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In this paper, we apply the material point method (MPM), also known as a meshfree method, to examine the crush behaviour 
of thin tubular columns. Unlike the finite element method, randomly-distributed-weak-particle triggers were used to account 
for the deformation behaviour of collapse modes. Both symmetric and asymmetric modes of deformation and their associated 
mean collapse loads are determined for an elasto-plastic constitutive law describing the tubular columns. Attention was de-
voted to the accuracy and the convergence of the MPM simulation, which is determined by the number of the particles and the 
size of the background cells used in our explicit solver. Furthermore, a novel contact approach was adopted to establish the 
crush behaviour of the tubular columns. Two aspects of the work were accordingly examined, including three different crush 
velocities (5, 10 and 15 m/s) and varied geometrical features of the tube (t/d and l/d) based on the deformation history. The re-
sults of our model, which were compared with existing analytical predictions and experimental findings, identify the critical 
geometric features of the tubular columns that would dictate the deformation mode as being either progressive collapse or fol-
lowing Euler’s buckling mode. 
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1  Introduction 

Thin wall tubular columns, particularly those of square or 
circular cross-section, subjected to axial crushing generally 
deform by progressive folding and thus possess favourable 
energy absorption characteristics. Because of their structural 
efficiency, versatility and low cost, they are extensively 
used in aerospace, automotive and civil engineering appli-
cations as energy absorbing barriers and arresters. They are 
characterized by limited magnitude of crippling force, large 
plastic deformation at a constant crush load and repeatable 

mode of collapse.  
The observations concerning the modes of collapse of 

tubular columns were first examined by Mallock [1]. Sub-
sequently, Alexander [2] developed the first analytical ex-
pression of the quasistatic axial collapse of thin-walled cy-
lindrical columns. He assumed a concertina mode in which 
the tubes fold up by forming axisymmetric rings. Pugsley et 
al. [3,4] later studied tubular columns with smaller wall 
thickness and developed the mean axial crushing load for 
the resulting diamond mode. By introducing curvature in 
the deforming fold length, Abramowicz and Jones et al. [5, 
6] modified Alexander’s model and examined the quasistat-
ic and dynamic axial compression of cylindrical and square 
tubes. Johnson et al. [7] developed an expression for the 
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mean post buckling stress for the collapse of thin walled 
tubes using rigid-perfectly plastic material mode. Other re-
searchers [8] classified the axial collapse of cylindrical 
tubes under quasi-static loading and presented a design 
chart which can predict the collapse mode for aluminium 
alloy tubes as a function of wall thickness-to-diameter ratio 
t/d and length-to-diameter ratio l/d. In addition, Singace et 
al. [9] examined the interplay of the factors influencing the 
different collapse modes in axially crushed tubes.  

The finite element method (FEM) has also been widely 
used to study the collapse of thin wall tubes [10–16]. Rust et 
al. [10] discussed the circumstances under which the qua-
si-static limit load analysis could be performed by a tran-
sient analysis using explicit time integration scheme. They 
suggested that a quasi-static finite element analysis for mul-
tiple highly nonlinear crushing systems could be an advan-
tageous alternative to implicit analysis. Arbitrary contact 
surfaces and status change in contact may cause conver-
gence difficulties for implicit analysis. Marzbanrad et al. 
[11] studied the effects of the triggering of circular alumi-
nium tubes on crashworthiness using explicit finite element 
method. Meguid et al. [12,13] carried out three-dimensional 
non-linear finite element analysis for quasi-static and dy-
namic collapse of square aluminium columns. Furthermore, 
Zhang et al. [14] introduced patterns to the surface of con-
ventional thin-walled square tubes to improve the energy 
absorption capacity with the help of nonlinear explicit finite 
element analysis. Younes [15] used an explicit FEM to 
study the effect of varying configurations of the tube cross- 
section on the deformation response. Recently, Fyllingen et 
al. [16] compared the results modelled by shell elements 
and solid elements and suggested that shell elements with 
thickness stretch could be considered a good compromise 
for modelling thin wall tubes.  

In spite of its widespread usage, the accuracy of the FEM 
relies on the contact algorithms adopted. Most contact algo-
rithms are inconsistent because they rely heavily on contact 
elements that make use of penalty parameters which typi-
cally result in interpenetration between the impacting bodies. 
In the case of Lagrange multipliers, the solution is limited to 
frictionless contact and the resulting asymmetric stiffness 
matrix requires the use of special solvers. Furthermore, the 
presence of elements that are severely deformed will lead to 
inaccurate Jacobian matrix thus leading to erroneous results. 
The use of adaptive meshing to overcome highly distorted 
elements would ultimately lead to costly preprocessing. In 
addition, the reduction in element size using adaptive 
meshing could result in solution rounding off errors.  

