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Abstract:  The meshless weighted least-squares (MWLS) method is a pure meshless method that com-

bines the moving least-squares approximation scheme and least-square discretization. Previous studies of 

the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method 

possesses several advantages, such as high accuracy, high convergence rate, good stability, and high com-

putational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS 

computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. 

Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin 

method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These 

numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat 

transfer problems. 
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Introduction 

In the past twenty years, a series of numerical methods 
called meshless methods (also called meshfree meth-
ods) have been developing rapidly. The first meshless 
method was smoothed particle hydrodynamics devel-
oped by Lucy[1] and Gingold and Monaghan[2] in 1977, 
and then thoroughly studied by Monaghan[3]. After the 
element free Galerkin method (EFGM) was proposed 
by Belytschko et al. in 1994[4], meshless methods have 
drawn more and more attention and have been success-
fully applied to various problems in solid mechanics, 
fluid mechanics, heat transfer, and electromagnetic 
fields[5-7].  

Most kinds of meshless methods have been built 
upon discretization schemes like the Galerkin method, 

the Petrov-Galerkin method, or the direct collocation 
method. Generally speaking, meshless methods of the 
Galerkin and Petrov-Galerkin types need numerical in-
tegration, which results in much more computational 
effort than the finite element method (FEM) in most 
cases; while the direct collocation meshless method 
suffers from instabilities. 

Like the least-squares finite element method 
(LSFEM)[8], meshless methods can also be based on 
least-square schemes. The meshless weighted least-
squares (MWLS) method[9] is such a method. Appli-
cation of MWLS to elastostatics and wave propaga-
tion problems has shown that it is accurate, stable, 
and efficient. 

In this paper, the MWLS method is extended to 
solve heat conduction problems. The basic MWLS 
formulation for solving steady-state heat conduction 
problems is developed, and the optimal choice of com-
putational parameters is discussed. Several 2-D exam-
ples are presented with the numerical results compared 
with analytical and EFGM solutions. 
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1  Moving Least-Squares  
Approximation 

In the moving least-squares (MLS) scheme, the local 
approximation of the field variable  is expressed 
as 
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where ( )ip x  is the basis function, generally a com-
plete monomial,  is the number of terms in the ba-
sis function, and  are the coefficients, which are 
determined by minimizing the following L
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where Iu  is the value of  at node ( )u x Ix , and 
 is the weight function that is usually a 

compactly supported function which is only nonzero in 
a small neighborhood called the “support domain” of 
node 

( )Iw x

Ix  where it reaches its maximum value. Many 
kinds of weight functions have been used in meshless 
methods. The cubic spline function is used in this 
paper, 
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where  is the normalized radius equal to the ratio of 
the distance between node 

r
I  and the evaluation point 

to the radius of the support domain. 
The minimization of the function  is equivalent 

to 
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Substituting the coefficients  from Eq. (4) into 
Eq. (1), the MLS approximation can be expressed as 
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where the shape function . T 1( ) ( ) ( ) ( )I IN −=x p x A x B x

2  Basic Equations for Heat  
Conduction Problems and the 
Least-Squares Discretization 

The steady-state temperature distribution in domain 
Ω  is governed by 
 2 ( ) 0,k u Qρ Ω∇ + = ∈x x  (8) 

with the boundary conditions: 
 u u= ,     (9) 1Γ∈x

 k u q∇ =in ,    (10) 2Γ∈x

 ( )ak u h u u∇ = −in ,    (11) 3Γ∈x

where  and k ρ  represent the thermal conductivity 
and the density,  is the heat source per unit mass. Q

( )u x  is the prescribed temperature, and ( )q x  is the 
prescribed heat flux.  denotes the convection heat-
transfer coefficient,  is the prescribed ambient 
temperature, and  represents the unit outward nor-
mal to the boundary. 

h
a ( )u x

n

If the field variable is approximated by the MLS 
scheme in Eq. (7), Eq. (8) and the boundary conditions 
Eqs. (9)-(11) cannot be satisfied exactly, which leads 
to residuals. Different ways to minimize the residuals 
correspond to different discretization schemes, such as 
the Galerkin method, the Petrov-Galerkin method, and 
the direct collocation method, all of which can be re-
garded as special cases of the weighted residual 
method[10]. In this paper, the residuals are minimized in 
a least-squares manner, as the sum of the squares of the 
residuals, 
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which is to be minimized.  and ( )R x ( )iR x  refer to 
the residuals corresponding to the governing equation 
and the boundary conditions on ( ) and iΓ 1,2,3i = iα  
is the weight coefficient which is used as a penalty to 
enforce the boundary conditions. In Eq. (12), the func-
tion Π  is an integral, which requires numerical 
quadrature in the final equations and increases the 
computational effort. To overcome this shortcoming, 
the following discrete functional is used instead. 
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where  and  are the numbers of evaluation 
points in the domain and on the boundary 

