
Int J Fract
DOI 10.1007/s10704-013-9925-1

ORIGINAL PAPER

Improved decohesion modeling with the material point
method for simulating crack evolution

Pengfei Yang · Yong Gan · Xiong Zhang ·
Zhen Chen · Wanjun Qi · Ping Liu

Received: 29 August 2013 / Accepted: 18 December 2013
© Springer Science+Business Media Dordrecht 2014

Abstract A combined elastoplasticity and decohe-
sion model is used with the material point method for
the crack problem as described in the Sandia National
Laboratories challenge. To predict the cracking path in
a complex configuration with the least computational
cost, the decohesion modeling is improved by making
the failure mode adjustable and by replacing the crit-
ical normal and tangential decohesion strengths with
the tensile and shear peak strengths, without perform-
ing discontinuous bifurcation analysis in each loading
step after the onset of failure is identified. It is found
that there is a transition between different failure modes
along the cracking path, which depends on the stress
distribution around the path due to the nonlocal nature
of failure evolution. Based on the parametric study and
available experimental data, the proposed model-based
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simulation procedure could be calibrated to predict the
essential feature of the observed cracking response.
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1 Introduction

Two different kinds of approaches are available for
modeling and simulating the evolution of localized
material failure, namely, continuous and discontinu-
ous ones. Decohesion and fracture mechanics mod-
els are representative of discontinuous approaches,
in which strong discontinuities are introduced into
a continuum body such that the governing differen-
tial equation is well-posed for given boundary and/or
initial data. On the other hand, nonlocal (integral or
strain gradient) models, Cosserat continuum models
and rate-dependent models are among the continu-
ous approaches proposed to regularize the localization
problems, in which the higher order terms in space
and/or time are introduced into the constitutive models
so that the governing equations remain well-posed in
a higher order sense for given boundary and/or initial
data. Usually, only weak discontinuities in the kine-
matical field variables are allowed in the continuous
approaches; i.e., the continuity of displacement field
must hold in the continuum during the failure evolution.
There exist certain kinds of applicability and limitation
for different approaches, depending on the scale of the
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problem and the degrees of discontinuity considered
(Bazant and Chen 1997).

If a continuous approach is considered, the use of
higher order terms in space makes it difficult to per-
form large-scale computer simulation, due to the limi-
tation of current computational capabilities. As shown
in the previous research (Chen and Sulsky 1995), how-
ever, the evolution of localization might be equally well
characterized by the formation and propagation of a
moving material surface of discontinuity. An attempt
has been made to investigate the use of the jump forms
of conservation laws in defining the moving mater-
ial surface (Chen 1996). By taking the initial point of
localization as that point where the type of the gov-
erning differential equation changes, a moving mater-
ial surface of discontinuity can be defined through the
jump forms of conservation laws across the surface.
Because the type change from a hyperbolic equation
to an elliptic one could be represented by a parabolic
(diffusion) one, both analytical and numerical solutions
have been obtained to model the evolution of localiza-
tion as damage diffusion, without invoking the use of
higher order terms in constitutive modeling (Chen et
al. 2002; among others). Since the essential feature of
a complete failure evolution process is characterized
by the transition between discontinuities of different
degrees, the discontinuous bifurcation analysis could
be employed to identify the transition from continu-
ous to discontinuous failure modes (Chen et al. 2005;
among others). To catch the essential feature of crack
evolution, as described in the Sandia National Labo-
ratories (SNL) challenge, with sound theoretical foun-
dation and low computational cost, a local elastoplas-
ticity model could be combined with the evolution of
decohesion via the discontinuous bifurcation analysis
for constitutive modeling, based on the previous work
(Chen et al. 2005). As a result, all the model parame-
ters could be calibrated based on the available experi-
mental data. To predict a reasonable cracking path in
a complicated configuration with the least computa-
tional cost, however, the existing decohesion modeling
must be improved with an effective spatial discretiza-
tion scheme.

