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Abstract
In this paper an analysis of microelectromechanical systems (MEMS) is
performed by using the recently developed radial basis function (RBF)
collocation method. Formulations for both static and dynamic analyses of
electroactuated beams are derived. The spatial variables in the formulated
model are approximated by the RBF whilst the central difference scheme
and Newmark scheme are adopted to integrate the ordinary differential
equations with respect to time. The Newton–Raphson scheme is also
utilized to solve effectively the system of nonlinear equations resulting from
the electric force. Numerical validations show that, with only a few nodes
used in the computation, the RBF collocation method gives an identical
result to other numerical methods, such as the reproducing kernel particle
method, and experiments. The effects of residual stress and initial gap
length on the pull-in voltage are also investigated.

1. Introduction

The last decade of the 20th century witnessed the rapid
development of microelectromechanical systems (MEMS).
Advanced technologies for fabricating a variety of MEMS
devices have developed to meet the high demand from
industries. On the other hand, there is still a need for
computational tools that can allow engineers to quickly design
and optimize these micromachines [1]. Much effort has been
devoted to seeking simple and efficient simulation methods
with high accuracy.

Modeling schemes for MEMS components can be roughly
categorized into two groups. The first group can be called
reduced-order models (macromodels or lumped models) which
highlight the major behavior and influential factors of the
MEMS component by using only very few degrees of
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freedom (typically one or two). This allows the designers
to simulate the MEMS components quickly. For instance,
Legtenberg et al [2] theoretically analyzed an electrostatic
actuator consisting of a laterally compliant cantilever beam
and a fixed curved electrode by using energy methods.
Huang et al [3] developed a static electromechanical model
to predict the effective stiffness constant and the critical
collapse voltage for several typical bridge geometries in a
capacitive micromachined switch. They also proposed a
nonlinear dynamic model for analyzing the switching speed
and the Q-factor. Pamidighantam et al [4] derived a closed-
form expression for the pull-in voltage of fixed–fixed beams
and fixed–free beams from the known expression for a
simple lumped spring–mass system. Bochobza-Degani and
Nemirovsky [5] proposed a pull-in model with two degrees
of freedom to predict the pull-in parameters of electrostatic
actuators. Younis et al [6] obtained a macromodel for
microbeam-based MEMS by discretizing the distributed-
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parameter system, using a Galerkin procedure, into a finite
degree of freedom system consisting of ordinary differential
equations (ODEs) for the time variable. Cheng et al [7]
utilized a capacitance-based generalized model to predict the
static behaviors of rigid and deformable electrostatic actuator
systems. They derived an expression for the capacitance under
various electrode configurations.

The performance of these reduced-order models, however,
relies heavily on the choice of degrees of freedom. The
rationality of these models is often examined by the
second group of MEMS modeling schemes—solving partial
differential equations (PDEs) corresponding to the physical
fields in the MEMS component. This then involves the
traditional computational methods such as the finite element
method (FEM), boundary element method (BEM), finite
difference method (FDM) and finite volume method (FVM).
Although some common commercial software systems, such
as ABAQUS, ANSYS, FASTCAP, can be employed in the
simulation of MEMS components, many researchers and
engineers still see the need for improved numerical methods
for simulating MEMS models. In this respect, Aluru and
White [8] developed an efficient algorithm for self-consistent
analysis of three-dimensional MEMS in which a multilevel
Newton technique has been employed to solve the coupled
electromechanical system. The method can utilize a black-
box FEM solver for mechanical analysis and a black-box BEM
solver for electrostatic analysis. On the basis of a sequential
field-coupling approach, Collenz et al [9] recently proposed a
new FEM method in which the traditional way of correcting
the applied load during the process of deformation is replaced
by applying electrostatic loads incrementally. This method is
more effective for handling the MEMS simulation case with
large displacements.

