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The meshless method based on the least-squares approach, the meshless weighted least-

squares (MWLS) method, is extended to solve conduction heat transfer problems. The

MWLS formulation is first established for steady-state problems and then extended to

unsteady-state problems with time-stepping schemes. Theoretical analysis and numerical

examples indicate that larger time steps can be used in the present method than in meshless

methods based on the Galerkin approach. Numerical studies show that the proposed method

is a truly meshless method with good accuracy, high convergence rate, and high efficiency.

1. INTRODUCTION

In the recent decade, a new class of numerical methods, meshless methods (also
called mesh-free methods), have been developing fast [1, 2]. Though most meshless
methods originate from solid mechanics, they have been extended to solve problems
of heat transfer and fluid flow, owing to their advantages over the traditional finite-
element method (FEM), finite-volume method (FVM), and finite-difference method
(FDM). Meshless methods rely only on a group of scatter points, which means not
only that the burdensome work of mesh generation is avoided, but also more accu-
rate description of irregular complex geometries can be achieved. Furthermore, the
meshless approximation has higher smoothness, and no additional postprocessing is
needed.

In the field of meshless methods for solving heat transfer problems, Cleary and
Monaghan [3] employed smoothed particle hydrodynamics (SPH) with a Euler pre-
diction-correction algorithm to analyze unsteady-state heat conduction problems in
a finite slab; Chen et al. [4] solved unsteady-state heat conduction problems with a
corrective SPH method; Onate et al. [5] developed a finite-point method (FPM) to
solve convective transport problems; Chen [6] used a boundary particle method
(BPM) with high-order fundamental and general solutions to analyze convection-
diffusion problems with complex geometry; Liu and Yang [7] solved unsteady-state
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heat conduction problems with the element-free Galerkin method (EFGM) and the
coupled EFGM-FEM in combination with a precise algorithm in the time domain;
Singh et al. applied the EFGM in the heat transfer analysis of 2-D fins [8], 3-D
steady-state [9], and transient [10] heat conduction problems, and composite heat
transfer problems [11]. They studied the influences of different weight functions
and different sizes of support domain in detail [11]. Sadat and his collaborators
developed the diffuse approximation method (DAM) and utilized it to solve 2-D
and 3-D laminar natural-convection problems [12, 13].

All the above meshless methods can be categorized into two groups according
to their discretization scheme. The first group is Galerkin-based meshless methods
(GBMMs), of which the EFGM proposed by Belytschko in 1994 [14] is a famous
representative. In GBMMs, the highest order of derivatives is lowered by using a
weak form of the original partial differential equations (PDEs). The accuracy of
GBMMs is high, and good stability can always be obtained. The main shortcoming
of GBMMs is that the integrals in the weak form must be evaluated properly. One
way of evaluating integrals is to use a background mesh, which makes the method

NOMENCLATURE

ai xð Þ; a xð Þ coefficient of basis function

and its vector form

c specific heat

dmax; dmax
x ; dmax

y size of the compact support

G;K system matrices of

discretized equations

h convection heat transfer

coefficient

k thermal conductivity

L characteristic length

Le dimension of element (in

finite-element method) or

nodal distance (in meshless

methods)

n unit normal vector outward

to the boundary

NI ðxÞ shape function

Nnode number of nodes

piðxÞ; pðxÞ basis function and its vector

form

P right-hand-side vector of the

discretized equations

�qq specified heat flux on the

boundary

Q heat source

r normalized radius

R0 residual of the governing

equation

R1; R2; R3 residuals of boundary

conditions

t time

t0 the origin of time

u temperature
�uu specified temperature on the

boundary

uf environmental temperature

uI ; U nodal parameter and its

vector form

u0 initial temperature

wI ðxÞ weight function

x vector of spacial coordinate

x; y spacial coordinates

a1; a2; a3 penalty parameters

C1; C2; C3 boundaries

Dt size of time step

h parameter of time

discretization scheme

P functional to construct

discretized equations

q density

X problem domain

Subscripts

c critical

I ; J node indices

Superscripts

e exact

h approximate

n time-step index

num numerical
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not truly meshless; another is to use nodal integration [15], which results in signifi-
cant errors because the divergence theorem used in the establishment of the weak
form demands accurate integration [16]. In addition, because meshless shape func-
tions are too complex to be expressed in closed form, a delicate background mesh
and a large number of quadrature points are always employed, which decreases
the efficiency seriously. As a consequence, GBMMs are much more computationally
expensive than the FEM.

