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Abstract

To ensure safety, it is necessary to assess the integrity of a reactor vessel of liquid-metal fast breeder reactor (LMFBR) under
HCDA. Several important problems for a fluid-structural interaction analysis of HCDA are discussed in the present paper. Various
loading models of hypothetical core disruptive accident (HCDA) are compared and the polytropic processes of idea gas (PPIG)
law is recommended. In order to define a limited total energy release, a “5% truncation criterion” is suggested. The relationship
of initial pressure of gas bubble and the total energy release is given. To track the moving interfaces and to avoid the severe
mesh distortion an arbitrary Lagrangrian–Eulerian (ALE) approach is adopted in the finite element modeling (FEM) analysis.
Liquid separation and splash from a free surface are discussed. By using an elasticity solution under locally uniform pressure,
two simplified analytical solutions for 3D and axi-symmetric case of the liquid impact pressure on roof slab are derived. An
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xi-symmetric finite elements code FRHCDA for fluid-structure interaction analysis of hypothetical core disruptive ac
MFBR is developed. The CONT benchmark problem is calculated. The numerical results agree well with those from p
apers.
2004 Elsevier B.V. All rights reserved.

. Introduction

The Liquid-metal fast breeder reactor (LMFBR) is a
igh-efficient nuclear reactor. Many fast reactors were
onstructed in the world, such as in the US, France,
ussia, the UK, Japan, Germany and India. China pays
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high attention to the development of nuclear energy
lization. As the first step, several units of PWRs h
been built in China. For efficient utilization of uraniu
resources, research on LMFBRs was also starte
ensure safety, it is necessary to assess the integr
the reactor vessel of a LMFBR under a hypothe
core disruptive accident (HCDA), which is the m
serious accident in LMFBRs. The HCDA starts wh
the decay heat cannot be removed. Then the core
perature rises. When reaching the temperature o
evaporation, a void is formed. Here, the fast neut
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are not slowed down. Since the void coefficient is very
positive the reactor power increases very rapidly. Thus
a high-pressure gas bubble quickly forms and explo-
sively expands. The explosive wave propagates radially
and leads to overloading the core surrounding struc-
tures (reflectors, shields, etc.) and the reactor vessel.
Moreover, the explosive gas bubble thrusts the liquid
sodium upwards to compress and push aside the argon
cover gas and impacts on the roof slab. If excessive
plastic deformation is obtained in the reactor vessel
or in the roof slab during hypothetical core disruptive
accident, the safety of the assessed reactor is unaccept-
able.

Fluid-structure interaction analysis is the key of
structural safety assessment of HCDA in LMFBRs.
Many papers on this topic have been published in a
series of proceedings of SMiRT conferences, in the is-
sues of the Journal of Nuclear Engineering and Design,
and in a special issue on FBR of the Journal of Nuclear
Technology (Han, 1980), etc.

2. Modeling of HCDA analysis

Different from PWRs the main reactor vessel of a
LMFBR is a thin-walled vessel with a thick roof slab. It
contains a reactor core and several internal structures,
such as the core support structure, the radial shield, etc.
The remainder space in the main vessel is filled by three
fluid components: (1) liquid sodium as a coolant, (2)
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wherep is the pressure,V ′ the relative volume,
E the internal energy,W the total energy release
during the HCDA process andA, B, R1, R2 are the
physical constants. The expression ofE1 comes
from the initial condition:p= 0 andV ′ = 1, E= 0.

(2) The polytropic processes of ideal gas (PPIG) law
(Cengel and Boles, 2002, p. 135):

pVn = const (2)

wherep and V denotes the pressure and volume
respectively andn is a material constant.

(3) Argonne National Laboratory (ANL) equation of
state (Wang, 1980):

p = 0.92453
E

V ′ + 0.054925

V ′3.09303 (3)

(4) Generalized Perfect Gas (GPG) law (Wenger and
Smith, 1987):

p = p0

(
1 − β

V ′ − β

)γ

(4)
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nertial argon blanket as an isolator, (3) a high-pres
as bubble as a loading resource. The structural co
ents are modeled by the elasto-plastic finite elem
nd the fluid components are modeled by viscou
ompressible fluid finite elements.