Several results have also been published on thin wall 
structure modelling using meshfree or element-free methods. 
Element-free Galerkin method has been employed with 
bi-cubic and quartic basis functions for shell and spatial 
structures [17]. Li et al. [18] presented a formulation based 
on the reproducing kernel particle method to study the large 
deformation behaviour of thin shells. Gato [19] also devel-

oped a meshfree method for fracture of thin-walled shells. 
In this paper, we apply a direct 3-D meshfree method to 
accurately study the crush behaviour of thin tubular col-
umns. 

In this paper, we present a novel approach which is based 
on explicit MPM solver to study the collapse of circular thin 
wall structures. MPM is suitable for treating problems in-
volving large deformation accurately and efficiently [20]. 
MPM modelling does not involve element distortion as 
evident in FEM. Compared to the continuum shell theory 
approach, both the formulation and implementation of our 
proposed model are simpler and more consistent. Moreover, 
it is expected to yield more accurate predictions for the 
crush behaviour of tubular structures. 

2  Description of material point method 

2.1  Fundamentals of material point model  

Material point method combines the description of Lagran-
gian particles and Eulerian background mesh, as illustrated 
in Figure 1. In the solution phase of MPM, particles are 
rigidly attached to the background grid and they deform 
with the grid. The momentum equation can be solved in the 
framework of standard finite element method. The positions 
and velocities of particles are updated by mapping back the 
obtained kinematic solution onto the grid nodes. The de-
formed grid is discarded in the subsequent time step and a 
new regular grid is used to avoid mesh distortion. For con-
tinuum domain, the mass conservation equation is given as: 

 
d .
d
ρ ρ+ ∇ ⋅
t

= 0v  (1) 

The deformation of material is governed by the momentum 
equilibrium equation, such that 

 ,ρ ρ∇ ⋅ + =σ b a  (2) 

where ρ is current density, σ is Cauchy stress, b is body 
force per unit mass, and a is the acceleration. 

The weak form of eq. (2) can be obtained through 
weighted residual approach as being [21] 
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where Ω is the material domain, Γ is the whole boundary, Γt 
is the boundary along which there exists prescribed trac-
tions. 

The continuum domain is described with a set of par-
ticles, so the mass density can be approximated as: 
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Figure 1  Material point discretization. 

where mp and xp are the mass and the position of the particle 
p, and δ is the Dirac delta. 

At each time step, the mass and velocities of the material 
particles are mapped onto the background cell using stan-
dard finite element shape functions. The mapped velocity vj 
of the node j is obtained through the following equation: 

 ( ),=∑ ∑ij j p p i p
j p

m m Nv v x   (5) 

where Ni is the shape function of the background cell, mij is 
the consistent mass matrix which, for the sake of simplicity, 
is generally replaced with a lumped diagonal mass matrix 
mijδij. Accordingly, eq. (5) can be rewritten as: 

 ( ),= ∑i i p p i p
p

m m Nv v x  (6) 

where the lumped mass can be written as: 

 ( ),= ∑i p i p
p

m m N x  (7) 

In this study, 8-point hexahedron element is used as the 
background grid and the shape function is given by 

 
1 (1 )(1 )(1 ),
8

ξξ ηη ζζ= + + +i i i iN  (8) 

where ξ, η and ζ are the natural coordinates of the material 
particle in the cell. 

Taking eqs. (4), (6) and (7) into consideration, eq. (3) can 
be reduced to  

 int ext ,= +& i i ip f f  (9) 

where ,ip  int
if  and ext

if  are the respective momentum, 

internal force and external force vectors of node i, respec-
tively. They are represented as: 
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where con
if  is the contact force at node i. 