Over the last two decades, much research has been
conducted to circumvent the difficulty associated with
the mesh-based methods, such as the finite element
method (FEM) and finite difference method (FDM),
in spatial discretization of crack propagation. As indi-
cated by Belytschko et al. (1996), the meshless (mesh-

free) methods are uniquely suitable for those prob-
lems for which the conventional mesh-based methods
are handicapped. The key difference among different
spatial discretization methods is how the gradient and
divergence terms are calculated. Because the meshless
methods do not use a rigid mesh connectivity as com-
pared with the FEM and FDM, the interpolation in the
moving domain of influence is the common feature of
the meshless methods.

The material point method (MPM) is an extension
to solid dynamics problems of a hydrodynamics code
called FLIP, which, in turn, evolved from the Particle-
in-Cell Method. The motivation of the initial develop-
ment was to simulate those challenging problems for
which the FEM is limited, such as impact/contact, pene-
tration and perforation with history-dependent internal
state variables (Sulsky et al. 1994; among others). The
essential idea is to take advantage of both the Eulerian
and Lagrangian methods while avoiding the shortcom-
ings of each. In comparison with the other recently
developed numerical methods, the MPM appears to
be less complex with a cost factor of at most twice
that associated with the use of corresponding finite ele-
ments (Chen et al. 2002). Based on the MPM, a com-
puter test-bed has been developed to integrate three
basic types of governing differential equations (hyper-
bolic, parabolic and elliptic ones) into a single com-
putational domain to perform the first-principle sim-
ulation of impact/blast-resistant structural responses
(Chen et al. 2003, 2008; Hu and Chen 2006; Shen
and Chen 2005; Zhang et al. 2009; Huang et al. 2011;
Yang et al. 2012; among others). On the other hand,
both the MPM and Peridynamics (Silling 2000; Silling
et al. 2003; Silling and Askari 2005) could be clas-
sified as the particle-based methods without a rigid
mesh connectivity, but the motivations for developing
these two methods and associated approaches are dif-
ferent. The MPM has been developed to simulate multi-
phase interactions involving failure evolution by using
single-valued mapping and remapping between mater-
ial points and background grid nodes, while the Peridy-
namics has been developed to handle discontinuities in
a single-phase material, such as crack propagation, by
formulating the integral equations over the domain of
influence. Thus, the computational cost with the MPM
for the SNL challenge would be higher than that with
the Peridynamics. However, the main objective of the
present study is to examine the capability for the MPM
to discretize complex cracking paths in order to find
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out how to improve the MPM for better dealing with
multi-phase interactions involving crack propagation.

In the remaining of the paper, the improved constitu-
tive model is described and implemented into MPM3D
(Ma et al. 2010), a three-dimensional explicit MPM
code (serial version), to tackle the SNL challenge with
the least computational cost. It should be noted that the
MPM has not been applied to the complex cracking
problem as stated in the SNL challenge although it has
been developed to simulate the simple types of fracture
(Nairn 2003).

2 Improved decohesion modeling

In the MPM simulations, the material behavior is ini-
tially described by the von Mises associated elastoplas-
ticity (a local model), and the decohesion model is then
employed after the onset of failure is identified via the
discontinuous bifurcation analysis based on the pre-
vious work (Chen et al. 2005). Since the continuum
tangent stiffness tensor formulated from the associated
von Mises model is symmetric, the peak strength coin-
cides with the onset of discontinuous bifurcation. It is
assumed that no plasticity occurs once decohesion has
started so that the decohesion model replaces strain
softening in the local elastoplasticity model to avoid
the extra computational cost if a nonlocal stain soft-
ening model is invoked. Since the decohesion model
predicts mode I, II or mixed mode failure, the failure
patterns predicted by a nonlocal von Mises softening
model are excluded. The decohesion model consists of
the following equations:

σ̇ = E :
(
ε̇ − ε̇d

)
(1)

τ̇ = σ̇ · n (2)

u̇d = λ̇d · m (3)

ε̇d = 1

2Le

(
n ⊗ u̇d + u̇d ⊗ n

)
(4)

