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As a meshless method, the material point method (MPM) is capable of modeling problems with extreme
deformation and material fragments. MPM uses a set of Lagrangian particles to discretize a material
domain. The interaction between particles is carried out via an Eulerian background grid which is used as
a finite element mesh to integrate momentum equations and to calculate spatial derivatives in each time
step. Therefore, the accuracy of MPM is mainly dependent on the cell size of the background grid. But, a
regular mesh with uniform cells is usually employed as the background grid, which results in poor ef-
ficiency for problems with localized extreme deformation. In this article, a tied interface grid material
point method is proposed for such problems, in which the background grid with several cell sizes for
different sub material domains can be used. The sub grid with refined cell size is used to cover the
material domain undergoing extreme deformation, while the sub grid with coarse cell size used to cover
the material domain elsewhere. The interaction between refined grid and coarse grid is implemented by
a tied interface method. Several numerical examples including stress wave propagation, Taylor bar
impact, and penetration problems, are studied to validate the accuracy and efficiency of the proposed
method, which shows that the presented method possesses higher efficiency and lower memory
requirement than MPM for problems with localized extreme deformation.
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1. Introduction

Since the 90s of the last century, meshless/particle methods
have attracted more and more attentions due to their capabilities
for modeling problems with extreme deformation and material
failure, where conventional finite element method (FEM) often
encounters mesh distortion and element entanglement. These
methods discretize a material domain by particles in the
Lagrangian framework, such as the smoothed particle hydrody-
namics (SPH) method [1-3], the element free Galerkin (EFG)
method [4,5], the reproducing kernel particle method (RKPM) [6,7],
material point method (MPM) [8,9], to name just a few. Up to now,
these methods and their extensions have been applied successfully
to impact/contact/penetration problems [10—14], explosion prob-
lems [15—17], crack expansion problems [18—21], fluid solid inter-
action problems [3,22,23], and so on.

Among the above-mentioned meshless methods, MPM takes
advantage of both Lagrangian and Eulerian descriptions, both of
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which give it the capability of modeling large deformation in a
more natural manner. In MPV, a set of Lagrangian particles is used
to discretize the material domain; an Eulerian background grid is
used as a finite element mesh to integrate the momentum equa-
tions and to calculate the spatial derivatives in each time step. At
the beginning of each time step, the particles are rigidly attached to
the background grid and move with it. Kinematic variables are first
mapped from the particles to the grid nodes by nodal shape func-
tions to establish the momentum equations on the background
grid. After solving the momentum equations, results are mapped
from the grid nodes back to the particles to update their positions
and velocities. At the end of each time step, the deformed grid is
reset to its initial state for the next time step. Hence, there is no
distortion normally associated with FEM, and no material interface
tracking difficulties normally associated with Eulerian method. The
particles flow through the background grid during the computation
process, and their interaction and connection are carried out via the
background grid. Furthermore, unlike others meshless methods,
the trial functions used in MPM are the same to that of FEM.
Therefore, MPM shows some advantages over other meshless
methods in efficiency and tension stability [24]. Up to now, sig-
nificant effort has been devoted to the development of MPM.
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Several methods [9,25—27] have been proposed to suppress the
artificial noise due to the particles moving across the cell boundary,
such as the generalized interpolation material point method [9],
the convected particle domain interpolation technique [25], the
dual domain material point method [26], and so on. Based on the
Lagrangian multiplier method, many works have been done to
establish the contact/friction/separation algorithm for MPM
[14,28,29]. Besides, a series of works have been done to couple
MPM with FEM to take fully their advantages by Zhang’s group
[23,30—32].

