other CNTs is also omitted in the following
analysis. Individual zigzag SWNTs (20, 0), (40, 0), (80, 0)

and armchair SWNTs (10, 10), (20, 20), (40, 40) with the
length of about 10.0 nm are examined, respectively. A
circular tube is first relaxed without any constraint, and then
the displacement load is applied on the two opposite sides
to squeeze the tube. When the space between the opposite
faces is as little as 0.34 nm, the load is withdrawn and the
tube is fully relaxed. Figure 3 displays the final cross section
configurations of the SWNTs. It can be seen that tubes (20, 0)

and (10, 10), whose radii are less than 1.0 nm, revert to the
circular configurations when the load is withdrawn, while the
others become collapsed ones. By measuring the collapsed
configurations, it can be obtained that the inner wall distances
in the flattened region are 0.330–0.337 nm and the maximum
distances between the elliptical ends are about 1.04–1.08 nm. It
should be noted that the sections in figure 3 are those of tubes
at the height of 5.0 nm. The sections at the two ends have
values slightly larger than those at the middle height due to
the boundary effect, but the difference is less than 2%. These
results agree well with those obtained by the MD method [25],
which are about 0.34 and 1.05 nm, respectively.

Table 1 presents the equilibrium energies per atom for
SWNTs with circular and collapsed cross sections. It can
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Table 1. The total energy per atom for circular and collapsed
configurations, including the strain energy of the membrane–spring
and the vdW potential.

(n, m) Radius (nm) Circular (10−20 J) Collapsed (10−20 J)

(20, 20) 1.357 4.634 4.843
(40, 0) 1.567 4.613 4.795
(40, 40) 2.714 4.520 4.518
(80, 0) 3.134 4.520 4.488

be found that the collapsed form is energetically favorable
for SWNTs (80, 0) and (40, 40), while the collapsed form
of SWNTs (40, 0) and (20, 20) has a higher energy than the
circular form, which means their collapsed configurations are
metastable. There is a very slight difference between values
(4.520 and 4.518) for SWNT (40, 40). It can be predicted that
the cutoff radius of R2 is close to 2.7 nm, a little smaller than
the value of 3.0 nm in Gao’s analysis [25].

The 3D configurations of collapsed tubes (40, 40) and
(80, 0) are shown in figure 4(a). Apparently, the collapsed
tube (40, 40) is straight and has a nearly uniform deformation
along the axial direction. However, for tube (80, 0), the axial
displacement of one side is larger than the other one, implying
that the end section is not in the same plane. The cross sections
at different heights, including the top, middle and bottom
ones, are illustrated in figure 4(b). The difference in cross
sections is also observed between the armchair and zigzag tube.
Tube (40, 40) has nearly the same sectional shapes at different
heights, while the top and bottom sections of tube (80, 0)

deflect to reverse sides. The difference between the armchair
and zigzag tubes is mainly due to the effect of interlayer lattice
registry existing in the flattened region. Liu et al [26] analyzed
the effect of interlayer lattice registry on the formation of fully
collapsed SWNTs, and reported that this effect resulted in
the varied morphologies of the straight, warping and twisted
ribbons. The effect of interlayer lattice registry existing in
our model is not so obvious compared with the atomic method
because of the smooth process of mapping.

4.2. Pure bending of CNTs

The kink structures of bent CNTs were observed in the
experiments of Iijima [3], and this deformation was simulated
by the MD method [2, 3]. The single nanotubes examined
could be bent to large angles, and it was found that the tube
was completely reversible even when the bending angle was
larger than 110◦ [3]. The equation for the critical curvature Cc

was obtained through the results of several SWNTs examined
by Iijima [3], and is expressed as

Cc = 1.49

d2

[
1 + 9.89

d5
103 cos(6h)

]
(22)

where d is the tube’s diameter in units of Å, and h represents
the helicities. h = 0 is for zigzag tubes and h = π/6
for armchair tubes. Yakobson et al [2] obtained a similar
conclusion. Additionally, methods based on the continuum or
quasi-continuum theory, such as the membrane model [8] and
the shell model [10], were also used to examine the bending
deformation of SWNTs, and the results were in agreement with
the atomic simulation in the elastic range.

uz
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Figure 4. (a) The 3D configurations of collapsed tubes and their
displacement in the axial direction described in the contour. Tube
(40, 40) is straight and has uniform deformation along axis, while
tube (80, 0) has a slight difference between the opposite faces of the
flattened region. (b) The cross section configurations of the collapsed
tubes at the top, middle, and bottom. Tube (40, 40) has nearly the
same sections at different heights, while the top and bottom sections
of tube (80, 0) deflect to reverse sides.