2.2  Contact algorithm 

The treatment of most contact problems in FEM relies on 
the use of penalty functions and/or Lagrange multipliers. In 
the former, contact elements are used, while in the latter the 
contact stress is a by-product of the full assembled matrix. 
The difficulties associated with these approaches stem from 
the use of large penalty parameters that lead to ill-condi- 
tioning or the use of asymmetric sparse matrices in the case 
of Lagrange multipliers. This is readily overcome by the 
MPM. As a result of the single-valued mapping functions 
between background grid nodes and particles, interpenetra-
tion of material particles is precluded in the standard MPM 
algorithm. A no-slip contact constraint is inherent in the 
standard MPM. Since the column wall is under compression 
at all times during crushing, the no-slip contact can be used 
for the self-contact during progressive collapse and the for-
mation of plastic folds without introducing significant errors. 
The contact method [22] is only applied between the col-
umn wall and the two rigid ends, so that the collapse load 
can be correctly simulated. The fundamental idea of the 
contact algorithm is given below. 

As shown in Figure 1, the contact of the two bodies will 
be detected when the velocities are projected onto the same 
node: 

 ( ) 0,− ⋅ >r s r
i i iv v n  (13) 

where v r
i  and v s

i  are the velocity vectors of body r and s 

at node i, respectively. nr
i  is the unit outward normal of 

body r at node i.  
The contact force will be calculated and the velocities of 

the two bodies will be adjusted using the following expres-
sions. The nodal velocity must satisfy the impenetrability 
condition, such that 

 0,+ =r r s s
i i i iv n v n  (14) 

where r
iv  and s

iv  are the adjusted nodal velocities, ns
i  

is the unit outward normal of body s at node i.  
The contact force conf i  applied to each body must obey 

Newton’s third law, that is 

 con, con, 0,+ =f fr s
i i  (15) 

where con,f r
i  and con,f s

i  are the contact node force of 

body r and body s, respectively. The contact force confi  

can be divided into the normal part and tangential friction 
part. 
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In addition, the collinearity condition must be guaranteed 
at the contact surface, viz 

 0.+ =r s
i in n  (16) 

For the modelling of column crushing, the correct unit out-
ward normals of the flat plates can be calculated. Hence the 
unit outward normal of the column wall is set to be opposite 
to that of the plates. 

Multiply eq. (14) with r s
i im m  and considering eq. (16), 

eq. (14) can be written as: 

 ,⋅ = ⋅s r r r s r
i i i i i im mp n p n  (17) 

where r
ip  and s

ip  are the updated nodal momenta of the 

contacting bodies. As the momentum is required to be unal-
tered, the updated nodal momenta are obtained 
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The unit surface normal vector is computed by the gra-

dient of the nodal mass r
im  of the individual body [23]: 
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where r
pm  is the mass of particle p in body r. In this paper, 

tubes are compressed under the movement of plates. The 
contact normal vector is set to be consistent with the normal 
of the plates. 

The nodal force is updated by 

 con .= +i i if f f  (21) 

The contact force is expressed as: 

 con, con, nor fric ,= − = − −r s r r
i i i i i if ff f n s  (22) 

where r
is  is the unit tangential at node i along the boun-

dary. nor
if  and fric

if  are detailed as: 
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where μ is the coefficient of friction, Δt is the time step. 

2.3  Explicit solver 

The MPM explicit solver MPM3D [24–26] is used to simu-
late the column crushing. In our method, the leapfrog cen-
tral difference method is employed to integrate eq. (9). The 
variable time step size tΔ is calculated by 

 
( )

,
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Δ =
+
c

pp

d
t

c v
 (26) 

where dc is the interval of the background cell, c is sound 
speed. 

The superscript k indicates the value of variable at time tk. 
The velocity of particles at time tk+1/2 is updated as: 

 1/ 2 1/2 ,−= + Δ∑v v pk+ k k k k
p p i i i

i
N m  (27) 

where 

 ( ),int ,ext .Δ = + Δp f fk k k k
i i i t  (28) 

The position of particles at time tk+1 is given by 

 1 1/ 2 1/2 ,+ + += + Δ ∑k k k k k k
p p i i i

i

t N mx x p  (29) 

where 

 1/ 2 1/2 .+ −= + Δk k k
i i ip p p  (30) 

It should be noted that 1 1/ 2 ,= + Δk+ k k+t t t 1/2 1/ 2= + Δk+ k k+t t t  
1/ 2/2 −= + Δk kt t  and 1/ 2 +1/2( ) 2k k kt t t−Δ = Δ + Δ . 

3  Material model and convergence tests 

The accuracy of the MPM simulation is determined by the 
number of the particles and the size of the background cells. 
In this paper, the thin wall structures are directly modelled 
by particles. It is critical to carry out convergence tests to 
determine the minimum number of particles needed for the 
thickness of the wall so that MPM can capture the correct 
deformation modes of the columns. The results are com-
pared with the experiments which were carried out by 
Johnson et al. [7].  