Although the finite difference and finite element methods
have been widely used in engineering and industrial
applications over the last few decades, one of the major
disadvantages of these traditional methods is their dependence
on computational grids or meshes. In fact, the meshing can
occupy 60–70% of the time in a finite element analyzing
process. This hinders their application to high dimensional
or geometrically complex problems. The rapid development
of meshless methods in the last decade has overcome
this mesh-dependent disadvantage. Different kinds of
meshless methods [10–15] have been proposed and shown
to have advantages over the traditional methods especially in
problems of extremely large deformation, fracture, impact and
explosion. Meshless methods have also shown great potential
in the fields of computational fluid dynamics (CFD), thermal
analysis and magnetic problems. See [16, 17] and references
therein for an overview of the meshless methods.

Aluru [18] first applied the meshless reproducing kernel
particle method (RKPM) in the analysis of electroactuated
beams and pressure sensors. He and his co-workers also
proposed a volume-type meshless method called the finite
cloud method (FCM) and a boundary-type meshless method
called the boundary cloud method (BCM). Li and Aluru [19]
compared the computed static pull-in voltages of microbeams
with and without the consideration of large deformation. Ohs
and Aluru [20] employed the FCM in the numerical analysis
of coupled electromechanical fields in piezoelectric structures
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Figure 1. Schematic illustration of the electroactuated beam.

with both relaxation and fully coupled schemes. Recently, Li
and Aluru combined the FCM and BCM for an efficient mixed-
domain analysis of electrostatic MEMS [21], in which the FCM
was employed to solve for the mechanical deformation field
and the BCM was used to analyze the exterior electrostatic
domain.

In the last decade, the development in applying the
radial basis functions (RBFs) as a truly meshless method
for approximating the solutions of PDEs has drawn the
attention of many researchers and engineers. One of
these domain-type meshless methods developed by Kansa
in 1990 [10] is obtained simply by directly collocating the
RBFs, particularly the multiquadric (MQ) basis, for the
numerical approximation of the solution. Its nice properties
including truly meshless, space-dimension-independent and
special convergence orders has been proved for some RBF
functions [22]. Hon et al recently extended the RBF method
to solve various ordinary and partial differential equations
including the biphasic and triphasic mixture model for tissue
engineering problems [23, 24] and the simulation of three-
dimensional tidal flows in coastal waters with a multilayer
model [25].

In this paper, the RBF collocation method is further
extended to analyze an important aspect of a MEMS—its
electroactuated structures for thin beams with high length–
thickness ratio. In section 2, the governing equation and
boundary conditions of the beam model are briefly reviewed
and nondimensionalized. The approximation scheme of the
RBF method is investigated and the discretized equations are
derived in section 3. Numerical validations including static
and dynamic examples are given in section 4. The work is
concluded in section 5.

2. Governing equation

As shown in figure 1, the motion of an electroactuated beam
can be described by the following governing equation:

ρ
∂2u

∂t2
+ Ẽ I

∂4u

∂x4
− Tb

∂2u

∂x2
= wε0V 2

2g2

(
1 + 0.65

g

w

)
, (1)

where u(x, t) denotes the deflection of the beam, x and t are
spatial and time variables, respectively, Tb = σ̂wh is the axial
force induced by the residual stress σ0, where the effective
residual stress σ̂ = σ0(1 − ν), w is the width of the beam and
h is the thickness. ρ, Ẽ, ν and I = wh3

12 represent the density
per unit length, the effective Young’s modulus, the Poisson
ratio and the inertia moment, respectively. For w > 5h (plane
strain case), Ẽ = E

1−ν2 ; for w ≈ h (plane stress case), Ẽ
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is the Young’s modulus E . The right-hand-side (RHS) term
represents the electric force, where ε0 = 8.8542 F m−1 is the
permittivity of free space, V is the applied voltage difference
between the beam and the ground electrode, g = g0 − u is the
gap between the beam and the electrode and g0 is the initial
gap length. The second RHS term is due to a correction of the
fringe effect.