Although there is significant effort to extend MPM, few works
are devoted to the background grid which is very important due to
its significant influence on the efficiency and memory allocated. In
any given time step, it is necessary to search the cell in which a
particle is located and to calculate the value of grid nodal shape
function and its derivative. Generally, a regular grid with uniform
cells is adopted as the background grid. The two primary advan-
tages of the regular grid are: (i) the searching is simple with
complexity order of O(N), which reduces the computational cost
dramatically compared with SPH [24]; and (ii) it could also reduce
the computational cost for the shape function and its derivatives
calculations. However, there are three obvious disadvantages for
the regular grid: (i) it has a limitation to analyze body with arbitrary
geometry; (ii) there are many redundant cells which require un-
necessary computational cost and memory allocated, because it
must be larger than the material domain in space in order to cover
the trajectory of all particles; and (iii) it is not optimal for problems
with localized extreme deformation or material fragments, where a
local refined grid is preferable. To overcome the first disadvantage,
Wang et al. [33] proposed an irregular grid scheme with arbitrary
quadrilateral cells, where the ray-crossing algorithm is employed to
determine the cell in which a particle is located. Wieckowski et al.
[34] employed triangular cells in MPM with applications to the silo
discharging problem. However, the searching algorithm is till time
consuming especially for 3D large scale problems. To overcome the
second disadvantage, Ma et al. [24] proposed a dynamic regular
grid algorithm, which instantiates only the grid cells containing
particles. If all cells connected to a node have not been instantiated,
the node will not participate in computation. Therefore, the
method could improve the MPM’s efficiency and memory
requirement. But a regular background grid with uniform cells is
still used in Ma’s work [24].

To overcome the last disadvantage, a tied interface grid material
point method (TIGMPM) is proposed. The background grid is
composed of several sub grids with different cell sizes, where the
connection and interaction between two adjacent grids are carried
out by a tied interface method. In TIGMPM, the background grid
covering the material domain undergoing extreme deformation
can be refined locally, so the total number of grid cells and particles
can be reduced significantly. Furthermore, the moving method of
the sub grid with refined cell size is given especially for penetration
problems.

The proposed method is first validated by a stress wave
propagation problem and a Taylor bar impact problem, and then
applied to study the penetration problems. The numerical results
are in good agreement with the analytical results and available
experimental data, while the efficiency of TIGMPM is much
higher than that of MPM for problems with localized extreme
deformation.

The remaining part of this article is organized as follows. A brief
review of MPM is introduced in Section 2. The tied interface grid
MPM is proposed in Section 3, and its numerical implementation is
presented in Section 4. The numerical examples are given in Section
5, and the conclusions are summarized in Section 6.

2. Brief review of material point method

As depicted in Fig. 1, the material domain is discretized by a
number of particles, which carry all state variables. Because the
mass is lumped at each particle, the density can be approximated
by

p) = 3 myd(x ) ()
p=1

where p refers to a particle quantity, n, is the total number of
particles, m, is the mass, X, is coordinate, ¢ is the Dirac delta
function. The momentum conservation for material domain Q is

ajij + pb; = pil; (2)

where the subscripts i and j denote the component of the space
with Einstein summation convention, the superimposed dot in-
dicates the time derivatives, p is the current density, o is the
Cauchy stress, b; is the body force per unit mass, u; is the
displacement. The weak form of Eq. (2) with zero prescribed trac-
tion boundary condition is

/Pﬂi5uidV+ /pafjéuinV— /pb,-éu,-dv =0 3)

where cffj = 0;j/p. Substituting Eq. (1) into Eq. (3) leads to

np, n, p
. m
E mpuipéuip + E —poijpéuip_j — E mpb,-péuip =0 (4)
p=1 p=1 pP p=1

In each time step, particles are rigidly attached to the back-
ground grid. The kinematic information can be mapped between
particles and grid nodes via the grid nodal shape function. For 3D
problems, the 8-point hexahedral cell is usually employed, and
therefore the shape function is given as

Nip = g(1+EE0(1+mm)(1+85) 1=1,2,8 (5)

where (£ € [-1,1], n € [-1, 1], { € [-1, 1]) are the natural co-
ordinates of particle p. j, n; and {; take on their nodal value of (41,
+1, £1). The particle displacement u;, and its derivative u;j can be
interpolated by the grid nodal displacements as

Ui = Nty (6)
Uipj = Nppjlj (7)
o} O
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Fig. 1. Sketch of MPM discretization.
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where the subscript I refers to a grid node quantity. Substituting
Egs. (6) and (7) into Eq. (4), and invoking the arbitrariness of the
nodal virtual displacement duj; results in

Py = fPCHAM T =1,2,-.ng (8)
where
pir = myuy (9)

is the grid nodal momentum,

p
: m
firt=-> :Nlpj‘fijp_pp (10)
p=1 p

is the grid nodal internal force,

p

= mpNpbyp (11)
p=1

is the grid nodal external force, and oy, = 0(Xp), bip = bi(Xp).
If the lumped mass matrix

p
mp =" mpNp (12)
p=1

is used, Eq. (9) can be rewritten as

pir = muy (13)