In our model, the PVC column rests on a rigid support, 
and is struck by a rigid plate. The elastic-perfectly plastic 
constitutive law was adopted for the PVC from [7] with the 
following mechanical properties: elastic modulus E= 3378.4 
MPa, Poisson’s ratio v=0.42, and yield stress σy=65.5 MPa 
[7]. The properties of the rigid support and rigid striker 
were taken to be 10,000 times that of the PVC.  The PVC 
column was modelled using the same geometries tested in 
[7]; with the wall thickness t = 3.2 mm, the mean diameter d 
= 22.2 mm and the length l = 76.2 mm. To correctly model 
the frictionless contact between the column and the rigid 
ends, the friction coefficient was set to be as small as 0.02. 
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In this simulation, the upper plate crushed the column at a 
constant travelling speed of 10 m/s. The load condition is 
actually the direct displacement control condition which is 
consistent with experimental results. The direct displace-
ment control is commonly used in the experimental and 
numerical study of tube crush behaviour [12,14,27]. How-
ever the solution with the direct displacement control will 
not be able to represent the snap-back or snap-through phe-
nomenon as studied by Chen and Schreyer [28]. In this pa-
per, we focus on the deformation mode and mean collapse 
load. 

Four cases involving different numbers of particles cho-
sen to discretize the column were studied. Table 1 gives the 
discretization parameters for the convergence study. The 
thickness of the column was discretized into 2, 4, 6 and 8 
particles, respectively. The interval of the background was 
set to be two times of the distance of adjacent particles. 
Furthermore, the dynamic gird scheme [26] was used to 
reduce the computational storage and improve the computa-
tions efficiency.  

The final configurations of the column after axial crush-
ing are compared against the experiment result, as given in 
Figure 2. Only two folds are formed in the case where only 
two particles are used in the thickness direction. With the 
increase of particle number to 6, three folds were obtained 
which were identical to the experiments of Johnson et al. [7]. 
It is determined that 6 particles are enough for discretizing 
the thickness of the column investigated here. 

With the efficient contact method employed here, it is 
readily apparent to view the response of the tube under lat-
eral loading. There is no additional shell algorithm applied 
for modelling the thin-walled structure. The convergence 
study of the tube under lateral loading is also presented here. 
The deformation mode of the tube under lateral compres-
sion is given in Figure 3. The deformed contour of the tube 
consists of four arcs whilst large plastic deformation occurs 
at the hinges. 

4  Results and discussions 

Figure 4 presents the axial load-displacement curves for the 
columns with different discretizing parameters. The re-
sponse of load-displacement shows a distinct drop in the 
crush load whenever a fold is formed. The status change in 
contact of the adjacent structures of the column made some 
perturbation of the curve. The total energy absorbed (TEA) 
is presented by the area under the load-displacement curve 
is given as: 

 
0

( )d ,= ∫
U

E p u u  (31) 

where U is the total displacement, p(u) is the function of the 
load curve. It is calculated by 

 1

1

,
2

−
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i

p p
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where n is the total number of displacement increments. Δu 
is the interval of the displacement. The mean collapse load 
P  is determined by equating TEA to the mean collapse 
load multiplied by the total displacement.  

 .=
EP
U

 (33) 

As to the six particles case, the mean crush load was found 
to be 13.2 kN. Based on a mean circumferential strain, 
Alexander [2] suggests the mean post-buckling load for 
s y m - 
 
Table 1  Discretization parameters for the convergence study 

Cases Case (a) Case (b) Case (c) Case (d) Case (e) 
Particles for the wall 

thickness 
2 4 6 8 10 

Total particles for the 
tube 

4608 34944 112896 273408 527040 

 

 

Figure 2  Deformation mode of the tube modelled by different numbers of particles in the thickness direction (axial loading). 

 

Figure 3  Deformation mode of the tube modelled by different numbers of particles in the thickness direction (lateral loading). 
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Figure 4  Load-displacement curve for the different discretization para-
meters. 

metric ring buckling as being 

 
2ππ ,

3
σ= y

tdP t  (34) 

where σy is the yield strength. In this case, the theoretical 
mean post-buckling load can be calculated to be 10.5 kN. It 
is also noteworthy that although a small number of particles 
in the thickness direction results in fewer layers of lobes, 
the calculated mean collapse load does not show differ 
much as compared to the case where the number of particles 
was increased beyond 2. 