When a driving voltage is applied, the beam will be
deflected by the pressure induced by the electrostatic field.
As the shape of the beam varies, the charge is redistributed
along the beam, which causes the beam to deflect further. Note
that the RHS terms in equation (1) result in high nonlinearity
when the beam approaches the electrode. If the applied voltage
exceeds a critical value, the beam will collapse to the ground
electrode. This critical value, called the pull-in voltage, is of
great importance in the modeling of electroactuated structures.

Typical boundary conditions for the beam equation
include clamped end, simply supported end, free end. The
clamped boundary condition

u = 0,

θ = ∂u

∂x
= 0,

(2)

and the free boundary condition

M = −E I
∂2u

∂x2
= 0,

Q = −E I
∂3u

∂x3
= 0,

(3)

are frequently encountered in the analysis of MEMS
components, where θ , M , Q denote the slope angle, the
bending moment and the shear force, respectively.

The initial conditions are

u(x, 0) = u0(x),

∂u(x, 0)

∂t
= v0(x).

(4)

As mentioned before, the typical scale of the MEMS
component is of the order of microns. In order to avoid
unnecessary error produced by operations on variables whose
orders of magnitude are greatly different, we introduce the
following dimensionless variables:

ū = u

L
, x̄ = x

L
, t̄ = t

T
,

w̄ = w

L
, h̄ = h

L
, ḡ = g

L
,

ḡ0 = g0

L
, T̄b = TbL2

Ẽ I
,

(5)

where the characteristic time is defined as T =√
ρL4

Ẽ I
. Substituting the above dimensionless variables into

equation (1), the dimensionless beam equation becomes

∂2ū

∂ t̄2
+

∂4ū

∂ x̄4
− T̄b

∂2ū

∂ x̄2
= A1ḡ−2 + A2ḡ−1, (6)

with the dimensionless coefficients

A1 = wε0V 2L

2Ẽ I
, A2 = 0.65A1

w̄
. (7)

The corresponding dimensionless boundary conditions are

ū = 0,
∂ū

∂ x̄
= θ = 0, for clamped end, (8)

∂2ū

∂ x̄2
= − M L

Ẽ L
= 0,

∂3ū

∂ x̄3
= − QL2

Ẽ I
= 0,

for free end. (9)

The initial conditions can also be nondimensionlized as

ū(x̄ , t̄) = u0

L
, (10)

∂ū(x̄ , t̄)

∂ t̄
= v0T

L
. (11)

3. RBF approximation and discretization

The dimensionless governing equation and boundary
conditions given in section 2 will be discretized by using
the proposed RBF collocation method in this section. For
verification purposes, the following RBF basis functions are
adopted:

Multiquadric (MQ) basis: �I (x̄) =
√

‖x̄ − x̄ I ‖2 + c2,

(12)
Power spline basis: �I (x̄) = ‖x̄ − x̄ I ‖n, (13)

where x̄ I is the coordinate of node I and c > 0 is called the
shape parameter whose value influences the accuracy of the
MQ basis function. The MQ function varies from a cone-
like interpolated surface to a bowl-like surface, as the value
of c increases. The MQ basis was rated one of the best
among 29 scattered data interpolation schemes based on tests
on accuracy, stability, efficiency, memory requirement and ease
of implementation by Franke [26]. The choice of the shape
parameter c will be discussed through numerical experiments.
For the power spline basis function rn , there is no need to
choose a shape parameter, and its accuracy depends on the
degree n = 2k − 1, k ∈ N+. Since the highest derivative order
is four in the beam equation, we examine only r5 and r 7 in the
numerical examples. The derivatives of the basis function can
easily be obtained from the chain rule:

d�I (x̄)

dx̄
= d�I (x̄)

dr

dr

dx̄
, (14)

where r = ‖x̄ − x̄ I ‖. The higher order derivatives can be
derived in a similar way.

At each evaluation point x̄ , the RBF collocation method
approximates the solution by the following linear combination
of basis functions:

ū(x̄ , t̄) ≈ uh(x̄ , t̄) =
N∑

I=1

�I (x̄)u I (t̄) = ΦT(x̄)U(t̄), (15)

where u I is the nodal parameter and N is the total number
of nodes. It is noted here that, unlike in the FEM, the nodal
parameter is not the nodal value of the corresponding variable.