The other group of meshless methods is built on collocation schemes. The
SPH, FPM, DAM, least-square collocation meshless method [17], and radial basis
function (RBF) collocation methods [18–21] all belong to this group. These methods
are very efficient and easy to program, but they usually suffer from poor stability,
and the accuracy often goes down near the boundary.

The universal law of least squares can also be used for discretization. In fact, it
has been introduced into the FEM successfully [22]. A new meshless method based
on the least-squares approach, the meshless weighted least-squares (MWLS) method,
was proposed to solve problems of elastostatics [23], wave propagation and large
deformation [24]. The MWLS method is not bothered by instability as colloca-
tion-based meshless methods, and its accuracy and convergence rate are comparable
to, or even better than, that of GBMMs [23]. At the same time, the MWLS method is
an efficient algorithm, owing mainly to employing discrete functionals, which is feas-
ible because integration is used only to average the residuals of the governing equa-
tions and boundary conditions in the least-sqaures approach, and the solution
accuracy in the least-squares approach is less sensitive to the integration accuracy
than in the Galerkin method [16].

In this article, the MWLS method is extended to solve problems of conduction
heat transfer. The governing equation and boundary conditions are briefly investi-
gated in Section 2; implementation of the MWLS method, including the meshless ap-
proximation scheme, the formulas for steady-state heat conduction equations and
for unsteady-state heat conduction equations in combination with the time-stepping
scheme, are derived in Section 3; numerical examples are demonstrated in Section 4;
and some concluding remarks are presented in Section 5.

2. BASIC EQUATIONS OF HEAT CONDUCTION PROBLEMS

The distribution of temperature in the problem domain X is governed by the
following equation:

qc
qu
qt

¼ kr2uþ qQ in X ð1Þ

with boundary conditions

u ¼ �uu on C1

n � kru ¼ �qq on C2

n � kru ¼ hðuf � uÞ on C3

ð2Þ

where u represents the temperature; t stands for time; q and c are density and specific
heat, respectively; k is the thermal conductivity; and Q is the heat source per unit
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mass. C1;C2; andC3 denote the first kind (specified temperature), the second kind
(specified heat flux), and the third kind (convection heat transfer) of boundaries.
�uu and �qq are the prescribed temperature and the prescribed heat flux on the
corresponding boundaries, respectively. h is the convection heat transfer coefficient,
and uf is the environmental temperature. n is the unit normal vector outward to the
boundary.

For the unsteady-state case, the following initial condition should also be
specified:

u ¼ u0 when t ¼ t0 ð3Þ

For the steady-state case, the variable u is not a function of time t. Thus no initial
condition is needed, and the governing equation is simplified as

kr2uþ qQ ¼ 0 ð4Þ

3. IMPLEMENTATION OF MWLS METHOD

3.1. The Moving Least-Square (MLS) Approximation

In the MLS approximation, the function uðxÞ is approximated by uhðxÞ as
follows:

uðxÞ � uhðxÞ ¼
Xm
i¼1

piðxÞ � aiðxÞ ¼ pTðxÞ � aðxÞ ð5Þ

where m is the number of terms of the basis. piðxÞ and aiðxÞ are the basis functions
and the corresponding coefficient, respectively. The coefficient aiðxÞ is obtained by
minimizing the difference between the local approximation and the function, which
yields the quadratic form

J ¼
Xn
I¼1

wI ðxÞ � pTðxI Þ � aðxÞ � uI
� �2 ð6Þ

where uI ¼ uðxIÞ is the nodal value of the function uðxÞ, and is also called nodal
parameter since uI 6¼ uhðxI Þ in MLS approximation. wI ðxÞ ¼ wðx� xI Þ is the weight
function which is non-negative with a compact support associated with node xI
(a small neighborhood centered at the node xI ) and maximum at node xI . n is the
number of nodes whose weight functions are nonzero at the evaluation point x.
Minimizing functional J results in