As outlined earlier, MPM3D adopts explicit solver strat-
egies in treating crashworthiness problems involving high- 
speed impact and explosive loading. To analyse quasi-static 
crush problems, the inertia effect should be insignificant. 
However, the impact speed of the striker should be above 
certain level to reduce the computational cost. In our case, 
the crush speed chosen was 10 m/s. Figure 5 compares the 
kinetic energy and the internal energy of the entire system 
of the 6 particles case. Compared to the internal energy of 
the tube, the kinetic energy can be considered negligible.   

The force-displacement responses of the tubular columns 
under different impact velocities of 5, 10 and 15 m/s with 6 
particles modelling of the thickness are presented in Figure 
6. It is shown that the load-displacement responses are ap-
proximately the same in the three considered cases. This is 
because we adopted strain rate insensitive material model to 
simulate the behaviour of the PVC tubes. In addition, iner-
tial stiffening effects are also negligible. In the following, 
the loading velocities are all set to be 10 m/s. 

Figure 7 presents the lateral load-displacement curves for 
the columns with different discretizing parameters. The 
amount of plastic deformation in this mode is not as global 
as the axial crushing of tubes. Moreover, the mean load is 
lower than that in the axial loading case. A simple rigid 
plastic analysis for the lateral compression of a single tube 
was given by Deruntz and Hodge [29]. It was hypothesised  

 

Figure 5  Comparison of the kinetic and internal energy of the tube. 

 

Figure 6  Load-displacement response for different velocities. 

 

Figure 7  Load-displacement response for the case under lateral loading. 

that the four circular arcs maintained their original radius 
and the plastic deformation only occurs at the hinges. 
However, the material strain hardening phenomena was 
negated. Accordingly the flattening force is given by 

 
2

1/2

4
,

3 (1 ( ))

σ

δ
=

−
yt l

P
d d

 (35) 
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where δ is the deflection. Here δ=0 and the theoretical flat-
tening force is 5316.7 N, whilst the force of the 6 particle 
case in the simulation is 5763.4 N (U=12.5 mm).  

As the elastic-perfectly plastic model is adopted in the 
simulation, the localized large plastic deformation might 
occur to incur the interaction between material and geome-
trical instabilities resulting in some oscillations in the load- 
displacement curves. It is observed that the oscillations are 
more obvious in the lateral loading case than the axial case. 
In the axial loading case, the folds are formed progressively. 
The plastic hinges travel from the top of tube to the bottom. 
The unfolded part still provides load support. As to the lat-
eral loading case, the plastic deformation grows along the 
whole length of the tube as soon as the critical load is 
reached. As there is no hardening, the load oscillates around 
a certain level. The load begins to rise up until the top and 
bottom arcs get contacted with each other. However, since 
the evolution tendency of the load-displacement response 
and the computed mean collapse load are not distinctly af-
fected by the oscillation, and thus no artificial damping is 
used to decrease the oscillations. 

Figure 8 presents the computational cost with the in-
crease of total number of particles (including the particles 
used for the plates). Both the axial and lateral loading case 
revealed a linear relation between the computational time 
and discretized particle number. It can be noted that the 
interval of the background cell is always set to be twice as 
the particle distance. Thus the computational cost of 
MPM3D just increases linearly with the decrease of discre-
tization size. 

4.1  Effect of selected trigger on accuracy of solution 

To obtain the characteristic deformation modes, different 
triggers such as geometrical imperfections [12] and selected 
number of equidistant loading points [30] have been incor-
porated in former studies. Rust et al. [10] has demonstrated 
that the transient solution introduces oscillations per se is 
also a type of imperfection itself. It can be noted that the  

 

Figure 8  Growth of the computational time with the increase of particle 
number. 

deformation mode obtained in sect. 0 can be attributed to 
the instability which could result from dynamic imperfec-
tions and particles discretization deviations.  

In this section, a trigger based on material imperfection is 
implanted in MPM3D. This was achieved by randomly dis-
tributing some particle that can barely carry load. The per-
centage of the selected weak particles was limited to 0.3% 
to ensure that the total loading capacity of the column is not 
influenced. Following that, the effect of the random weak 
particles on the deformation mode is investigated.  