An important problem is how to create a load
odel simulating the HCDA process. An exact sim

ation of HCDA process requires a complicated mu
iscipline analysis involving nuclear physics, therm
ynamics and fluid dynamics, etc. Such a comp
oupling analysis is yet impossible for us. Since
oal of this HCDA analysis is to ensure the integrity

he reactor vessel under HCDA, but not to simulate
CDA process in detail, so most researches assu

he following loading models for low-density explos
harges.

1) JWL (Jones–Wilkinson–Lee) equation of st
(Kury et al., 1965; Hoskin and Lancefield, 197):
where the constants are chosen to beβ = 0.279175
andγ = 1.27943.

We have compared the above loading models.
esults are shown inFigs. 1 and 2. Following conclu
ions can be drawn from the comparison:

1) The PPIG law is the most flexible loading mod
It can be applied to various loading cases. W
the value ofn increases, the pressure drops rap
and the energy release decreases.

2) When n= 1, the PPIG law is closer to th
Jones–Wilkinson–Lee equation of state.

3) Although for an ideal gas the parametern in PPIG
law is limited to be equal to or less than 1.0,
Fig. 1andFig. 2show that if generalizing the la
to taken= 1.4, it is closer to the ANL equation
state and the GPG law.
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Fig. 1. Comparison of loading models: pressure vs. relative volume.

In the PPIG loading model the parametern repre-
sents the rate of change, the initial pressurep0 and the
initial volumeV0 represent the magnitude of work and
are related to the total energy releaseW.

Consider the polytropic processes ofn= 1, set the
const =C in the right-hand of Eq.(2), we get the energy
release during the expansion fromV0 to V2 (hereV0 is
the initial volume of gas bubble):

w =
∫ V2

V0

pdV =
∫ V2

V0

C

V
dV = C ln V |V2

V0
(5)

Fig. 2. Comparison of loading models: energy release vs. relative
volume.

Table 1
Rated power and total energy release of several FBRs

Name of FBR Rated power
(MW)

Total energy
release (MJ)

Phoenix (France) 600 150, 300, 500
Superphoenix (France) 3000 800
FFTF (USA) 400 150
CRBR (USA) 975 661
SNR300 (Germany) 700 370
PFBR (India) 500 200

Eq. (5) means that ifV2 → ∞, i.e. the gas bubble ex-
pands infinitely, the energy releasew will also tend to
infinite. In order to define a limited total energy release
W, we suggest a “5% truncation criterion”—if the vol-
ume of the gas bubble expands two times fromV2 =ηV0
to 2V2, the energy release during this expansion is equal
to 5% of that during the expansion fromV0 to V2, then
the energy releasew during the expansion fromV0 to
V2 is defined as the total energy releaseW. From

C ln(2V2/V2)

C ln(V2/V0)
= ln 2

ln η
= 0.05 (6)

we get the parameterη corresponding to the 5% trun-
cation criterion to be equal to 210≈ 106, so the total
energy releaseW is equal to the pressure work during
the million times expansion of the gas bubble from its
initial state.

From Eqs.(2) and (5)we haveC= p0V0 = W/ln η,
thus the relationship of initial pressurep0 and total en-
ergy releaseW is

p0 = W

V0
ln η = W

13.86V0
(7)

For the polytropic processes ofn< 1.0, we get

W =
∫ V2

V0

pdV =
∫ V2

V0

C

Vn
dV = C

1 − n
V 1−n

∣∣∣V2

V0
(8)

and

p = (1 − n)W
(9)

by
a er
o the
r 0 s in
t s are
l

0
(η1−n − 1)V0

Normally the magnitude of a HCDA is estimated
ratio of the total energy releaseWand the rated pow
f the LMFBR. With accumulation of experiences,
atio is selected less and less. It decreases from 1
he 1960s to 0.5 s in the 1980s. Several example
isted inTable 1.
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3. Tracking of moving interface

There exist several moving interfaces in the fluid-
structure interaction analysis of HCDA in a LMFBR:
(1) interface of the high-pressure gas bubble and the
liquid sodium, which enlarges rapidly along with the
expansion of the gas bubble; (2) interface of the liquid
sodium and the inertial argon blanket, which is pushed
ahead by the expanding gas bubble; (3) interface of
the fluid and the structural components, which occurs
tangential sliding during the fluid movement.