The leap frog central difference time integration algorithm is
used to integrate the momentum equation Eq. (8). In the follows,
the sHpﬁrgcript k denotes the value of variable at time t*. Given uf‘
and uy, *, we seek for the solution at time t“*', From Eq. (8), the
momentum of grid node can be updated by

k+1/2 _ _k-1/2 k,ext k,int I
Py =pby =+ (le +fir )At< (14)
The positions xffp“ and velocities vf;“/ 2 of particle p are updated
by
k12
k+1 k k+1/2 K+ l
X = xf + AP T AN (15)
=1
k172 k=172 &
vy P =y 1P Al S afiNG, (16)

I=1

where vﬁ”/z = pflﬂ/z/m;‘, and af = fk/mk. After that, all the
variables assigned to the grid nodes are reset to zero, which in-
dicates that a new regular background grid is used in the next time
step.

In MPM, the particles are taken as quadrature points, and the
background grid is embedded in and deform with the material
domain only in the current time step. The interaction and
connection between particles are carried out via the background
grid. The accuracy of the MPM is mainly dependent on the cell size
of the background grid, not the particle interval. Therefore, a reg-
ular background grid with uniform cells is not optimal for 3D
problems involving localized extreme deformation and material
failure.

Background grid

2D\ 1(>_€ 9_()11

V1(>—>—€)c111

Coarse grid Refined grid

Fig. 2. Tied interface grid.

3. Tied interface grid material point method

In this section, the tied interface grid material point method is
proposed. In this method, the background grid is composed of
several sub regular grids with different cell sizes. The material
domain is discretized by particles with different particle intervals,
which is set as half of the cell size of the corresponding sub grid.
The refined grid is used to cover the material domain undergoing
extreme deformation, while the coarse grid used to cover the ma-
terial domain elsewhere. The interaction and connection between
adjacent grids is implemented by a tied interface method. The
particles located in refined grid are referred to as refined particles,
while the particles in coarse grid referred to as coarse particles.
However, the particles are not fixed to the background grid. In order
to track the localized extreme deformation, a method to move the
refined grid is proposed. In order to avoid numerical fracture, a
particle splitting method is employed to split the coarse particles
moving to the refined grid through the tied interface.

3.1. Tied interface method

In each time step, the tied interface is used to link two regular
grids with different cell sizes, as shown in Fig. 2. The refined grid
nodes located at the interface are referred to as slave nodes, while
the coarse grid nodes located at the interface referred to as master
nodes. Similarly, the coarse cells located at the interface are
referred to as master cells. The cell size ratio between the coarse
and refined grids is denoted by R, which is greater than or equal to

O Master nodes: 1, I, III, VI, . . .

o Slavenodes: a, b, c, . ..
O 11
a

IG —Q1l /@
D ¢

)>—
VIG U~y Vg Qfm

(a) (b)

Fig. 3. Tied interface method. (a) map information from slave nodes to master nodes;
(b) interpolate information from master nodes to slave nodes.
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Fig. 4. Tied interface searching: slave nodes and master cells.

1. For example, in Fig. 2, there are three tied interfaces, whose cell
size ratio R are 2, 4, and 2, respectively. For the sake of clarity, the
tied interface with R = 2 is used to illustrate the presented method.
Each sub grid has an independent grid nodes set, so there will be
grid nodes overlapping at tied interface, such as the node c in the
refined grid denoted by small circle and node III in the coarse grid
denoted by bigger circle, as shown in Fig. 2.

In TIGMPM, the velocity field of the background grid is used to
calculate the particle strain rate and to update the particle position,
while the acceleration field used to update the particle velocity.
Therefore, both velocity and acceleration of slave nodes and master
nodes at the interface between two grids must be consistent. In
order to connect two grids, the slave nodes are merged to the faces
of the master cells by mapping their nodal mass, momentum, and
force to the master nodes. After updating the motion of the master

Fixed coarse grid

Moving refined grid \r T

|
N\ |
Penetrator :D: | Target I
i |
|
— > v
]
(a)
r____—l r————_I
| | | |
:f::>: | : — |
1 | R
I______I I______I
(b) (c)

Fig. 5. Sketch of moving refined grid for penetration problems at three different
penetration times.

] o
N\ /. AW ""V.

g -
ol .o oi}----l@

(a) In coarse domain (b) In refined domain

Fig. 6. Numerical fracture.

nodes, the slave nodes move following the master faces, as shown
in Fig. 3.