Here we modelled two PVC columns with different wall 
thicknesses and mean diameters compared to that in section 
0. The first case involves a column with t=1.27 mm and 
d=20.32 mm, while the second with t=0.76 mm and 
d=19.81 mm. The ratios of the wall thickness to the mean 
diameter t/d of the two cases are 0.063 and 0.038, respec-
tively. The random distribution of weak particles in the first 
case is shown in Figure 9, where the red points represent the 
weak particles, as does the second case.  

 

Figure 9  Random weak particles distribution of the tube with t/d=0.063. 

In the simulation, four particles are used for the thickness 
of the first case, while three particles are used for the second 
case. Generally, fewer particles were needed for the thinner 
wall thickness. However, at least three particles were 
needed to ensure that there are more than one background 
cell along the wall thickness. The first fold layers of tubular 
columns modelled with the trigger and without are illu-
strated in Figure 10–13. Figures 10 and 11 depict the re-
spective results of the first case from the top and side views, 
respectively. Figures 12 and 13 depict the result of second 
case. In the first case, it can be noted that without the ran-
domly-distributed-weak-particles trigger the first fold de-
velops as a ring mode. In the situation involving the trigger, 
the circumferential hinge which appeared at the first maxi-
mum load changed from a circular to a rectangular shape, 
which was identical to the experimental findings [7]. As 
time progresses, the hinges continued travelling and another  
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Figure 10  Predicted deformation modes of the tube with t/d=0.063 mod-
elled (a) with and (b) without the trigger (top view). 

 

Figure 11  Predicted deformation modes of the tube with t/d=0.063 mod-
elled (a) with and (b) without the trigger (side view). 

 

Figure 12  Predicted deformation modes of the tube with t/d=0.038 mod-
elled (a) with and (b) without the trigger (top view). 

 

Figure 13  Predicted deformation modes of the tubes with t/d=0.038 
modelled (a) with and (b) without the trigger (side view). 

fold is formed. It can be noted again that the hinges became 
rectangular at a late stage in the situation without a trigger. 
Similar phenomenon is still observed in the second case. 
However, it is not as readily apparent as in the first case. 

The trigger introduced here, accounting for the randomly 
weak property of the material, has an important role for the 
initiation and progression of the asymmetrical deformation 
modes.  

4.2  Effect of normalized thickness/diameter ratio 

Numerous research studies [3–9] have concluded that the 
deformation mode of a column under crushing will change 
from axisymmetric ring mode to non-axisymmetric di-
amond mode with the decreases of the ratio of the column 
thickness to diameter t/d. Our model has been validated for 
the axisymmetric ring mode in sect. 0, where t/d of the 
column is 0.143. For the columns with t/d=0.063 and t/d= 
0.038 in the previous subsection, the final configurations 
after crush are compared with the experimental results of 
Figures 14 and 15, respectively. It can be seen that with the 
help of the randomly-distributed-weak-particles trigger, 
both cases provide a realistic and detailed description of the 
deformation modes. The column with t/d=0.063 collapsed 
into to 2-lobe mode, while the column with t/d=0.038 col-
lapsed into to 3-lobe mode. 

The load-displacement curves of the two cases are pro-
vided in Figure 16. The first load peak is higher than the 
mean load for each case. This is because the initiation of 
buckling generally requires more energy input. The mean 
collapse load of the 2 and 3 lobes cases are calculated to be 
2.7 and 1.0 kN, respectively.  

 
Figure 14  Comparison of (a) the model predictions with (b) the experi-
mental findings of ref. [7] (t/d=0.063). 

 
Figure 15  Comparison of (a) the model predictions with (b) the experi-
mental findings of ref. [7] (t/d=0.038). 
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Figure 16  Load-displacement history of the tubes with different t/d. 

Based on the travelling hinges concept, a non-dimen- 
sional analytical solution of the mean post-buckling stress 
was proposed by Johnson et al. [7] as: 

 
1 π π1  cosec cot ,

2 23
σ
σ
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t Dn n
D n n r
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where n is the number of the circumferential lobes and r is 
the radius of the travelling hinge. Some assumptions of that 
the radius of the travelling hinge remains constant and the 
column material always approaches the travelling hinge in a 
vertical direction were incorporated  to simplify the calcu-
lation of r. Thus r could be replaced by r* as: 

 ( )* π1 tan π 2 1 ,
2 2

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠

D Ar n
A n
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where 1  cosec(π / 2 ) cot(π / 2 ).= + +A n n n n  For the first 

case, n=2 mode, the mean post-buckling stress could be 
derived as 32.1 MPa corresponding to a mean collapse load 
of 2.6 kN.  