AðxÞ � aðxÞ ¼ BðxÞ � u ð7Þ
where

AðxÞ ¼
Xn
I¼1

wI ðxÞpðxI ÞpTðxI Þ ð8Þ

BðxÞ ¼ w1ðxÞpðx1Þ;w2ðxÞpðx2Þ; . . . ;wnðxÞpðxnÞ½ � ð9Þ

u ¼ ½u1; u2; . . . ; un�T ð10Þ
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Solving aðxÞ from Eq. (7), and substituting it into Eq. (5), the final form of the
MLS approximation is expressed as

uhðxÞ ¼
Xn
I¼1

NIðxÞ uI ð11Þ

where the shape function NI ðxÞ is given by

NI ðxÞ ¼ pTðxÞ � A�1ðxÞ � BIðxÞ ð12Þ

where BI ðxÞ denotes the Ith column of the matrix BðxÞ.
Different from the finite-element approximation, the continuity of the MLS

approximation relates to not only the basis function, but also the weight function.
If the continuities of the basis functions and the weight function are Cl and Ck,
respectively, then the continuity of the MLS shape function is Cminðl;kÞ, which means
that the weight function plays an important role in the MLS shape function since
frequently used monomial bases are infinitely differentiable. Many kinds of weight
functions [11] have been employed in meshless methods. In this article, the cubic
spline function is adopted, which has the following form in the 1-D case:

wI ðrÞ ¼
2
3 � 4r2 þ 4r3 r � 1

2

4
3 � 4rþ 4r2 � 4

3 r
3 1

2 < r � 1

0 r > 1

8><
>: ð13Þ

where r ¼ x� xIj j=dmax; dmax is the radius of the compact support. For the 2-D case,
a rectangular support is used, and the weight function is defined as the product of the
weight functions in x and y direction, viz.,

wI ðxÞ ¼ wI ðrxÞ � wIðryÞ ð14Þ

where wIðrxÞ and wI ðryÞ are both defined by Eq. (13), and rx ¼ x� xIj j=dmax
x ;

ry ¼ y� yIj j = dmax
y . The choice of dmax will be discussed in Section 4 by numerical

examples.

3.2. MWLS Method for Steady-State Equations

Substituting the MLS approximation (11) into the governing equation (4) and
boundary conditions (2) of the steady-state heat conductionproblemresults in residuals

In X : R0 ¼
Xn
I¼1

kr2NIðxÞ
� �

uI þ qQ

On C1 : R1 ¼
Xn
I¼1

NIðxÞuI � �uu

On C2 : R2 ¼
Xn
I¼1

kn � rNIðxÞ½ �uI � �qq

On C3 : R3 ¼
Xn
I¼1

kn � rNIðxÞ þ hNI ðxÞ½ �uI � huf

ð15Þ
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In theMWLSmethod, the above residuals are minimized in a least-squares man-
ner, that is, the functional

P ¼
Z
X
R2

0ðxÞ dXþ
Z
C1

a1R
2
1ðxÞ dCþ

Z
C2

a2R
2
2ðxÞ dCþ

Z
C3

a3R
2
3ðxÞ dC ð16Þ

is minimized, which is equivalent to

qP
quI

¼ 0 I ¼ 1; 2; . . . ;Nnode ð17Þ

where Nnode is the total number of nodes, and al ðl ¼ 1; 2; 3Þ are penalty parameters.
Note that an integral form is involved in Eq. (16), which will decrease the com-

putational efficiency of the method due to the heavy work of numerical quadrature.
Since the integration in Eq. (16) is used only to average the residuals, and the accu-
racy of the least-squares approach is much less sensitive to the integration accuracy
than that of the Galerkin approach [16], an alternative discrete functional P is used
to avoid integration:

P ¼
Xm0

K¼1

R2
0ðxKÞ þ

Xm1

K¼1

a1R
2
1ðxKÞ þ

Xm2

K¼1

a2R
2
2ðxKÞ þ

Xm3

K¼1

a3R
2
3ðxKÞ ð18Þ

where m0 and mi ði ¼ 1; 2; 3Þ are the number of evaluation points to satisfy the gov-
erning equation and to enforce boundary conditions, respectively. It should be
noticed that the number of evaluation points need not equal the number of nodes;
in other words, the number of evaluation points can be larger than the number
of nodes. According to research by Onate [25], considering the influence of the
governing equations on the boundary will contribute to the stabilization of the
algorithm. So, in the MWLS method, all the nodes are taken as evaluation points
for the first term of summation; and the nodes on Ci are selected to be the evaluation
points on corresponding boundaries.