As shown in Fig. 3(a), map the nodal mass and force of the slave
nodes onto the master nodes, namely

4
iy = M+ > dm(Es, m5)me (17)
s=1
£k k - k
fm :fmJFZ(bm(gSans)fs (18)
s=1

where subscripts m and s refer to a master node quantity and a
slave node quantity, respectively. (&, 7s) is the natural coordinates
of the slave node s, and

bm(Em) = 3 (14 E)(1 4 70) (19)

is the interpolation function associated with the master node m.

At the beginning of each time step, a new background grid is
used, and the grid nodal velocities are obtained by mapping the
particles momentum to the grid nodes. Although the velocities of
slave nodes and master nodes are consistent at the end of the
previous time step, they may not be consistent in the new back-
ground grid at the beginning of the current time step. Therefore, it
is necessary to remerge the master and slave nodes again by
mapping the nodal momentum of slave nodes onto the master
nodes by

4
P = P+ dmEamops (20)

s=1

Finally, the velocities of the master nodes can be obtained by

k—1/2 pk 12
v, =fm (21)
m mlrcn—l/Z
and the velocities of the slave nodes obtained by
r - — — T — — — 1 r - — — T — — — 1
I I I I
| |
| 3 |
I I I’q r'y I
13 I Pk . e |
~ | @ S k2
F-t-r - - = F-F oo 1!
[ ] [ ]
| , I | > l
' | Ly ! ' | '
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Fig. 7. Particle splitting.
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2.5N

Fig. 8. Discretization model of the rod with R = 2.

4
Vi =3 v (22)
m=1

Take the slave node a shown in Fig. 3(b) as an example, vy is the
velocity of the master grid nodes, namely [, I, Ill, and VI. After
remerging the master and slave nodes, the velocity fields of both
coarse grid and refined grid are consistent at the tied interface,
which will be used to calculate the strain rate of particles.

After integrating the momentum equation of the master nodes,
the slave nodes move following the master cell surface, namely

v£<+1/2

= v '+ akadk (23)

where the acceleration of the slave node, a¥, is interpolated from
the master grid nodes as

4 fk
a = > puEng)Tm (24)
m=1 mm

The velocities and accelerations of grid nodes are used to update
the positions and velocities of particles, respectively.

3.2. Tied interface searching
In Section 3.1, the slave nodes are tied to the faces of master cells.

Tied interface searching method is applied to search the slave
nodes and the master cells at the interface between two adjacent

grids. A refined grid node will be tied to a master cell only when
both the master cell and any cell connected with the refined grid
node contain particles at the same time. Therefore, not all the
refined grid nodes located at the interface are slave nodes, and not
all the coarse cells located at the interface are master cells.

Take a 2D problem shown in Fig. 4 as an example to introduce
the searching method in detail. The face nodes of the refined grid,
such as q, b, ¢, d, e, and f are candidates for slave nodes. The coarse
cells are numbered from O to 14. The refined grid will take the place
of coarse cells 2, 3, 7 and 8. The replaced coarse cells are not
instantiated and set as virtual cells which won’t participate in
computation but serve as auxiliary cells to search the coarse cell in
which the face nodes is located. Loop over all the face nodes g; of
the refined grid to identify the slave nodes and master cells by the
following three steps:

1. Label grid nodes as null nodes if there is no particle located in
any cell connected with them. For example, the grid node a is a
null node. Skip all the null nodes.

2. Search the coarse cell in which the node g; is located by the
following C++ statements

NumCellx = int((spanX(2) — spanX(1))/DCell + 0.5)
NumCelly = int((spanY(2) — spanY(1))/DCell + 0.5)
NumCellxy = NumCellx*NumCelly

ix = int((xg — spanX(1))/DCell)

iy = int((yg — span¥(1))/DCell)

iz = int((zg — spanZ(1))/DCell)

InWhichCell = iz*NumCellxy + iy*NumCellx + ix

where xg, yg, and zg are the coordinates of node g, DCell is the cell
size of the coarse grid. spanX, spanY, and spanZ are the minimum
and maximum X, y, and z coordinates of the coarse grid.
InWhichCell is the index of the cell, which will be termed as iCell
hereafter.