Substituting equation (15) into the governing equation (6)
gives the following matrix equation:

MÜ + (K − Kσ )U = Felec, (16)
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where
MI J = �J (x̄ I ),

KI J = d4�J (x̄ I )

dx̄4
,

K σ
I J = T̄b

d2�J (x̄ I )

dx̄2
,

Felec
I = A1[ḡ(U)]−2 + A2[ḡ(U)]−1.

(17)

The second-order ODE equation (16) can be solved
directly by many integration methods. In this paper, the central
difference and the Newmark methods are employed. For the
central difference method, the derivative of second order with
respect to time is approximated by

Ü = Un+1 − 2Un + Un−1

�t̄2
, (18)

where the superscript n refers to the nodal parameter at the nth
step with dimensionless time step size �t̄ = �t

T . Substituting
the above equation into equation (16) yields the following
explicit discretized equation for iteratively computing the
approximation Un+1:

M
�t̄2

Un+1 = (Felec)n −
(

K − Kσ − 2M
�t̄2

)
Un − M

�t̄2
Un−1.

(19)
The Newmark method approximates the nodal parameters

and their derivatives with respect to time as

U̇n+1 = U̇n + [(1 − δ)Ün + δÜn+1]�t̄

Un+1 = Un + U̇n�t̄ + [( 1
2 − α)Ün + αÜn+1]�t̄2,

(20)

where the parameters δ = 0.5 and α = 0.25 are adopted.
Substituting the above two equations into equation (16), the
formulation of the Newmark scheme can be written as(

K − Kσ +
M

α�t̄2

)
Un+1 − (Felec)n+1

= M
[

Un

α�t̄2
+

U̇n

α�t̄
+

(
1

2α
− 1

)
Ün

]
. (21)

Note that the electric force term (Felec)n+1 ≡ Felec(Un+1) is a
nonlinear function of the nodal parameters at each (n + 1)th
time step. In order to solve this nonlinear equation (21), we
employ the following Newton–Raphson method:(

K − Kσ +
M

α�t̄2
− ∂Felec

∂U

)
�Un+1,m+1

= (Felec)n+1,m + M
[

Un

α�t̄2
+

U̇n

α�t̄
+

(
1

2α
− 1

)
Ün

]

+

(
K − Kσ +

M
α�t̄2

)
Un+1,m, (22)

where the superscript m denotes the values of the nodal
parameters at the mth iteration step. At the next (m + 1)th
iteration step, we have Un+1,m+1 = Un+1,m + �Un+1,m+1.

The iteration will be terminated by using the following
criterion:√

(un+1,m+1 − un+1,m)T(un+1,m+1 − un+1,m)√
(un+1,m+1)T(un+1,m+1)

< ε, (23)

where u is the vector containing the deflections of evaluation
points and ε is a user-defined error tolerance, which is set as
10−4 in this paper.

For clamped end boundary condition, the discretized
equations are

ΦT(x̄e)Un+1 = 0, (24)(
∂Φ(x̄e)

∂ x̄

)T

Un+1 = 0, (25)

and, for free end boundary conditions,(
∂2Φ(x̄e)

∂ x̄2

)T

Un+1 = 0, (26)

(
∂3Φ(x̄e)

∂ x̄3

)T

Un+1 = 0, (27)

where x̄e denotes the end points of the beam, which equals 0
or 1 in the above dimensionless beam equation.

The static analysis also plays an important role in the
numerical solution for the MEMS component. For the static
case, the first term of the discretized governing equation (16)
vanishes. This gives the following nonlinear equation:

(K − Kσ )U = Felec, (28)

which can also be solved by the Newton–Raphson iterative
method as follows:[

K − Kσ −
(

∂Felec

∂U

)m]
�Um+1 = (Felec)m − (K − Kσ )Um,

(29)
using a similar criterion of convergence:√

(um+1 − um)T(um+1 − um)√
(um+1)T(um+1)

< ε. (30)

We remark here that the boundary conditions can be collocated
similarly using the dynamic analysis equations (24) and (26)
with the only difference being that the superscript n + 1 is
dropped.