m im

iΓ . The 
number of evaluation points is not necessarily equal to 
the number of nodes. According to the study on the 
stabilized form of partial differential equations by 
Onate et al.[11], including the residuals of the governing 
equations in the boundary conditions can increase the 
stability of the method. Thus, the governing equations 
in this method are satisfied not only on the evaluation 
points in the domain, but also on the boundaries. In 
this paper, all nodes were used as evaluation points in 
the first term of Eq. (13), with those on the boundaries 
as evaluation points in the other corresponding terms. 

Let the variation of the function  be equal to 
zero and invoke the arbitrariness of the variation 

Π
.δu  

The system equations are obtained as 
  (14) =Ku P
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The weight coefficients iα  have two functions: to 
enforce the boundary conditions and to balance the 
magnitudes of the residuals on the different boundaries. 
Thus, 2α  is set to a large number, 105 for example, 

and ( )2
1 2 k Lα α= , and ( ) 2

3 2 min 1,k hLα α= ⎡⎣ ⎤⎦ , 

where  is the characteristic problem length. L

Since the least-squares method is used to develop 
the discrete equations, and the weight coefficients are 
used to enforce the boundary conditions and balance 
the magnitudes of the residuals, the method is named 
the meshless weighted least-squares (MWLS) method. 

3  Choice of Computational  
Parameters 

The MWLS approximation requires some computa-
tional parameters, such as the order of the basis func-
tion and the dimension of the support domain. These 
parameters greatly influence the results. 

Consider steady-state heat conduction in a bar of 
unit length and unit sectional area. The bar’s side sur-
faces are adiabatic. So the problem is indeed 1-D. The 
temperature on the left end of the bar is fixed at  
and the other end experiences a convection heat-
transfer boundary whose ambient temperature is . 
The bar contains a distributed heat source  
along the bar, where 

100℃

0℃
2180Q x=

x  refers to the distance from the 
left end. All the thermal physical parameters have unit 
values. The analytical solution for this problem is 

 The MWLS method was 
used to solve this problem with 11 uniformly distrib-
uted nodes. Table 1 demonstrates the relative error for 
different orders of basis functions and different support 
radii. Here, “scale” in Table 1 means the ratio of the 
support radius to the nodal distance and the relative er-
ror is defined as 

415 12.5 100.u x x= − − +

 ( ) ( )2num e e

1 1

n n

r I I
I I

E u u u
= =

= −∑ ∑
2

I  (17) 

where  and num
Iu e

Iu  represent the numerical and ana-
lytical solutions for node I . 

Table 1  Relative error for different support radii and 
basis functions 

Relative error (%) 
Scale Constant 

basis 
Linear 
basis 

Quadratic 
basis 

2.25 21.8669 2.0435 0.4740 
2.50 15.1452 0.2694 0.5978 
2.75 11.1176 0.9572 0.6123 
3.00 7.6668 1.6494 0.5740 
3.25 3.9711 0.5003 0.2070 
3.50 2.2156 1.2619 0.0692 
3.75 1.2178 1.2533 0.2071 
4.00 0.7748 0.7892 0.3398 

 



 64  Tsinghua Science and Technology, February 2005, 10(1): 61–66 
 

Since the MWLS equation includes the second order 
derivatives, the quadratic basis function should give 
better results than linear or constant basis functions as 
the results in Table 1 indeed show. The relative error is 
the lowest when the support radius is 3.5 times the 
nodal distance for the quadratic basis function. The re-
sults in Table 1 show that the constant basis function 
with a larger support radius and the linear basis func-
tion also give acceptable results because the deriva-
tives of the MLS shape function involve not only the 
derivatives of the basis functions, but also the deriva-
tives of matrices  and  which are related to the 
weight function. Since the weight function, such as the 
cubic spline function, has higher order continuity, it is 
not surprising that basis functions of lower order can 
give reasonable results. 

A ,B

The MWLS method was also used to analyze the 
same problem but with a prescribed heat flux applied 
to the right end of the bar. Similar conclusions were 
drawn about the quadratic basis function with the sup-
port radius of 3.5 times the nodal distance as optimal. 
Thus, the following examples used these parameters. 