However, the analytical expression cannot be regarded as 
completely satisfactory according to the experimental re-
sults [7]. For the case where n=3 mode, eq. (38) which takes 
into consideration all the stationary hinges but ignores the 
travelling hinges, adequately describes the experimental 
results as follows: 
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Thus the mean collapse load is 0.84 kN.  
It is shown that the simulation results in good agreement 

to the analytical solution, which has been validated by ex-
perimental findings. The mean collapse loads calculated by 
MPM modelling are somewhat higher than the analytical 
results. Comparing the two cases with that described in Sec-
tion 0, our model demonstrated that the deformation mode 

would shift from continuous axisymmetric ring mode to 
non-axisymmetric diamond mode with the decrease of t/d. 
The lobe number of diamond fold also depends on t/d. 
Columns with smaller size of t/d will be crushed into di-
amond folds with more lobes. Moreover, the mean collapse 
stress level of the column wall decreased with t/d. 

4.3  Effect of normalized length/diameter ratio 

Earlier work established the fact that the ratio of the length 
to the diameter l/d also has an important role on the collapse 
mode. Andrews et al. [8] specifically discussed the influ-
ence of the column length on the axial crushing modes and 
energy absorption properties. They found that aluminium 
columns with large ratio of l/d followed Euler’s mode of 
buckling. It is only reasonable to assume that the PVC col-
umns with larger l/d also possess similar feature. Based on 
the former correct modelling, we extend MPM simulation to 
predict the collapse modes of PVC columns with changing 
l/d parameters.  

Compared to the first case in sect. 4.2, the columns stu-
died here are different with diameters of d=14, 12 and 10 
mm, corresponding to l/d=5.4, 6.4 and 7.6, respectively. 
Randomly distributed weak particles were also selected to 
examine their effect on the collapse mode. Figure 17–19 
depict the collapse modes of the columns. In the case of 
l/d=5.4, the first two folds were both symmetric rings 
without using the trigger while the second fold of the col-
umn turned out to be asymmetric when using the trigger. As 
to the smallest diameter l/d=7.6, the case with and without 
trigger resulted in the same Euler-buckling mode. This im-
plies that the effect of the random weak particles in unnoti-
ceable. It can be seen that the deformation of the column 
transformed from progressively inextensional mode to Eu-
ler-buckling mode as the l/d increases. 

Figure 20 compares the load-displacement response of 
the three tubes with different l/d. The results are only shown 
for cases with the randomly-distributed-weak-particles trig-
ger. The tube becomes stronger with the decrease of l/d. 
When d=10 mm (l/d=7.6), the load drops after reaching a 
certain peak. The local plastic deformation and non-rep- 
eatable collapse mode resulted in low energy absorption. In 
practice, this type of thin tubular column should be avoi- 
ded for cases requiring energy absorption.  
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Figure 17  Deformation mode for the tube with l/d=5.4 modelled (a) with 
and (b) without random weak particles. 

 

Figure 18  Deformation mode for the tube with l/d=6.4 modelled (a) with 
and (b) without random weak particles. 

 

Figure 19  Deformation mode for the tube with l/d=7.6 modelled (a) with 
and (b) without random weak particles. 

5  Conclusions 

In this paper, the material point method is adopted to accu- 

 

Figure 20  Predicted load-displacement response of the tubes with dif-
ferent l/d. 

rately model the crush behaviour of PVC tubular columns. 
A direct three dimensional particle discretization is imple-
mented to capture the detailed progressive collapse patterns, 
the associated crippling load history and mean collapse 
loads. The presented model is validated by comparison with 
earlier experiments and the results show good agreement 
between the model predictions and the experimental find-
ings. Furthermore, our work shows that introducing ran-
domly-distributed-weak-particles triggers enabled us to 
capture the non-axisymmetric deformation modes accurate-
ly. Interestingly, our model predicts that the deformation 
modes of the tubular columns change from the continuous 
ring modes to the diamond ones as the ratio of the wall 
thickness to the diameter t/d increases. It also predicts that 
columns with smaller t/d tend to form more lobes. The work 
was further extended to examine the effect increased l/d 
upon the resulting bucking mode. Specifically, for the case 
where l/d<7.6, the collapse mode was progressive and 
beyond this ratio, the tube followed Euler-type buckling 
mode. 
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