Fd = τ e − U0

[
1 −

(
λd

)q]
= 0 (5)

where εd is the decohesion strain tensor with the
assumption of no plastic strain increase during the
decohesion evolution so that the rate of change in stress
is equal to the rate of change in elastic strain as shown
in Eq. (1), λd is a dimensionless monotonically increas-
ing variable for parameterizing the development of the
decohesion, τ is the traction vector on the decohesion
surface with the normal n, the effective length Le is the
ratio of the element volume to the decohesion surface

Fig. 1 Normalized relation between the effective traction and
decohesion

area within the material point (element), ud is the deco-
hesion vector used to determine the decohesion strain,
U0 is the reference surface energy equal to the product
of the reference decohesion ū0 and the reference trac-
tion τ̄0, and Fd is the flow surface for the decohesion
evolution. The normalized relation between the effec-
tive traction τ e and effective decohesion λd is adjusted
by parameter q, as depicted in Fig. 1. For purpose of
simplicity, the evolution function of decohesion is cho-
sen to be associated, namely,

m = ū0
Ad · τ

(τ · Ad · τ )1/2 (6)

The effective traction τ e is then computed as

τ e = τ · m = ū0 (τ · Ad · τ )1/2 (7)

The positive definite tensor of material parameters, Ad ,
is expressed by

[Ad ] = τ̄ 2
0

⎡
⎣

1
τ 2

n f
0

0 1
τ 2

t f

⎤
⎦ (8)

with τn f and τt f denoting the failure initiation values
for the Mode I and Mode II cases, respectively. At
the beginning of decohesion, the consistency condition
derived from Eq. (5) yields τ e=U0=ū0τ̄0 with τ e hav-
ing the dimension of surface energy and τ̄0 the dimen-
sion of stress, respectively. As a result, it follows that

τ 2
n

τ 2
n f

+ τ 2
t

τ 2
t f

= 1 (9)

where τn and τt are the normal and tangential stress
components on the failure surface, respectively. By

123



P. Yang et al.

introducing cm = τn f
τt f

, τn f and τt f are related to the
given value of cm . As can be seen from Eq. (9), different
values of cm would result in various failure modes. For
example, cm = 100 can be used for mode I failure, 0.01
for mode II failure, and 1.0 for mix mode failure. Let
s1, s2 and s3 represent the principal stresses in the order
of magnitude. Then, we set τt = (s1 − s3)/(s1 − s3) /2
and τn = s1. It can be found at the onset of decohesion
that

τn f =
√

s2
1 + (s1 − s3)

2

4c2
m

(10)

Hence, τn f as determined from Eq. (10) could be used
in Eq. (9) to find the effective traction during the evo-
lution of decohesion for a given failure mode (cm). To
reduce the computational cost, the discontinuous bifur-
cation criterion is replaced with the limit strength cri-
terion to identify the onset of decohesion because both
criteria coincide with each other for the associated von
Mises elastoplasticity model. As a result, the decohe-
sion model is active based on the following criteria,
with smax and τmax defined respectively as the tensile
and shear strengths of the material:

(1) mode I failure occurs if s1 > smax only,
(2) mode II failure occurs if τt > τmax only, and
(3) mode I & II mixed failure occurs if both s1 > smax

and τt > τmax are satisfied.

With the unit vectors along the principal directions
being n1, n2 and n3 for s1, s2 and s3, respectively, the
normal vectors of the decohesion surface, n, for the
above three failure modes are given as

n = n1 (mode I) (11)

n = n2 × (n1 + n3)

|n2 × (n1 + n3)| (mode II) (12)

n = n̄
|n̄| , n̄ = n1 + n2 × (n1 + n3)

|n2 × (n1 + n3)| (mixed mode)

(13)

Based on the consistency condition, a one-step algo-
rithm can be designed by taking a Taylor series expan-
sion of Fd about the trial state to the order of (�λd)2,
namely

Fd = ∂ Fd

∂λ

∣∣∣∣
tr

�λd +
{
τ e − U0

[
1 −

(
λd

)q]}∣∣∣
tr

+ O
(
�λd

)2 = 0 (14)

