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Abstract As a Lagrangian meshless method, the material point method (MPM) is suitable for
dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that
of the finite element method (FEM) for small deformation problems. Therefore, an algorithm for the
coupling of FEM and MPM is proposed to take advantages of both methods. Furthermore, a conver-
sion scheme of elements to particles is developed. Hence, the material domain is first discretized by
finite elements, and then distorted elements are automatically converted into MPM particles to avoid
element entanglement. The interaction between finite elements and MPM particles is implemented
based on the background grid in MPM framework. Numerical results are in good agreement with
experimental data and the efficiency of this method is higher than that of both FEM and MPM.
c© 2012 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1202103]
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Numerical simulation of problems involving extreme
deformation, such as explosion, impact and landslide, is
a big challenge for Lagrangian finite element method
(FEM) due to the mesh distortion which will decrease
its efficiency and accuracy significantly. In contrast
to Lagrangian methods, Eulerian methods use Eule-
rian mesh without mesh distortion but are accompanied
by the difficulties for the representation of the bound-
ary of material and tracking the deformation history
of material. Additionally, the arbitrary Lagrangian-
Eulerian (ALE)1 formulation is developed to take ad-
vantages of both Lagrangian and Eulerian methods but
encounters a challenging task to design an efficient
and effective mesh-moving algorithm for complicated
three-dimensional (3D) problems. Therefore, many re-
searchers focused on the meshless/particle methods to
expand the capacity of numerical methods for such
problems within the Lagrangian scheme2–4 during the
last several decades, such as the smoothed particle hy-
drodynamics method (SPH), the element free Galerkin
method (EFG), just to name a few. But the efficiency
of such methods are lower than that of FEM in each
time step and they suffer from their inherent shortcom-
ings. Hence, much effort has been devoted to couple
meshless methods with FEM to take advantages of both
methods5–7. Rabczuk et al. reviewed such work in de-
tail in Ref. 8.

Among meshless methods for such problems, ma-
terial point method (MPM)9 takes advantages of both
Lagrangian and Eulerian methods. In MPM, the ma-
terial domain is discretized by a set of Lagrangian par-
ticles, which carry all the state variables, such as po-
sition, velocity, stress, strain and so on. The momen-
tum equations of particles are solved on a regular Eu-
lerian background grid covering the whole material do-
main. In each time step, the particles are attached to
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the background grid so the grid serves as a finite el-
ement discretization to the material domain. Unlike
other meshless methods, the trial functions of MPM
are same as that of FEM. So MPM shows some ad-
vantages over other meshless methods in efficiency and
tension stability10. However, the efficiency of MPM is
not as good as that of FEM due to the mappings be-
tween background grid and particles, and the accuracy
of particles quadrature used in MPM is also lower than
that of Gauss points quadrature used in FEM. Hence,
Zhang et al.11 developed an explicit material point fi-
nite element method (MPFEM) to take advantages of
both FEM and MPM. In MPFEM, the material domain
is discretized by finite elements with a predefined back-
ground grid in an anticipated large deformation region.
If the body moves into the predefined background grid,
the element nodes are converted into particles. The lim-
itation of MPFEM is that users are required to identify
the potential large deformation region to place the pre-
defined background grid. Furthermore, elements with
small deformation are also forced to be converted into
particles once they move into the predefined background
grid. Recently, Lian and Zhang12 proposed a coupled
finite element material point method based on the con-
tact method, where the body with mild deformation
is discretized by FEM and the body with extreme de-
formation by MPM particles. The interaction between
them is implemented based on the contact method via
the background grid. But this method does not fully
absorb the salient efficiency of FEM either.

To fully take advantages of both FEM and MPM,
an adaptive finite element material point (AFEMP)
method is proposed in this letter. In AFEMP method,
bodies are first discretized by finite elements, and then
the distorted elements are adaptively converted into
MPM particles based on criteria during the solution
process. The interaction between the remaining finite
elements and MPM particles is handled based on the
background grid in MPM framework. Several numeri-
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cal examples are presented to validate the efficiency and
accuracy of the proposed method.

For a material domain Ω shown in Fig. 1, the mo-
mentum equation is given as

∇ · σ + b = ρü, (1)

where σ is the Cauchy stress, b is the body force per unit
volume, ρ is the current density, the superimposed dot
indicates the time derivative, and u is the displacement.

For both FEM and MPM, the virtual displacement
δui is taken as the test function, so the weak form of
the momentum Eq. (1) can be given as∫

Ω

ρüiδuidΩ+

∫
Ω

σijδui,jdΩ−
∫
Ω

biδuidΩ = 0 (2)

As shown in Figs. 1(b) and 1(c), the material do-
main is discretized by a mesh of elements for FEM,
and discretized by a set of particles with a background
grid for MPM. In FEM, the mesh is embedded and de-
forms with the material domain during all time steps.
In MPM, the particles are attached to the background
grid and deform with it just in one time step and a
new background grid is used for the next time step. So
in each time step, MPM first maps the state variables
of particles to the background grid to establish their
momentum equations, and calculates the incremental
strain of particles from the velocity field of background
grid to update the stress of particles; then, MPM cal-
culates the grid nodal forces by taking the particles as
integration points; after that, MPM integrates the mo-
mentum equation on the background grid and maps the
result of momentum equations back to particles to up-
date their positions and velocities; finally, MPM aban-
dons the deformed background grid.