For numerical analysis of fluid problems there are
two basic approaches: one is the Eulerian approach,
which selects a reference coordinate fixed in the space,
another is the Lagrangian approach, which selects a
reference coordinate moving with the body together.
The methods for tracking the moving interface in the
Eulerian approach and in the Lagrangian approach are
called “front capturing” and “front tracking”, respec-
tively (Jiang, 1998). The former includes the marker-
and-cell (MAC) method suggested byHarlow and
Welch (1965), the volumes of fluid (VOF) method pro-
posed byHirt and Nichols (1981)and the level set
method (LSM) published byZhu and Sethian (1992),
etc. The MAC uses a lot of massless mark particles
traveling with the fluid to trace the fluids and the inter-
face. Distinction of two different fluids is either with
mark particles or not. The VOF and the LSM modify
the MAC method by replacing the discrete marker par-
ticles with a continuous field variable—a color function
o ique
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the space (reduce to the Eulerian approach) to reduce
the number of updated meshes, and in the intermediate
zone the meshes move independently, neither stuck on
the material particles nor fixed in space, to avoid severe
distortion of meshes.

The earlier numerical analyses of HCDA normally
adopt the Lagrangian approach or the Eulerian ap-
proach. For instance, the computer codes REXCO-
HEP, REXCO-HT, ASTARTE, ARES and EURDYN
select the Lagrangian approach (Wang, 1980); the com-
puter codes ICECO, PISCES2DELK, CASSIOPEE
and SEURBNUK selected the Eulerian approach
(Wang, 1980, and Wayne, 1980). Several analyses
adopt the ALE formulation, such as the computer
codes ALICE, NEPTUNE, STRAW, REXALE-3D and
CEA/DMT PLEXUS (Wang, 1980; Han, 1980; Lep-
areux et al., 1993). Recent researches or the resent ver-
sions of the above mentioned codes tend to adopt the
ALE formulation.Robbe et al. (2003)reported a de-
tailed numerical simulation of HCDA in MARA 10 ex-
perimental test, a 1/30-scale model of the Superphoenix
reactor, by an ALE-type code EUROPLEXUS. In this
paper, the ALE formulation is also adopted.

The ALE formulation of Navier–Stokes equation of
a viscous incompressible fluid is:

ρ

(
dv
dt

+ (v − vm) · ∇v
)

− ∇ · σ

= ρf in Ω × (0, T ) (10)

i

∇
s

�

�

w ty,
v
f
v en-
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the
s

v

r level set function. These functions assign a un
onstant (color) to each fluid. At fluid interface t
olor function has a sharp gradient. The difficulty
he front capturing methods is how to identify the in
ace accurately and to impose the interface condit
he latter is often used in the FEM, which updates
omputational meshes frequently to coincide the m
ides with the moving interface. The difficulty of t
ront tracking methods occurs when the meshes
istorted severely.

Compared to the above methods the arbitr
agrange–Euler (ALE) method (Noh, 1964) is more
eneral and more flexible to deal with the moving

erface problem. In the ALE method we can spe
uch a movement of meshes: at the interface the
ide moves with material particles together (reduc
he Lagrangian approach) to track the moving interf
t a distance from the interface the meshes are fix
ncompressible condition is presented with

· v = 0 in Ω × (0, T ) (11)

tress and strain expressions are:

= −pI + 2µε(v) (12)

(v) = 1

2
(∇v + (∇v)T) (13)

here dv/dt is a mesh-derivative of material veloci
m the mesh-velocity,p the pressure in the fluid,f the
orce per unit mass,ρ the fluid density,µ the kinematic
iscosity, and� and� are the stress and the strain t
or, respectively.