4. Numerical examples

If the total numbers of nodes and evaluation points are the same,
the system will become overdetermined since each boundary
point gives two independent equations. The overdetermined
system can be solved in a least-squares way [12]. In this paper
a new strategy of introducing more nodes will be adopted. This
is based on the flexibility of the proposed RBF method: the
total numbers of centers and evaluation points need not be the
same. Suppose that there are Ni inner evaluation points and
two boundary evaluation points, which require Ni + 4 nodes
to determine the solution uniquely. The first Ni + 2 nodes are
distributed identically with the evaluation points and numbered
sequentially along the beam. The (Ni + 3)th node lies at the
location 2x1 − x2 and the last node lies at 2xNi +2 − xNi +1.

In the following examples, we take Ni = 19. Two
strategies for distributing the collocation points (nodes)
are adopted: one is distributing them along the beam
uniformly and the other is using the Chebyshev–Gauss–
Lobatto (Chebyshev for short) distribution defined as

x̄i = 1

2

(
1 − cos

i − 1

Ni + 1
π

)
. (31)
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Figure 2. The variation of the relative error Er with respect to the
parameter β ′; clamped–clamped beam.

4.1. Choice for the optimal parameter

The value of the shape parameter c is vital to the accuracy
of the MQ basis. Hon et al [23] showed that if the value
of β lies in the range from 8 to 20, the RBF gave a good
approximation to the solution for a biphasic mixture model of
charged and hydrated soft tissues, where c = βdmin and dmin

is the minimum distance between any two collocation points.
Wong et al [25] adopted the value of β = 0.815 when solving a
multilayer model for a coastal system with MQ functions and
a multizone domain decomposition technique. Zhang et al
[22] has recently shown that the value of c = 6 can yield
high accuracy for analyzing a 2D elastostatic problem in a
rectangular domain. Wang and Liu [27] numerically obtained
the optimal parameters c = 1.42 and q = 1.03 for the general
MQ basis �I (x) = (‖x − xI ‖2 +c2)q used in their radial point
interpolation meshless method.

In this section, the optimal range of c is investigated
via examples where beams are only subject to uniformly
distributed loading q. The parameter c is defined as β ′dave,
where dave is the average of the distances between any two
adjacent collocation points. The analytical expressions for the
deflection are

u = q

24E I
(x4 − 2x3L + x2L2),

for clamped–clamped case

u = q

24E I
(x4 − 4x3 L + 6x2L2),

for cantilever case.

(32)

The relative error is defined as

Er =
√

(unum − ue)T(unum − ue)√
(ue)T(ue)

(33)

and the superscripts num and e denote numerical results and
analytical results, respectively.

Figure 2 shows the relative error with the variation of
β ′ of the clamped–clamped beam. In this case, the uniform
distribution gives higher accuracy when β ′ = 14–26, while the
Chebyshev distribution behaves better when β ′ = 4–13. Both

Figure 3. The variation of the relative error Er with respect to the
parameter β ′; cantilevered beam.

Figure 4. Deflection curve of a clamped–clamped beam.

the distributions yield acceptable results when β ′ = 4–18.
The variation of Er for the cantilevered beam is plotted in
figure 3. The accuracy of the Chebyshev distribution is higher
than the uniform one in most ranges, especially remarkably
when β ′ < 14. β ′ = 6–23 for the Chebyshev distribution and
β ′ = 13–26 for the uniform distribution are acceptable ranges.

The accuracy of r7 and r 5 bases for these two examples are
also investigated. For the clamped–clamped case, the relative
errors of ther7 basis are 3.95×10−4 for the uniform distribution
and 3.75 × 10−5 for the Chebyshev distribution and those of
the r 5 basis are about one order larger than those for the r7

basis. For the cantilevered case, both the results (for the r7

and r 5 bases) are not accurate enough.