In this example, an SWNT (9, 9) with a diameter of 1.2 nm
is examined for bending deformation. When it is fully relaxed,
the tube’s ends are constrained on their own rigid surfaces,
respectively. The surfaces are rotated in steps, and the tube is
bent in the same manner. The total energy increases smoothly
with the increase of applied bending angle. At the critical
bending angle of 40.0◦ (0.7 rad), the tube buckles sideways
as a whole to form a kink structure. At the same time, the
total energy drops suddenly, as shown in figure 5(a). The tube
has a length of 9.0 nm; consequently the corresponding critical
curvature is about 0.078 rad nm−1, which is little smaller than
the MD result of 0.1 rad nm−1 [3]. By observing the detailed
process of buckling, it can be found that the tube has the
configuration shown in figure 5(b) just before forming the
obvious kink structure at the center of the tube, as shown in
figure 5(c). This process happens very quickly, and the two
configurations occur at nearly the same bending angle. Until
the bending angle of 1.0 rad is applied, one kink structure is
maintained and the total energy increases linearly.

By inserting a SWNT (4, 4) with the same length into
the SWNT (9, 9), or adding a SWNT (14, 14) outside of the
SWNT (9, 9), double-walled carbon nanotube (DWNTs) are
formed. Multiple kinks occur when DWNTs are bent in a
similar way, but some different phenomena occur on the two
kinds of tube. For DWNT (9, 9)/(14, 14), the outer diameter is
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Figure 5. (a) Total energy changes with the bending angle, (b) the
configuration of the tube beginning to buckle, and (c) the
configuration of the kink structure when the buckling process has
finished. The two configurations occur at nearly the same critical
bending angle of 40.0◦.

(a)   DWNT (9,9) / (14,14)

(b)   DWNT (4,4) / (9,9)

Figure 6. (a) The configurations of the kink structure for DWNT
(9, 9)/(14, 14) at a bending angle of 22◦, and (b) for DWNT
(4, 4)/(9, 9) at a bending angle of 51.5◦.

1.9 nm and the inner one is 1.2 nm, and there is relatively weak
resistance along the radial direction. Two kinks form early at
the bending angle of 22.0◦, and the two walls have the same
deformation, as shown in figure 6(a). DWNT (4, 4)/(9, 9) has
the smaller inner diameter of 0.543 nm, and the kink structure
occurs at the bending angle of 51.5◦. A repulsive interaction
exists between the opposite sides of the inner tube to prevent
the kinks deepening, so there are more kinks on the tube, as
shown in figure 6(b).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

78

80

82

84

86

88

90

92

94

96

T
ot

al
 e

ne
rg

y 
 (

E
-1

8J
)

Compressed strain  (%)

(b) (c)

(a)

b

c

Figure 7. (a) Total energy of the DWNT versus the compressed
strain. (b)–(c) configurations of tubes at ε = 4.78% and 5.0%
labeled b and c in (a).

4.3. Deformation of MWNTs subject to axial compression

For an SWNT, the vdW interaction has little effect on the
critical strain for buckling subject to the axial compression. For
an MWNT, the walls with various radii interact with each other
through the vdW interaction, so what happens to their critical
strain under axial compression? In this example, DWNT
(5, 5)/(10, 10) with a length of 6.0 nm is first examined. The
DWNT is relaxed to obtain the stable configuration under the
combined effect of the covalent bonds and the vdW interaction,
and then one end is fully fixed while the other is compressed
slowly along the axial direction. Figure 7(a) illustrates the
variation of the total energy, including the strain energy of the
membrane–spring and the potential of the vdW interaction for
DWNT (5, 5)/(10, 10). The energy increases with the increase
of the compressed strain ε until it reaches the critical value of
0.0478, which is indexed as b in figure 7(a), and then it drops
suddenly because the outer straight tube begins to buckle. The
change of the outer wall’s shape alters its distance from the
inner wall as well as the vdW force, which accelerates the
buckling of the inner tube. The buckling finally finishes at
ε = 0.05, which is indexed as c in the figure. Figures 7(b)–(c)
shows the corresponding configurations at the strain of 0.0478
and 0.05, labeled b and c in figure 7(a). For SWNTs with a
length of 6.0 nm, the critical strain of a (10, 10) tube is about
0.044 and that of a (5, 5) tube is close to 0.053. It can be
seen that due to the vdW interaction, the critical strains of
thin MWNTs subject to axial compression are slightly larger
than those of SWNTs with the same radius of the MWNTs’
outermost tube.
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Figure 8. The critical strain of MWNTs with different walls when
their outermost or innermost tubes enter into buckling.