Substituting the discrete functional P of Eq. (18) into Eq. (17), the system
equations of the MWLS method for solving steady-state heat conduction equations
are obtained as

KU ¼ P ð19Þ

where the matrices are defined as

U ¼ ðu1; u2; . . . ; uNnode
ÞT ð20Þ

KIJ ¼
Xm0

K¼1

kr2NI

� �
kr2NJ

� �
jxK þ

Xm1

K¼1

a1NI NJ jxK þ
Xm2

K¼1

a2 n � krNIð Þ

� n � krNJð ÞjxK þ
Xm3

K¼1

a3 n � krNI þ hNIð Þ n � krNJ þ hNJð ÞjxK ð21Þ
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PI ¼�
Xm0

K¼1

kr2NI

� �
qQjxK þ

Xm1

K¼1

a1NIujxK þ
Xm2

K¼1

a2 n � krNIð Þ qjxK

þ
Xm3

K¼1

a3 n � krNI þ hNIð Þ huf jxK ð22Þ

where the symbol jxK represents the value at x ¼ xK .
In fact, the above routine process of implementation of the MWLS method can

be extended to any boundary-value problems as described below.

1. Substitute a meshless approximation, such as the MLS approximation, Eq. (11),
into the governing equations and boundary conditions. Residuals in the domain
and on the boundaries are obtained.

2. Construct the functional P by summation of the squares of the residuals. In order
to avoid integration, the functional in discrete form can be used.

3. Minimize the functional P, which is equivalent to that the variation of P equals
zero, to obtain the discretized equations.

4. Solve the discretized equations to obtain nodal parameters uI , then calculate
other variables required.

In the above discretizing process, the boundary conditions are introduced in a
penalty manner. In fact, the penalty parameters al ðl ¼ 1; 2; 3Þ have two functions.
One is to make the residuals of the boundary conditions much larger than that
of the governing equation, so that the boundary conditions can be satisfied accu-
rately; the other is to balance the orders of magnitude of different boundary resi-
duals. For the first purpose, the penalty parameters should be large numbers. For
the second purpose, a direct and simple dimensional analysis has been applied to
the residuals of different boundary conditions to find if the following relations
a1 ¼ a2ðk=LÞ2 and a3 ¼ a2 minð1; k=hLÞ½ �2 are satisfied, different boundary residuals
will be of the same or close order of magnitude. Note that the parameter a2 is taken
as a reference value. We have examined different values of a2 and found that the
results are nearly the same when the order of magnitude of a2 is not less than 105.
Since extremely large penalty parameters will lead to an ill-conditioned system
matrix, a value of 105–108 for a2 is recommended in the MWLS method.

3.3. Extending to Unsteady-State Problems

The unsteady-state heat conduction problem, Eq. (1), involves the time deriva-
tive. Thus some algorithm to discretize the time domain should be employed. In
the Galerkin FEM or GBMM, a common approach is first to discretize the space
domain to obtain ordinary differential equations (ODEs) with respect to time;
then to solve the ODEs to trace the variance of temperature with time step by step.
This process does not suit the MWLS method, since the squares of the time deriva-
tive will be involved. Another approach, adopted in least-squares FEM [26], is used
in this article as follows.
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First discretize Eq. (1) in the time domain by the h method, which leads to

qc
unþ1 � un

Dt
¼ h kr2uþ qQ

� �nþ1þ 1� hð Þ kr2uþ qQ
� �n ð23Þ

where the parameter 0 � h � 1, and 0; 12 ; 1 correspond to the forward difference, the
central difference, and the backward difference algorithms. The superscript n indi-
cates the value at the nth time step. The above equation can be rewritten as