The boundary conditions for the velocity and
urface forces are:

= g onΓg (14)
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n · � = h onΓh (15)

The initial conditions are:

v(x,0) = v0

∇ · v0 = 0
(16)

Based on the above mentioned equations and con-
ditions, the Galerkin integral method is:

∫
Ωe

δv
[
ρ

(
dv
dt

+ (v − vm) · ∇v
)

− ∇ · � − ρf
]

dΩ

−
∫
Γhe

δv[n · � − h] dΓ = 0 (17)

The ALE formulations for finite element method are
obtained:

M + Kv + N(v − vm) − Gp = F (18)

GTv = 0 (19)

whereM is mass matrix,K the viscosity matrix,N the
non-linear vector of convection force,G the gradient
operator andF is the force vector. Their detailed ex-
pressions are as follows.

M
Ne∑ ∫

T

K

N

G

F

D =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5




(25)

Bv =




∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0




T

Nv (26)

whereNv andNp is shape function matrix of the ve-
locity field and the pressure field, respectively, andNh
is the number of elements on the boundaryΓ h.

4. Impact of splashing liquid on the roof

The explosive load of a high-pressure gas bub-
ble transfers to the wall of the reactor vessel by two
ways: (1) propagation of pressure wave through the
liquid sodium and argon blanket, which can be sim-
ulated well by the fluid-structural coupling analysis
of FEM and (2) impact of splashed liquid sodium
on the roof slab, which is discussed in detail as fol-
lows.

4

n, if
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e

�

a im-
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l ef-
f ne-
g

=
e=1 Ωe

ρNvNv dΩ (20)

=
Ne∑
e=1

∫
Ωe

µBT
vDBv dΩ (21)

=
Ne∑
e=1

∫
Ωe

ρNT
v [Nv(v − vm) · ∇]Nv dΩ (22)

=
Ne∑
e=1

∫
Ωe

NT
v (∇ · Np) dΩ (23)

=
Ne∑
e=1

∫
Ωe

ρNT
v f dΩ +

Nh∑
e=1

∫
Γhe

NT
vhdΓ (24)
.1. Separation criterion of liquid

Since the liquid cannot be subjected to extensio
he normal stress at a point in liquid is greater tha
qual to zero

≥ 0 (27)

separated infinitesimal free surface will appear
ediately. During an explosion under liquid the

nitesimal free surfaces extend and connect each
o form a macro free surface. When a part of the
id near an original free surface is surrounded by
riginal free surface and the separated free sur

hen the liquid part will be separated from the wh
iquid and splash off. For a severe explosion the
ect of surface tension on the free surface can be
lected.
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4.2. Splashing trace of liquid part

By using Newton’s second law to the mass center,
we get a motion equation of a separated liquid part:

ma = F (28)

wherem denotes mass of the liquid part,a is accel-
eration of the mass center,F is a gravitational force,
the air resistance is ignored. Solution of Eq.(28) is a
projectile motion

vt = v0 + gt (29)

wherevt is current velocity,v0 is initial velocity, which
is equal to a velocity of the liquid part at the moment just
separated from the whole liquid,g is the acceleration
of gravity, t is the time of liquid flight.

By integrate in Eq.(29), we get the flying height of
the splashing liquid:

h = v′
0

2g
(30)

wherev′ is the vertical component of the initial sepa-
rated velocity, ifh is equal to or larger than the vertical
distance between free surface of liquid sodium and roof
slab, the splashing liquid part will impact on the roof
slab.

4.3. Impact pressure on roof slab

s-
s elas-
t

t e
B by
a of
t s:

(

w is-
s the
l ele-
m q.
( nce
b
s on

Fig. 3. Round area in 3D semi-infinite solid.

is

uz = (1 − ν2)q

πEe

∫∫
ds dψ (32)

After integration, the deflection at a certain point M
in the circular loaded area is (Timoshenko and Goodier,
1970, p. 404):

uz = 4(1− ν2)qa

πEe

∫ π
2

0

√
1 − r2

a2 sin2 ψ dψ (33)

The force acting on an element at M in polar coor-
dinate is equal to:

dF = qr dθ dr (34)

From Eqs.(33) and (34)we have the total work done
by the impact pressure distributed in the loaded area:

W =
∫

uz dF

=
∫ a

0

∫ 2π

0

∫ π
2

0

4(1− ν2)q2a

πEe

r

×
√

1 − r2

a2 sin2 ψ dψ dθ dr

= 16(1− ν2)q2a3

3Ee

(35)
A simplified analytical solution of the impact pre
ure on the roof slab can be obtained by using an
icity solution under locally uniform pressure.