4  2-D Numerical Examples 

The following examples all analyze heat conduction in 
a rectangular domain as shown in Fig. 1. There is no 
heat source in the domain and the thermophysical 

parameters are set to unit values if not specified. All 
the EFGM computations used linear basis functions. 
Gauss quadrature (3×3) was used to evaluate the 
integrals, where the dimension of the background cell 
was consistent with the nodal distance. 

 
Fig. 1  Rectangular domain and coordinate system 

4.1  Patch test 

Consider a 1 m 1 m×  domain with a temperature dis-
tribution given by u x y= + . The boundary tempera-
tures were set consistent with this distribution. Three 
nodal arrangements were used[12], one with regular 
spacing and two with irregular spacing, as shown in 
Fig. 2. The coordinates of Node 5 in irregular ar-
rangement I are listed in Table 2, where six cases are 
analyzed. The nodal coordinates in irregular arrange-
ment II are listed in Table 3. The numerical results 
show that the MWLS method exactly reproduces the 
distribution in all cases.

 

 
Fig. 2  Node arrangements 

 

Table 2  Coordinates of Node 5 in irregular node  
arrangement I 

 Case 

 1 2 3 4 5 6 

x 0.55 0.05 0.05 0.95 0.45 0.15 
y 0.55 0.05 0.40 0.90 0.45 0.15 

 
 

Table 3  Coordinates for irregular node arrangement II 

 Node 
 1 2 3 4 5 6 7 
x 0.00 0.15 1.00 0.00 0.60 0.40 0.45 
y 0.00 0.00 0.00 0.10 0.20 0.45 0.50 
 Node 
 8 9 10 11 12 13 14 15 
x 0.70 0.25 0.55 1.00 0.00 0.40 0.80 1.00
y 0.60 0.65 0.60 0.90 1.00 1.00 0.95 1.00
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4.2  Heat conduction in a rectangular domain 

Consider a rectangular domain in which  and 
 The thermal conductivity is 

1 ma =
0.8 m.b =

( )1.2 W/ mk = ·℃ . A heat flux 2500 W/mq =  enters 

the domain from the upper boundary and the tempera-
tures of the other boundaries are all fixed at . 
The analytical solution is given by 

1 0u = ℃
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Both the EFGM and the MWLS were used to solve the 
problem with a uniform 11×9 node distribution. The 
analytical EFGM and MWLS solutions are compared 
in Fig. 3, which shows that the three solutions coincide 
well. The MWLS results were more accurate than the 
EFGM results (1.21% versus 1.75%), but the MWLS 
method required only 18.4% of the computational time 
used by the EFGM. 

4.3  Heat conduction in a square domain 

Consider a square domain with side lengths of .  200 m

 

 
Fig. 3  Comparison of isotherms (℃) 

Both the left and right edges are prescribed tempera-
ture boundaries whose temperature is , while both 
the top and the bottom edges receive a heat flux of 

. Only one quarter of the domain needs be ana-
lyzed due to symmetry. The EFGM and MWLS meth-
ods were used for the analysis. Figure 4 compares the 
isotherms from the MWLS method and the EFGM re-
sults for an 11×11 node distribution. Figure 5 shows 
the temperature on the symmetry line , while 
Table 4 lists the CPU time for the two methods. The re-
sults obtained by these two numerical methods are very 
similar, while the MWLS solution time is less than one 
fifth that of the EFGM, mainly due to eliminating the 
numerical integration in favor of the discrete functional. 

0℃

210 W/m

100 mx =

 
Fig. 4  Comparison of EFGM and MWLS isotherms (℃) 
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Fig. 5  Temperature distribution along the symmetry line 

Table 4  Comparison of CPU time    (s) 

Method Time for assem-
bling process 

Time for solving 
equations 

Total solu-
tion time 

MWLS 1.594 0.015 1.609 
EFGM 9.036 0.015 9.051 

5  Conclusions 

The MWLS method, a meshless method based on 
least-squares discretization, was extended to solve 
steady-state heat conduction problems. The optimal 
computational parameters were determined by numeri-
cal tests. 2-D examples show that MWLS results coin-
cide well with the analytical solution and that the 
MWLS method is more accurate than the EFGM. 

Unlike Galerkin-type meshless methods, the MWLS 
method does not need numerical integration, which 
significantly improves the computational efficiency. 
When efficiency and accuracy are both taken into ac-
count, the MWLS method is an attractive meshless 
method. Further investigations of the MWLS method 
will consider transient heat conduction problems and 
heat convection problems. 
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