qc
Dt

� hkr2
� �

unþ1 ¼ qc
Dt

þ ð1� hÞkr2
h i

un þ qQnþh ð24Þ

where Qnþh ¼ hQnþ1 þ ð1� hÞQn. The terms on the right-hand side of Eq. (24) at
the ðnþ 1Þth time step can be determined completely by the results of the nth step
and the prescribed conditions. Thus Eq. (24) and the boundary conditions (2) con-
stitute boundary-value problems for the unknown nodal parameters at the
ðnþ 1Þth step, which can be solved by the MWLS method. Following the routine
process of the MWLS method to solve boundary-value problems, as described at
the end of Section 3.2, the discretized equations for unsteady-state heat conduction
problems are derived as

KUnþ1 ¼ GUn þ P ð25Þ

where

KIJ ¼
Xm0

K¼1

qc
Dt

NI � hkr2NI

� � qc
Dt

NJ � hkr2NJ

� ����
xK

þ
Xm1

K¼1

a1NI NJ jxK þ
Xm2

K¼1

a2 n � krNIð Þ n � krNJð ÞjxK

þ
Xm3

K¼1

a3 n � krNI þ hNIð Þ n � krNJ þ hNJð ÞjxK ð26Þ

GIJ ¼
Xm0

K¼1

qc
Dt

NI � hkr2NI

� � qc
Dt

NJ þ ð1� hÞkr2NJ

h i���
xK

ð27Þ

PI ¼
Xm0

K¼1

qc
Dt

NI � hkr2NI

� �
qQnþh

����
xK

þ
Xm1

K¼1

a1NIu
nþ1jxK

þ
Xm2

K¼1

a2 n � krNIð Þqnþ1jxK þ
Xm3

K¼1

a3 n � krNI þ hNIð Þhunþ1
f jxK ð28Þ

It is well known that the forward difference algorithm is conditionally stable,
and the critical size of time step is related to the node distribution. Smolinski and
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Palmer [27] have studied the critical size of time step for the FEM and EFGM in 1-D
diffusion problems. They give a rough estimate as

DtEFGM
c ¼ Led

max

2
DtFEMc ¼ L2

e

2
ð29Þ

where Le is the element dimension in the FEM and the nodal distance in the EFGM,
respectively. In fact, this conclusion is also correct for other GBMMs, and it can be
extended to the analysis of other meshless methods similarly. As the essence of con-
structing discrete functional P in the MWLS method is analogous to nodal inte-
gration, a rough estimate of critical time step size for the MWLS method can be
obtained according to Smolinski and Palmer’s work:

DtMWLS
c ¼ ðdmaxÞ2

2
ð30Þ

which implies that the ratio of critical step size of the MWLS method to that of the
EFGM is about dmax=Le, whose typical value is 1:0 < dmax=Le � 4:0 in meshless
methods. The penalty parameters can be selected in the same way as in the
steady-state case.

4. NUMERICAL EXAMPLES

In all the following examples, thermophysical parameters, such as density,
specific heat, and thermal conductivity, are unit values if not explicitly specified.

4.1. 1-D Steady-State Example and Choice of Parameters

Consider an infinitely large slab as shown in Figure 1. The left surface of the
slab is maintained at the temperature 100�C. Forced-convection heat transfer occurs
at the other surface with the fluid temperature 0�C. There exists a distributed heat
source Q ¼ 180x2 along the thickness of the slab, where x is the distance to the left
surface, as shown in Figure 1. The thickness of the slab is 1m. This example is a 1-D
problem in essence, and its analytical solution is

u ¼ �15x4 � 12:5xþ 100 ð31Þ

This example is studied for optimal choice of computational parameters and
convergence analysis. Table 1 lists the relative error of different orders of monomial
bases and different support radii, where scale refers to the ratio of support radius to
nodal distance. The relative error is defined as

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNnode

I¼1 ðunumI � ueI Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNnode

I¼1 ðueIÞ
2

q ð32Þ
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where the superscripts num and e denote numerical results of the MWLS method
and exact solution Eq. (31), respectively. As seen from the table, quadratic basis
gives the best results, which is not surprising since the highest order of derivative
in the functional P is 2. Linear basis and constant basis can also give satisfactory
results with certain support radius, mainly because the performances of MLS shape
functions is related to both the basis functions and the weight function, and the
spline function with high smoothness as C2 continuity is adopted as weight function
in this article. In the following examples, the quadratic basis with a support size of
3.5 times the nodal distance is used.