Suppose the impact pressureq is uniformly dis-
ributed over a circular area of radiusa. Based on th
oussinesq solution of a semi-infinite solid loaded
concentrated forceP at the origin, the deflection

he boundary planez= 0 in the direction of the load i

uz)z=0 = P(1 − ν2)

πEer
(31)

hereEe andν are the Young’s modulus and the Po
on’s ratio, respectively. Consider a point M within
oaded area, its deflection produced by a loaded

ent shown shaded inFig. 3can be obtained from E
31), in which the concentrated load and the dista
etween M and loaded element areqsdsdψ ands in-
tead ofP andr, respectively. Then the total deflecti
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Fig. 4. Annular area in semi-infinite solid.

On the other hand, the mass and kinetic energy of
a liquid sphere, which represents the splashing liquid
part, are:

m = ρ · 4

3
πa3; E = 1

2
mv2 = 2

3
ρπa3v2 (36)

For impact problems the energy is usually non-
conservative. Suppose the rate of energy transfer isk
(0≤ k≤ 1), i.e. the impact work effecting on the roof
slab is onlyk times of the kinetic energy of splashing
liquid part,W= kE. Combine Eqs.(35) and (36), then
the impact pressureq is obtained

q = v

√
kρπEe

8(1− ν2)
(37)

For the axi-symmetric problems suppose the impact
pressureq is uniformly distributed over an annular area
with inner radiusa and outer radiusb (seeFig. 4).
Based on the 2D Flamant solution of a semi-infinite
plate loaded by a concentrated vertical forceP, the de-
flection at point M in the annular loaded area is:

uz(x) = 2q(1 + ν)(1 − 2ν)

πEe(1 − ν)

∫ b

a

ln |r − ξ| dξ (38)

where the elastic constant isEe(1 − ν)/(1 + ν)(1 −
2ν) for the axi-symmetric problems instead of the
Young’s modulusEe for the plane stress problems
(

d

The work done by the impact pressure is equal to:

W =
∫

uz dF

= 4q2(1 + ν)(1 − 2ν)

Ee(1 − ν)

∫ b

a

∫ b

a

r ln |r − ξ| dξ dr

(40)

where the integrand is singular atr = ξ. Thus the integral
involves a the Cauchy principle value (seeAppendix
B).

The mass and kinetic energy of the annular liquid
is:

m = ρ · 1

4
π2(a + b)d2; E = 1

2
mv2 (41)

whered= b− a, thus the impact pressureq is given by

q = π

4
(vt · j )

×
√

kρEe(1 − ν)(a + b)

(1 + ν)(1 − 2ν)[(a + b)(ln d − 1/2)− d]
(42)

Based on the Boussinesq solution Hertz created a fa-
mous contact theory and has applied the theory to solve
a central collision problem of two elastic bodies. Ex-
perimental observations show that Hertz’s theory based
on a statically elastic case is also suitable to the impact
analysis, as long as the material at contact area is elastic
( sh-
i not
h e im-
p ry,
t A
a

5

EM
c er-
a ed.

are
m rge
d the
a by
E de
Timoshenko and Goodier, 1970, p. 109).
The force acting on an element including M is:

F = 2πqr dr (39)
Fluegge, 1962). For the impact analysis of the spla
ng liquid, the impact pressure is nearly uniform but
igh concentrated as in the contact problem and th
act velocity is low, therefore, as a simplified theo

he solutions(37)and(42)can be applied to the HCD
nalysis.

. Computational implement

Based on the above theory a 2D axi-symmetric F
omputer code FRHCDA for the fluid-structure int
ction analysis of HCDA in a LMFBR was develop

In the code FRHCDA the fluid components
odeled by viscous incompressible fluid. Since la
istortion and moving interfaces are involved,
rbitrary-Lagrange–Euler formulation expressed
qs.(10–26)are selected. The fluid domains inclu
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the liquid sodium and the argon blanket are divided into
axi-symmetrically quadratic elements. The structural
components, include the roof, the reactor vessel and
the inner vessel, are modeled by the bi-linear elasto-
plastic material and also divided into axi-symmetrically
quadratic elements.