With the given local strain increments at each material
point and at each time step, it is assumed that no deco-
hesion occurs in the beginning of the time step in order
to get the trial stresses and traction through Eqs. (1)
and (2). The value of Fd can then be determined based
on the trial state and existing value of λd . If Fd ≤
tol with tol being a small positive number, the step is
elastic without further decohesion. Otherwise, �λd is
obtained from Eq. (14), and the decohesion strain ten-
sor εd is updated at the end of the time step by Eqs. (3)
and (4) with the effective length Le defined as Le =
hm1+hm2+hm3 with m = m1e1+m2e2+m3e3, and h
being the cell size of the background grid in the MPM.

3 Parametric study and demonstration

3.1 Uniaxial tension

Sandia National Laboratories chose the metal alloy
with the density ρ = 7.81 × 10−3 g/mm3, Poisson’s
ratio ν = 0.3, elasticity modulus E = 195 GPa and
the yield strength σy = 1,100 MPa. In the simulations,
the von Mises elastoplasticity model with linear strain
hardening is used before decohesion occurs. The hard-
ening modulus ET is determined by the uniaxial ten-
sion test, for which the specimen geometry is given in
Fig. 3 of the lead article. In the experiment, the loading
rate is 0.0127 mm/s. In the MPM simulation, however,
the actual loading rate would result in a large compu-
tational cost due to the explicit time integration algo-
rithm implemented in MPM3D (Ma et al. 2010) to be
used in this study. Figure 2 plots the engineering stress–
engineering strain (σ − ε) curve for ET = 1,150 MPa.
The legend epef in the figure represents the equivalent
plastic strain. The effect of loading velocity v used in
the simulation is also demonstrated in Fig. 2. It can
be found that when v becomes larger, the curve tends
to have more oscillations due to the wave reflection in
the specimen with a finite size. However, the trends
under different velocities are the same and fit with the
experimental curve. Hence, we choose v = 5m/s and
ET = 1,150 MPa for simulating the ductile fracture in
the SNL challenge, as discussed next.

3.2 Ductile fracture prediction

The combined elastoplasticity and decohesion model,
as described above, is used to predict the crack growth
in the specimen as specified in the SNL challenge.
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Fig. 2 The engineering stress–strain curves for tensile coupons
(epef denotes equivalent plastic strain)

Mode I only and Mode II only were considered as the
dominant failure mode, respectively, in the decohesion
model before becoming aware of the experimental data.
However, the results with Mode I only were used for
the blind prediction with the consideration that local
mode I failure might be dominant in the evolution of
failure. It has been found from recalibration that the
failure mode would change due to the nonlocal nature
of failure evolution, as discussed next.

The specimen geometry is illustrated in Fig. 6
and 8 of the lead article. The multi-level-grid MPM
(Yang 2013) is used in the simulation, as depicted in

Fig. 3. Around the holes and cracking path, level 1
(small) background cells and the corresponding parti-
cles are used. In another region, level 0 (large) cells and
corresponding particles are used. The cubic cell sizes
in levels 1 and 0 are 0.125 and 0.25 mm, respectively.
The number of particles in each cell is 8. Based on the
calibration against available experimental data and for
the purpose of simplicity, the decohesion parameters
are chosen to be ū0 = 2 × 10−7m and q = 1, and the
tensile and shear strengths are smax = 4,900 MPa and
τmax = 820 MPa, respectively. The parameters smax

and τmax are determined based on the C(T) specimen
experiment results. A series of simulations with dif-
ferent values of smax and τmax have been performed,
and the set of smax and τmax yielding the results closest
to the experiment measurement is chosen as the final
values of smax and τmax.