Figure 2 shows the convergence curve of the MWLS method and the GBMM,
where GBMMn means results of the GBMM with n-point Gauss quadrature. The
accuracy of the MWLS method is higher than that of GBMM1 and close to that
of GBMM2, but the convergence rate of the MWLS method is much higher than
that of the GBMM, no matter how many integration points are used. Note that
more integration points imply more computational cost, which is especially remark-
able in 2-D or 3-D problems.

Figure 1. An infinitely large slab.

Table 1. Relative error of MWLS results with different computational parameters (%)

Scale Constant basis Linear basis Quadratic basis

2.25 21.87 2.044 0.4740

2.5 15.15 0.2694 0.5978

2.75 11.12 0.9572 0.6123

3.0 7.667 1.649 0.5740

3.25 3.971 0.5003 0.2070

3.5 2.216 1.262 0.0692

3.75 1.218 1.253 0.2071

4.0 0.7748 0.7892 0.3398
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Another case in which a uniform heat flux is applied at the right surface is also
investigated, and the same conclusion can be drawn.

4.2. Steady-State Heat Conduction in a Rectangular Domain

A rectangular domain in the dimension 1m� 0.8m is shown in Figure 3.
The upper boundary is subject to an inflow heat flux of magnitude q ¼ 500W=m2,
all the other boundaries are maintained at the temperature 0�C, and no source
exists in the domain. The thermal conductivity is 1.2W=(m�C). The analytical
solution is [28]

uðx; yÞ ¼ 4qa

kp2
X1
m¼0

sinh ð2mþ1Þp
a

h i
y

n o

cosh ð2mþ1Þp
a

h i
b

n o sin ð2mþ1Þp
a

h i
x

n o

ð2mþ 1Þ2
ð33Þ

The isothermals of the GBMM and MWLS method are shown in Figures 4
and 5, respectively. In the computation, a support size of 2.5 times the nodal
distance, the linear monomial basis, and 3� 3 Gauss quadrature are employed in
the GBMM; 11� 9 uniform node distribution is used in both methods. The relative
error of the MWLS is lower than that of the GBMM, is 1.21% versus 1.75%.
Convergence analysis shows that the rate of the MWLS method is a little lower than
that of the GBMM, as plotted in Figure 6. However, the CPU time for the MWLS is
less than 20% of that of the GBMM, 18.4% for 11� 9 and 16.0% for 21� 17 uni-
form node distributions, respectively.

From this example and the previous one, it can be seen that the MWLS method
is a promising meshless method when both the accuracy and efficiency are taken into
account.

Figure 2. Convergence curve of 1-D steady-state example.
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4.3. 1-D Unsteady-State Examples

Consider the unsteady-state heat conduction in an infinite slab whose thickness
is 2m. The temperatures of both surfaces are 0�C, and the initial temperature distri-
bution has the form u0 ¼ x(2� x). The analytical solution is given by [28]

u x; tð Þ ¼ 16

p3
X1
n¼1

1� �1ð Þn

n3
exp � n2p2

4
t

	 

sin

np
2
x

� �
ð34Þ

Only one-half of the domain needs to be analyzed due to symmetry, and the adia-
batic boundary condition is enforced on the symmetrical line. Figure 7 shows the
results of the GBMM, the MWLS method, and the analytical solution on the sym-

Figure 3. Rectangular domain and its coordinate system.

Figure 4. Isothermal of 2-D steady-state example (�C): GBMM results.
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metrical line. Eleven uniformly distributed nodes are employed in the computation,
the size of the time step is 0.05 s, and the cases h ¼ 1

2 and 1 are both computed. All
the numerical results coincide well, and in fact cannot be distinguished from the
analytical solution when h ¼ 1

2. The result of the central difference algorithm is
more accurate than that of the backward difference algorithm, owing to second-
order accuracy.