Dynamic properties of the fluid components and
the structural components are quite different, so the
coupled solving approach of whole fluid-structural
system not only results in huge computational scale
but also needs very fine time-steps. In the FRHCDA
a split iterative solving approach is used, in which
the fluid domain and the structural domain are dealt
with alternatively, the coupling parameters (such as
the displacement, the velocity and the pressure) are
transferred through the interfaces in each iterated
step.

The force boundary condition between the fluid and
the vessel is

Ff = −Fs (43)

The displacement boundary condition is

uf · nf = us · nf (44)

where the subscriptf means the fluid components while
the subscripts means the structural components.nf is
the normal vector of the fluid boundary.

When a moved node of fluid (or solid) elements
in an interface does not coincide with any node of
s alue
o rred
t y in-
t

sis
t

the
P
C

p

w if
t e of
t
t

cked
i the
o hich

Fig. 5. The general flow chart of the code FRHCDA.

the normal stress is equal to or greater than zero, i.e.
satisfies the separation criterion Eq.(27), a splashing
part forms. The moving trace of the separated liquid
part is described by the Newton’s law. The impact con-
dition of the splashing liquid to the roof slab is given in
Eq.(30). The impact pressure on the roof slab is com-
puted with the Eq.(42) (2D axi-symmetric problems).
We suppose the energy transfer coefficientk= 0.95.

The general flow chart of the code FRHCDA is
shown inFig. 5.
olid (or fluid) elements in the same interface, the v
f displacement and velocity (or pressure) transfe

hrough the interface at this node are calculated b
erpolation method.

For time integration of coupled dynamic analy
he Newmark method is applied.

The high-pressure gas bubble is modeled by
PIG loading model introduced in Section2. Set
onst =p0V0 andn= 1, Eq.(2) becomes:

V = p0V0 (45)

hereV0 is the initial volume of the gas bubble, and
he total energy release is given the initial pressur
he gas bubblep0 is got from Eq.(7) based on the “5%
runcated criterion”.

The normal stresses in the liquid sodium are che
n each time step. If a liquid part is surrounded by
riginal free surface and the inner surface, on w
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Fig. 6. The CONT benchmark problem.

Fig. 7. Initial and deformed meshes (displacements magnified five times).
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Fig. 8. Comparison of final deformed shapes calculated by various
codes.

6. Benchmark problem

To check the effectiveness of FRHCDA, a CONT
benchmark problem (Casadei et al., 1989) is calculated
(seeFig. 6). The parameters of CONT problem are
listed inTable 2. Fig. 7shows the history of the mesh
deformation. An initial mesh is drawn in the case of
t = 0 ms. There are totally 282 elements and 320 nodes
in the area of liquid sodium and argon blanket. Triangu-
lar elements are used in the area of gas bubble, which
are totally 28 elements and 30 nodes. The time step
is taken as 2 ms. The Lagrangian approach is adopted
on the interface between the liquid sodium and the gas
bubble, as well as on that between the liquid sodium

Table 2
The parameters of CONT problem

Parameter Nominal value Range

Bubble energy (MJ) 600 200–1000
Bubble pressure (MPA) 10 5–15
Cover gas gap (m) 1 0.2–1.8
Roof mass (MN/m2) 100 50–150
Yield stress (MPa) 105 70–140
Plastic modulus (GPa) 3 1.5–4.5

Fig. 9. Impulse vs. time.

and the argon blanket, while the ALE approach is used
in the area of liquid sodium.

It is observed that the expanding speed of high-
pressure gas bubble is lower than that of the high den-
sity explosive charge. The liquid sodium touches on the
roof slab at the momentt = 120 ms.