We first consider only one failure mode in the deco-
hesion model. When only mode I is considered, we have
smax = 4,900 MPa, τmax = ∞ and cm = 100; when
only mode II is considered, we have smax = ∞, τmax =
820 MPa and cm = 0.01. The cracking patterns under
these two fracture modes are shown in Fig. 4a, b, and the
corresponding force-COD curves are plotted in Fig. 5.
When only mode I is considered, the crack develops
from A to C, and finally arrives at E. The cracking path
is perpendicular to the loading direction. The D1 spec-
imen experiment also gives A-C-E crack path, and the
force-COD curve is compared with that by the mode I

Meshing Grid: level 0

Meshing Grid: level 1

Loaded Specimen:
Blue body

Loading Specimen:
Red bodies

Fig. 3 The MPM computation model with a multi-level grid
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Fig. 4 Comparison of cracking patterns with different failure modes

simulation. As can be seen from Fig. 5, A to C crack
path is formed much earlier in the results of mode I
simulation. When only mode II is considered, the crack
develops from A to D, then to C, and finally reaches E.
But in the corresponding force-COD curve, there is no
flat stage as the third crack is initiated.

Based on the above parametric study, it seems inap-
propriate to consider only one failure mode in the evo-
lution of decohesion due to the nonlocal nature of fail-
ure evolution. Thus, we have considered mixed failure
modes: when s1 > smax and τt > τmax, cm = 1. The

resulting cracking pattern is shown in Fig. 4c, and the
corresponding force-COD curve is plotted in Fig. 5, as
compared with the experimental data. The crack first
develops from hole A to D, and the crack path is along
the loading direction which means the fracture mode
is mainly mode II. Then the crack develops from hole
D to C, and the crack path is also along the loading
direction, which means that the fracture mode is mainly
mode II. Finally, the crack develops from hole C to
E, and the crack path is perpendicular to the loading
direction, indicating that the fracture mode is mainly
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Fig. 5 Comparison of the force-COD curves with different fail-
ure modes

mode I. In the whole cracking process, three cracks are
produced with each crack corresponding to the loading
force drop on the force-COD curve. The detailed defor-
mation patterns in the cracking process are demon-
strated in Fig. 6. It is shown that both the cracking
patterns and corresponding force-COD curve are con-
sistent with the experimental data. Table 1 compares
the simulation and experimental results, where Fmax is
the maximum loading force in the whole process, and
C1, C2 and C3 denote the first, second and third crack
initiation, respectively.

It should be pointed out that the values of the material
parameters smax and τmax have a strong effect on the
failure evolution. When smax = 3,000 MPa and τmax =
820 MPa are chosen, the loading force is decreased to
1,000 N as the COD displacement reaches 3 mm, and
the cracking pattern is similar to that in Fig. 4a for mode
I fracture.

4 Concluding remarks

Both Mode I and Mode II failure were considered as the
dominant failure mode, respectively, in the decohesion
model before becoming aware of the SNL experimen-

Fig. 6 The deformation patterns during the crack evolution

tal data, but the results with Mode I only were used for
the blind prediction. Based on the parametric study and
available experimental data, the proposed model-based
simulation procedure has been calibrated to predict the
essential feature of the observed cracking response. It
is found that there is a transition between different fail-
ure modes along the cracking path, which depends on
the stress distribution around the path because crack-
ing is a nonlocal process. The MPM could effectively
discretize the complex cracking path without additional

Table 1 Comparison between the simulation and experiment results

Fmax (N) C1 C2 C3 Crack path

F (N) d (mm) F (N) d (mm) F (N) d (mm)

Simulation 9,553 8,734 2.10 6,963 4.00 4,748 5.15 A-D-C-E

Experiment 8,449 8,298 2.50 6,640 2.92 4,960 5.48 A-D-C-E
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treatment. The high velocity boundary condition yields
the response curve different from the quasi-static one,
which might be due to the wave interactions associ-
ated with the high loading rate. However, the crack-
ing pattern is not sensitive to the high loading rate.
The numerical oscillation with the explicit MPM code
appears to be large as compared with the experimen-
tal observation so the implicit MPM code might be
an alternative choice. Since the simulation results for
the post-peak response are sensitive to the decohesion
parameters governing different kinds of failure modes,
the image-based MPM should be developed to better
predict the micromechanics involved in the failure evo-
lution.
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