Figure 8 shows the temperature variance on the symmetrical line computed by
the MWLS method when h ¼ 0 and the size of the time step Dt ¼ 0:002 s. The result

Figure 5. Isothermal of 2-D steady-state example (�C): results of MWLS method.

Figure 6. Convergence curve of 2-D steady-state example.
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of the GBMM diverges for this time-step size, so it is not drawn in the figure.
Further computation shows that the critical step size of the MWLS method is
2:5� 10�3 s, while that of the GBMM is 7:0� 10�4 s. The ratio of critical time-step
size of the MWLS method to that of the GBMM is about 3.6, which is consistent
with the theoretical analysis in Section 3.3.

Figure 7. Comparison of analytical solution and numerical results on the symmetrical line when h ¼ 0:5

and 1:0.

Figure 8. Comparison of analytical solution and numerical results on the symmetrical line when h ¼ 0.
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Consider another example in which the temperatures of the left and the right
surface are U1 ¼ 15�C and 10�C, respectively. The thickness is 1m, and the thermal
conductivity is 0.1W=m�C. The initial temperature is U0 ¼ 15�C throughout the
domain. The variance of temperature with space coordinate and time is described

Figure 9. Variance of temperature on the central line.

Figure 10. Temperature distribution along the thickness direction at t ¼ 2 s.
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in the series form [28]

uðx; tÞ ¼ U1 þ U2 �U1ð Þ x
l
þ 2

p

X1
n¼1

1

n
U0 �U1ð Þ 1� �1ð Þn½ � þ �1ð Þnþ1 U1 �U2ð Þ

h i

� exp � n2p2a2

l2
t

	 

sin

npx
l

� �
ð35Þ

where a2 ¼ k=qc. Eleven uniformly distributed nodes are used in the computation,

Figure 11. Comparison of the isothermal (�C) at t ¼ 1:5 s: (a) results of GBMM; (b) results of MWLS

method.
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the time-step size Dt ¼ 0:05 s, and h ¼ 1
2. The variance of temperature on the central

line is shown in Figure 9, and the temperature along the x axis at t ¼ 2 s is given in
Figure 10. As can be seen, the results of the MWLS method agree well with the ana-
lytical solution and the results of the GBMM.

4.4. 2-D Unsteady-State Example

The length and width of the rectangular domain in Figure 3 both equal 100m.
The left boundary is maintained at temperature 0�C, a heat flux of magnitude
1;000W=m2 enters the domain from the bottom, and the other boundaries are insu-
lated. The thermal conductivity is 1; 000W=m�C. The initial temperatures in the en-
tire domain are 0�C. 11� 11 nodes are used in the computation with the parameter
h ¼ 1:0 and the time-step size Dt ¼ 0:01 s. Figure 11 plots the isothermal of the
MWLS method and the GBMM at time t ¼ 1:5 s, and Figures 12 and 13 give the
variance of temperatures at points A (x ¼ 100; y ¼ 0) and B (x ¼ 100; y ¼ 50).

5. CONCLUSION

In this article, a novel meshless method based on the least-squares approach,
the meshless weighted least-squares (MWLS) method, is extended to solve conduc-
tion heat transfer problems. A discrete functional is employed in the MWLS method
to construct a set of linear equations, which avoids the burdensome task of numeri-
cal integration. Different time-stepping algorithms are combined with the MWLS
method to solve unsteady-state heat conduction problems.

1-D and 2-D examples show that the accuracy and the convergence rate of the
MWLS method are close to, or even better than, those of the GBMM. However, the
MWLS method is much less time-consuming than the GBMM. Moreover, when

Figure 12. Variance of temperature on point A.
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solving unsteady-state problems with an explicit algorithm, a larger time step can be
adopted in the MWLS method. When the computational accuracy and efficiency are
both taken into consideration, the MWLS method may be a promising meshless
method.

Further research will be applications of the MWLS method in more practically
complicated problems and in convection heat transfer problems.
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