A comparison of the deformed shape of reactor ves-
sel calculated by our code and by the code PLEXUS
(Casadei et al., 1989) is given inFig. 8. All displace-
ments inFig. 7are magnified five times. It can be seen

F es at
t

ig. 10. deformed meshes of ALE and Lagrangian approach
= 120 ms.
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that our results fall in the scatter range of the CONT
solutions.

The maximal stress is 78.97 MPa on the external
surface at central point of the vessel bottom.

The impulse on the roof slab is shown inFig. 9. The
rate of energy transferk is taken as 0.95. It shows that
our results are well within the existing results published
in international journals (Balz and Dufresne, 1989).

The proportion of computing time in the first 20 time
steps of the Lagrangian, the Eularian and the ALE ap-
proach is 1:1.176:1.655. The ALE approach is a little
expensive. However due to severe mesh distortion (see
Fig. 10) the calculation of the Lagrangian approach di-
verges att = 124 ms, and due to serious deformation
of the free surface of liquid sodium, the Eulerian ap-
proach appears obvious error att = 158 ms, but the ALE
approach runs well from start to finish.

7. Conclusion

The following conclusions can be drawn:

(1) The PPIG law is the most flexible loading model
to simulate the HCDA process.

(2) The ALE approach is successful to avoid severe
mesh distortion and to deal with the moving inter-
face. It is an ideal method for the HCDA analysis
of a LMBFR.

(3) An approach to treat with the liquid splash is pro-
of

om-
n the
ults

A

A
a
E
E
F
f
G
g
K

M mass matrix
m mass of the liquid part
N non-linear vector of convection force
Nv shape function matrix of the velocity field
Np shape function matrix of the pressure field
p pressure
p0 initial pressure
q impact pressure
t time
uz displacement
V volume
V0 initial volume
V′ V/V0 relative volume
v velocity
v0 initial velocity
vm mesh velocity
W total energy release

Greek letters
� strain
η rate of volume
µ kinematic viscosity
ν Poisson’s ratio
ρ fluid density
� stress

Appendix B. Principle value of Cauchy integral

The general expression of Cauchy principle value
o∫

w
s∫
posed. Moreover a simplified analytical solution
the impact pressure on roof slab is derived. C
putational results based on the researches i
present paper agree well with the existing res
published on international journals.

ppendix A. Nomenclature

, B, R1, R2, n physical constants
acceleration

e Young’s modulus
internal energy
force vector
force per unit mass
gradient operator
acceleration of gravity
viscosity matrix
f functionf(x) is:

b

a

f (x) dx = lim
ε→0

[∫ c−ε

a

f (x) dx +
∫ b

c+ε

f (x) dx

]
(46)

herea< c< b, ε> 0. Take the functionr ln|r − �| in-
tead off(x), we get

b

a

r ln |r − ξ| dξ

= r

[
lim
ε→0

∫ r−ε

a

ln(r − ξ) dξ +
∫ b

r+ε

ln(ξ − r) dξ

]

= r

[
lim
ε→0

{−[(r − ξ) ln(r − ξ) − (r − ξ)]|r−ε
a

+ [(ξ − r) ln(ξ − r) − (ξ − r)]|br+ε

}]
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= r

[
lim
ε→0

{−[(ε ln ε − ε) − (r − a) ln(r − a)

+ (r − a)] + [(b − r) ln(b − r) − (b − r)

−ε ln ε + ε]}]
= r [(r − a) ln(r − a) − (r − a)

+ (b − r) ln(b − r) − (b − r) + lim
ε→0

(ε − ε ln ε)

]
= r(r − a) ln(r − a) + r(b − r) ln(b − r)

+ r(a − b) (47)

So Eq.(40) is

W = 4q2(1 + ν)(1 − 2ν)

Ee(1 − ν)

∫ b

a

∫ b

a

r ln |r − ξ| dξ dr

= 4q2(1 + ν)(1 − 2ν)

Ee(1 − ν)

∫ b

a

[r(r − a) ln(r − a)

+ r(b − r) ln(b − r) + r(a − b)] dr

= 4q2(1 + ν)(1 − 2ν)

Ee(1 − ν)

×
[

(a + b)

2

(
d2 ln d − d2

2

)
− d3

2

]
(48)

whered= b− a
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