4.2. Electroactuated clamped–clamped beam

The dimension of the beam is 80 µm (length) ×
10 µm (width) × 0.5 µm (thickness). The initial gap length
g0 = 0.7 µm. The effective Young’s modulus Ẽ = 169 GPa
and the density per unit volume is 2231 kg m−3. Both static
and dynamic analysis are carried out in this example.

The static deflection curves are displayed in figure 4,
where the applied voltages vary from 4 to 15.04 V, and the
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Figure 5. Deflection of the mid-point of a clamped–clamped beam
with respect to time. Applied voltage: 8 V. (The label ‘Central Diff.’
represents the central difference scheme.)

Figure 6. Deflection of the mid-point of a clamped–clamped beam
with respect to time. Applied voltage: 12 V.

r 7 basis with the Chebyshev distribution and the MQ basis
with the uniform distribution and the parameter β ′ = 13
are employed in the computation. The results from the two
methods are nearly undistinguishable, and they agree well with
those from the RKPM [18]. As is shown, the nonlinearity
caused by the electric force increases rapidly on approaching
pull-in status. The calculated static pull-in voltages of the
r 7 and MQ bases are 15.05 and 15.06 V, respectively. The
relative errors are below 1% compared to the experimental
result of 15.17 V reported in [28]. Our results are closer to
that from the RKPM [18] which is 15.08 V. It is remarked here
that only a very small number of nodes (23 nodes compared
with 100 nodes in the RKPM) are used in the computation.
The proposed RBF method also does not need to compute the
multiple Gauss integration required in the RKPM computation.
This advantage is particularly attractive for handling problems
in higher dimensional cases.

In dynamic analysis, the central difference and Newmark
schemes with the r7 basis and uniform distribution are adopted.
The sizes of the time step are 1 ns for the central difference

Figure 7. Deflection of the mid-point of a clamped–clamped beam
with respect to time. Applied voltage: 13.6 V.

Figure 8. Deflection curve of the mid-point of a clamped–clamped
beam with respect to time under the pull-in voltage.

scheme and 5 ns for the Newmark scheme. Figures 5–7 display
the deflection curves with respect to time at the mid-point of
the beam under voltages of 8, 12 and 13.6 V. The dynamic pull-
in voltage is 13.8 V. Both the deflection curves and the pull-in
voltage coincide excellently with those from the RKPM (the
dynamic pull-in voltages reported in [18] and [28] are 13.7 V).
The deflection curve under the pull-in voltage is also displayed
in figure 8.

It is well known that the central difference scheme
is conditionally stable. The classical FEM analysis has
concluded that the critical time step size �tcr has a relationship
with the minimum element size. The critical time step size of
the RBF collocation method is also investigated and it is found
that �t̄cr is about 2.7 ns for the uniform distribution and 0.30 ns
for the Chebyshev distribution. It is not surprising that the
Chebyshev distribution has a smaller �t̄cr since its minimum
nodal distance is about a quarter in the uniform distribution.
As the Newmark scheme is unconditionally stable with the
parameters chosen in this paper, it is recommended that the
Newmark scheme should be adopted when Chebyshev nodes
are used.
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Figure 9. Deflection curve of a cantilevered beam.

Figure 10. Deflection of the free end of a cantilevered beam with
respect to time. Applied voltage: 1, 2 and 2.11 V.

4.3. Electroactuated cantilevered beam

The geometric and physical parameters adopted in the
following electroactuated example are the same as those given
in the previous example. In the computation the MQ basis with
the Chebyshev distribution is adopted in this example. Figure 9
shows the static deflection of the beam under different driving
voltages of 1–2.33 V. The computed static pull-in voltage is
2.34 V, which matches the result given by Aluru [18].