A series of MWNTs, having the same innermost tubes
(5, 5) and with the number of walls from two to nine,
respectively, are obtained through adding the outside walls
gradually. Those MWNTs, having the same length of 6.0 nm,
are examined for their critical strain under axial compression.
The curve with the square symbol in figure 8 is the axial
strain of MWNTs when the outermost walls begin to buckling,
while the curve with dots is the axial strain of MWNTs as the
innermost tubes enter into buckling. It can be seen that all
walls of MWNTs buckle simultaneously when the number of
walls is small. The above analysis of DWNT (5, 5)/(10, 10)

has explained the phenomena in detail. For MWNTs with
the numbers of walls being larger than three, not all of the
walls buckle at the same time, but the inner ones would keep
their uniform axial deformation for a longer time. The radial
deformation of MWNTs, due to the buckling of the outermost
tube, is reduced by the vdW interaction between walls when
the number of walls is large. Chang et al [27] theoretically
discussed the size effect of the number of walls on the
axial compression buckling phenomena, based on a molecular
mechanics model, and obtained a similar conclusion.

4.4. Vibration of the DWNT

Owing to the low-friction between the walls of MWNTs,
low-wear bearings [28] and gigahertz oscillators [29] have
proposed, which would have profound implications on the
application of CNTs, especially in nanoelectromechanical
systems (NEMS). The wall-to-wall shear resistance is included
in our proposed model so that it is capable of modeling low-
wear bearings and gigahertz oscillators.

The object tube is a DWNT (5, 5)/(10, 10) with a length
of 3.5 nm, and the radius difference between the inner and
outer tube is about 0.339 nm. The vdW force that occurs
in the same wall is ignored owing to the small deformation
of the tubes, but the force that interacts between different
walls is included. At first, the inner tube is slowly pulled
out to a distance of 1.0 nm along its axis, while the outer
tube is fully fixed. During the process of pulling out the
inner tube, the vdW potential is increasing slowly, which is
the retraction energy for vibration. After being released, the
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Figure 9. The vdW potential of the DWNT versus time. The inset
figures are detailed ones for the first and last 0.05 ns of the vibration.

inner tube vibrates back and forth along the axial direction
while the outer tube remains fixed. Figure 9 illustrates that
the vdW potential varies periodically with the vibration, and
the oscillation amplitude decreases slowly, which results in the
decrease of the maximum extruding distance. According to
the analysis of Zheng and Jiang [29], the frequency f and the
extruded distance d have the relationship f ∝ 1/

√
d ; thus

the frequency will also change with the vibration. From the
inset figures in figure 9, the period, which is defined as the
inner tube going from the leftmost position to the rightmost and
back to the leftmost one, changes from 0.0154 to 0.0147 ns,
while the frequency of vibration increases from 6.49 × 1010 to
6.80 × 1010 Hz.

In this simulation, the inner and outer tubes are all with
open ends for the sake of convenience, which may create
a difference with those with caps. The lump mass matrix
used in our analysis will cause numerical damping, which
increases the dissipation of energy. These factors would cause
the difference with the analysis using MD [6]. The effects of
temperature on the energy dissipation have not been considered
yet in the membrane–spring model. Since temperature control
is an important issue in energy dissipation [6], the rate of
energy dissipation cannot be discussed yet. However, it can
be concluded that the vibrations of CNTs have very high
frequency, of the magnitude of gigahertz.

5. Conclusions

In this paper, the vdW interaction is introduced into
the membrane–spring model through the atomic integration
method. This method is efficient, and can be used to
analyze the nonlinear deformation for SWNTs, MWNTs, tube–
substrate interaction, and even for more complex cases. The
numerical results obtained by the proposed model are in good
agreement with those obtained by the MD and other methods,
which validates the integrated membrane–spring model.

Acknowledgments

The authors gratefully acknowledge the financial support of
the National Science Foundation of China through Grant
No. 10672088, the National Basic Research Program of China
through Grant No. 2004CB619304, and the Program for New
Century Excellent Talents in Universities (NCET-04-0091).

7



Nanotechnology 18 (2007) 375706 M Wang et al

References

[1] Dresselhaus M S, Dresselhaus G and Saito S 1995 Carbon
33 883–91

[2] Yakobson B I, Brabec C J and Bernholc J 1996 Phys. Rev. Lett.
76 2511–4

[3] Iijima S 1996 J. Chem. Phys. 104 2089–92
[4] Zhou X, Zhou J J and Ou-Yang Z C 2000 Phys. Rev. B

62 13692
[5] Hertel T, Walkup R E and Avouris P 1998 Phys. Rev. B

58 13870–3
[6] Guo W L, Guo Y F, Gao H J, Zheng Q S and Zhong W Y

2003 Phys. Rev. Lett. 91 125501
[7] Liu J Z, Zheng Q S and Jiang Q 2001 Phys. Rev. Lett.

86 4843–6
[8] Arroyo M and Belytschko T 2002 J. Mech. Phys. Solids

50 1941–77
[9] Li C Y and Chou T W 2003 Int. J. Solids Struct.