The MPM can be viewed as a special Lagrangian
FEM which employs particles quadrature with remesh-
ing in every time step, so it is straightforward to couple
MPM and FEM together. In our coupling scheme, tran-
sition nodes are used to connect the FEM domain and
MPM domain based on the background grid in MPM
framework. As shown in Fig. 2, a material domain is
discretized by FEM for its left part and by MPM for
the remaining part. The FE nodes located in the in-
terface between two different domains are termed as
transition nodes. In order to build connection between
FEM domain and MPM, momentum equations of tran-
sition nodes are solved on the same background grid by
mapping their mass, momentum and nodal force to the
background grid abreast with MPM particles. The ve-
locity fields used to calculate the element and particle
incremental strains must be identical, so the velocity of
the transition nodes must be reset by the velocity field
of the background grid. After solving momentum equa-
tions on the background grid, the position and velocity
of transition nodes are updated from the result of the
background grid nodes. Hence the consistency of the
displacement and velocity fields between FEM domain
and MPM domain is achieved.

A conversion method is proposed here to make the
coupling adaptive during the simulation process. In
AFEMP method, bodies are firstly discretized by ele-
ments. During the simulation process, if one element
becomes distortion, it is converted into MPM particles.
So there is no need to specify a material domain which
is discretized by MPM particles and the accuracy and
efficiency salience of finite elements can be retained as
long as possible. As shown in Fig. 3, elements A and
B are designated as candidates for conversion to par-
ticles. In order to keep conservation of mass, momen-
tum and energy during the conversion, one element is
converted into four MPM particles whose natural co-
ordinates are taken as (±0.5,±0.5) for their positions
calculation. Their velocities are set as those of the ad-
jacent FE nodes. After conversion, the elements A and
B and FE node c are deleted, while four particles for
each element are added and the FE nodes b, i, d, f, i, g
and k are termed as transition nodes. In 3D problems,
one hexahedral element is replaced by 8 MPM particles
in a similar way.

Using the AFEMP method, we study the tungsten
heavy alloys (WHA) long rod projectile penetration ex-
periment conducted by Holmberg et al.13. The projec-
tile hits steel armor plate under an angle of 60 degree
with initial velocity of 2 500 m/s. The length and the di-
ameter of projectile are 75 mm and 5 mm, respectively,
while the size of the target is 150 mm×150 mm×9 mm.
Johnson Cook model and Gruneisen equation of state
are used for both projectile and target. Due to sym-
metry, half model is used as shown in Fig. 4, which
is discretized by hexahedral elements. The projectile’s
residual length ratios obtained by AFEMP and experi-
ments are 0.72 and 0.76, respectively, while the projec-
tile’s residual velocity ratios obtained by AFEMP and
experiment are 0.97 and 0.99, respectively. The resid-
ual part of the projectile obtained by AFEMP is also in
good agreement with the experimental result as shown
in Fig. 5. Besides, the computational cost required by
AFEMP and MPM are listed in Table 1, which shows
that AFEMP is much more efficient than MPM in im-
pact simulation.

Table 1. Computational cost required by MPM and AFEMP

∆tmax/µs ∆tmin/µs Steps CPU/s
MPM 6.45 × 10−2 3.71 × 10−2 1 180 2 241
AFEMP 3.67 × 10−2 1.52 × 10−2 2 208 838

Another numerical example is a 2D soil collapse ex-
periment conducted by Bui et al.14, in which many small
aluminum bars of diameters 1.0 mm and 1.5 mm were
used to model soil collapse. These bars were initially ar-
ranged into a rectangular area 200 mm×100 mm, which
was generated by standing two flat solid walls on a flat
surface. The experiment was started by quickly remov-
ing the right wall horizontally to the one side. Drucker-
Prager model is used for the soil. The final shape of
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Fig. 1. A material domain with different discretization.

Fig. 2. Coupling between FEM and MPM.

Fig. 3. Conversion of finite elements to particles.

Fig. 4. The discretization model for WHA projectile and
plate target.

Fig. 5. Comparison of residual part of projectile between
numerical result and experimental data.

Fig. 6. Final shape of soil obtain by AFEMP and final shape
of aluminum bars of experiment.

the soil obtained by AFEMP is compared with the fi-
nal shape of aluminum bars given by the experiment in
Fig. 6, while the surface configurations and failure lines
obtained by AFEMP and MPM are compared with ex-
perimental results in Fig. 7. Furthermore, the compu-
tational cost required by AFEMP and MPM are listed
in Table 2 which also shows that AFEMP is much more
efficient.

For such dynamic problems with extreme deforma-
tion, traditional FEM encounters mesh distortion and
element entanglement which will lead to abnormal ter-
mination of the simulation. Although MPM can han-
dle large deformation, its efficiency and accuracy are
lower than that of FEM for the material domain during
the mild deformation period. So FEM and MPM are
coupled together in AFEMP method, where FEM are
used for the material domain with mild deformation and

Fig. 7. Final surface configurations and failure lines in ex-
periment and simulation.
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Table 2. Computational cost required by MPM and AFEMP

∆tmax/µs ∆tmin/µs Steps CPU/s
MPM 48.41 29.94 34 765 1 791
FEMP 48.41 22.85 47 402 1 123

MPM for the material domain with extreme deforma-
tion to inherit the higher efficiency of FEM and capacity
of modeling extreme deformation from MPM. Bodies
are first discretized by finite elements. A conversion
scheme is applied to convert the distortion element into
MPM particles adaptively with specified criterion dur-
ing the simulation process. Hence there is no element
distortion in AFEMP which is also suitable for extreme
deformation. Furthermore, the efficiency of AFEMP is
higher than that of both FEM and MPM as shown in
the aforementioned numerical examples.
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