The variations of the deflection at the free end with respect
to time under different voltages 1, 2 and 2.11 V are shown in
figure 10. The Newmark integration scheme with a time step
�t = 5 ns and parameter β ′ = 6 in the MQ basis are used.
Figure 11 shows the deflection curve at the free end with respect
to the pull-in voltage 2.12 V, which is again in good agreement
with the result from the RKPM given in [18].

4.4. Influences of initial gap length and residual stress

The computational results for a clamped–clamped beam under
residual stress is compared with the experimental data. The
width and the thickness of the beam are 100 and 1.5 µm
respectively. The effective Young’s modulus is 166 GPa;

Figure 11. Deflection of the free end of a cantilevered beam with
respect to time under the pull-in voltage.

Figure 12. Influence of residual stress on the pull-in voltage.

Table 1. Comparison of static pull-in voltages between
experimental and numerical results for different beam lengths.

Length Experimental results RBF results Relative error
(µm) (V) [29] (V) (%)

210 27.95 27.40 1.97
310 13.78 13.79 0.07
410 9.13 8.75 4.16
510 6.57 6.29 4.26

the residual axial load is Tb = 0.0009 N; and the initial
gap is 1.18 µm. The length of the beam varies from 210
to 510 µm. Table 1 gives the comparison between the
experimental data [29] and computational results obtained by
using the r7 basis and uniform distribution. It can be observed
from table 1 that the two results agree well. The largest
deviation occurs when the length of the beam is L = 510 µm
(the longest in the example) with a relative difference of 4.26%
which may be caused by the influence of large deformation.

The influences of gap length and residual stress on the
static pull-in voltage are also investigated. Figure 12 shows
the variation of the pull-in voltage for a clamped–clamped
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Figure 13. Influence of initial gap length on the pull-in voltage.

beam with the geometric and physical parameters listed in
section 4.2, except that the effective residual stress varies from
0 to 120 MPa. The results are obtained by using the r7 basis
and uniform distribution. As shown in figure 12, the static pull-
in voltage increases as the residual stress increases, whilst the
magnitude of the increase decreases if the residual stress gets
higher.

The influence of the initial gap length is shown in figure 13.
The parameters are again the same as in section 4.2. In
the computation, initial gap lengths from 0.5 to 1.0 µm are
considered. The clamped–clamped beam is analyzed by using
the r 7 basis and the uniform distribution and the cantilevered
beam is analyzed by using the MQ basis with parameter
β ′ = 13 and the Chebyshev distribution. In both cases, the
static pull-in voltage goes up as the initial gap length increases.

5. Conclusion

In this paper, the RBF collocation method is employed to
analyze electroactuated MEMS structures. The accuracy
of the method of using the smoothing spline rn basis
and the multiquadric (MQ) basis with different parameters
is investigated using several elastostatic examples. Two
strategies for distributing collocation points and nodes, namely
the uniform distribution and Chebyshev distributions, are
adopted in the computation. It is found that both bases and node
distribution schemes behave well in the clamped–clamped
case. The MQ basis and Chebyshev distribution are superior
in the cantilever case but need the consideration of an optimal
value for the shape parameter in the MQ basis. In this case,
the r 7 basis adopted in analyzing the clamped–clamped beam
is preferred although the MQ basis adopted in the cantilevered
case gives a higher accuracy.

The results from the RBF collocation method match
well with other numerical and experimental results. In fact,
only 23 nodes are used in the computation but the RBF
method already gives a convergent result in several iterations
during the nonlinear solution process. The central difference
algorithm and the Newmark algorithm are adopted to calculate
the dynamic responses of electroactuated beams. Due to
the dependence of the critical time step size in the central

difference scheme on the minimum distance of nodes, it is
better to employ the Newmark algorithm when the Chebyshev
distribution is used.

Finally the influences of beam length, residual stress and
initial gap length on the pull-in voltage are investigated. It is
demonstrated that increasing the residual stress and initial gap
length will increase the pull-in voltage, while increasing the
beam length will decrease the pull-in voltage since the bending
resistance is lowered.
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