40 2487–99
[10] Pantano A, Parks D M and Boyce M C 2004 J. Mech. Phys.

Solids 52 789–821
[11] Liu B, Huang Y, Jiang H, Qu S and Hwang K C 2004 Comput.

Methods Appl. Mech. Eng. 193 1849–64
[12] Wang L F, Zheng Q S, Liu J Z and Jiang Q 2005 Phys. Rev.

Lett. 95 105501
[13] Wang M, Zhang X and Lu M W 2005 Phys. Rev. B

72 205403

[14] Liu J Z 2002 PhD Thesis Department of Engineering
Mechanics, Tsinghua University

[15] Li C Y and Chou T W 2003 Comput. Sci. Technol. 63 1517
[16] Ru C Q 2001 J. Appl. Phys. 89 3426–33
[17] He X Q, Kitipornchai S and Liew K M 2005 J. Mech. Phys.

Solids 53 303–26
[18] Kelly B T 1981 Physics of Graphite (London: Applied

Science)
[19] Robertson R H, Brenner D W and Mintmire J W 1992 Phys.

Rev. B 45 12592
[20] Girifalco C A and Lad R A 1956 J. Chem. Phys. 25 693–7
[21] Wang Y, Tomanek D and Bertsch G F 1991 Phys. Rev. B

44 6562–5
[22] Qian D, Liu W K and Ruoff R S 2001 J. Phys. Chem. B

105 10753–8
[23] Dresselhaus M S, Dresselhaus G and Avouris P 2001 Carbon

Nanotubes Synthesis, Structure, Properties, and Applications
(Berlin: Springer)

[24] Chopra N G, Benedict L X, Crespi V H, Cohen M L, Louie S G
and Zettl A 1995 Nature 377 135–8

[25] Gao G H, Cagin T and Goddard W A III 1998 Nanotechnology
9 184–91

[26] Liu B, Yu M F and Huang Y 2004 Phys. Rev. B 70 161402(R)
[27] Chang T C, Guo W L and Guo X M 2005 Phys. Rev. B

72 064101
[28] Cumings J and Zettl A 2000 Science 289 602
[29] Zheng Q S and Jiang Q 2002 Phys. Rev. Lett. 88 45503

8

http://dx.doi.org/10.1016/0008-6223(95)00017-8
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1063/1.470966
http://dx.doi.org/10.1103/PhysRevB.62.13692
http://dx.doi.org/10.1103/PhysRevB.58.13870
http://dx.doi.org/10.1103/PhysRevLett.91.125501
http://dx.doi.org/10.1103/PhysRevLett.86.4843
http://dx.doi.org/10.1016/S0022-5096(02)00002-9
http://dx.doi.org/10.1016/S0020-7683(03)00056-8
http://dx.doi.org/10.1016/j.jmps.2003.08.004
http://dx.doi.org/10.1016/j.cma.2003.12.037
http://dx.doi.org/10.1103/PhysRevLett.95.105501
http://dx.doi.org/10.1103/PhysRevB.72.205403
http://dx.doi.org/10.1016/S0266-3538(03)00072-1
http://dx.doi.org/10.1063/1.1347956
http://dx.doi.org/10.1016/j.jmps.2004.08.003
http://dx.doi.org/10.1103/PhysRevB.45.12592
http://dx.doi.org/10.1063/1.1743030
http://dx.doi.org/10.1103/PhysRevB.44.6562
http://dx.doi.org/10.1021/jp0120108
http://dx.doi.org/10.1038/377135a0
http://dx.doi.org/10.1088/0957-4484/9/3/007
http://dx.doi.org/10.1103/PhysRevB.72.064101
http://dx.doi.org/10.1126/science.289.5479.602
http://dx.doi.org/10.1103/PhysRevLett.88.045503

	1. Introduction
	2. The membrane--spring model
	3. The atomic integration method for vdW interaction
	4. The complex deformation of CNTs
	4.1. Buckling of SWNTs subject to radial compression
	4.2. Pure bending of CNTs
	4.3. Deformation of MWNTs subject to axial compression
	4.4. Vibration of the DWNT

	5. Conclusions
	Acknowledgments
	References