0.02 0.02
0 " " o* 0 - o
&£-0.02 Theory result _‘»‘ £-0.02 Theory result
=-0.04 MPM1 =-0.04 MPM1
% 0,06 _A_, TIGMPM R=1 Z 006 - - MPM2
2 —x- -TIGMPM R=2 g —o— MPM3
©n—0.08f —o—TIGMPM R=3 “»1—0.08 —%— MPM4
-0.1 —%*— TIGMPM R=4 A - —0.1 -
-0.12 —0.12 ¥
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Coordinate/mm Coordinate/mm
(a) TIGMPM (b) MPM
Fig. 9. Elastic stress profiles obtained by TIGMPM and MPM at time t = 7.6 x 10”3 ms.
0.02 0.02
0 Theory resul 0 besopers
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& —0.08 — %— TIGMPM R=4 A-0.08 | T Mew
0.1 ol m Sl -0.1 _@f&;@-*e—*%—xe—*——e-
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(a) TIGMPM (b) MPM

Fig. 10. Elastic stress profiles obtained by TIGMPM and MPM at time t = 15.6 x 107> ms.
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Fig. 11. Elastic stress profiles obtained by TIGMPM and MPM at time t = 41.6 x 10> ms.

If the refined grid node gs is located on a corner of iCell, any cell
connected with the corner may be master cell candidates; if the
refined grid node g; is located on a boundary of iCell, any cell
connected with the boundary may be master cell candidates. But
only the instantiated coarse cells are valid candidates. For the grid
node c shown in Fig. 4, iCell is 14, and coarse cells 8, 9, and 13 are
connected with the grid node c. However, the coarse cell 8 has been
replaced by the refined cells, so the valid candidates are cells 9, 13,
and 14. Similarly, cells 1 and 6 are the valid candidates for grid node
e, and only cell 6 is the valid candidate for grid node d.

3. Determine the slave nodes and master cells. For master cells,
there are particles located in them. The distance between their
lower left corner and the node g; is less than or equal to DCell in
x axis direction. Therefore, loop over all valid candidate cells to
check if there is any coarse particles located in the cell, and
calculate the distance L from the node g to the lower left corner
of the cell in x axis direction. If there is a coarse particle located
in the coarse cell, and L is less than or equal to DCell of the coarse
grid, the coarse cell is labeled as a master cell and the node g is
labeled as a slave node. Once the master cell is found, terminate
the loop. For example, the grid nodes c, d, and e are slave nodes,
but a, b and f are not. The coarse cells 1, 4, 6, and 14 are master
cells. In addition, calculate the natural coordinates of the slave
nodes on the surface of the master cell, which will be used in
Egs. (22) and (17).

In 3D problem, the tied interface searching can be conducted in
a similar way.

3.3. Moving refined grid

For penetration problems, it is not necessary to use refined grid
for the whole material domain which may undergo extreme
deformation. As shown in Fig. 5, the size of the penetrator is much
smaller than that of the target, and the localized extreme defor-
mation mainly occurs near the contact area between the penetrator
and target. Therefore, the refined grid just needs to cover the
contact area, and is moved with the penetrator.

In TIGMPM, the refined grid can be moved to track the material
domain undergoing localized extreme deformation. During the
computation process, the size of the refined grid is fixed. The initial
position of the refined grid is set by users. In each time step, the

Table 1
The root mean sqaure (RMS) error comparison.
Case TIGMPM MPM
1 2 3 4 1 2 3 4
Samples Number 400 200 133 100 400 200 133 100
RMS error (x10~%) 64 68 73 79 64 71 79 87

displacement of the refined grid can be determined by
L¥ = 0K — 0!, where Of denotes the geometry center of the
penetrator at time step k. Considering that the moving distance of
the refined grid must be integer times of the cell size of the coarse
grid, the actual displacement is M¥ = int(L¥/DCell)*DCell, and the
residual displacement L¥ — M¥ is accumulated to L¥*'. Once the
refined grid is moved, the background grid cells and nodes should

be reset and the tied interface should be researched again.

3.4. Particle splitting method

When coarse particles move to the refined grid, numerical
fracture will occur. In TIGMPM, the interaction between particles is
carried out via the background grid. If there are empty cells be-
tween two particles, there will be no interaction between the two
particles, which result in numerical fracture [35], as shown in Fig. 6.

Particle splitting method is proposed to avoid numerical frac-
ture. In the initial discretization, the particle interval is set as half of
the cell size of the corresponding grid. Therefore, the particle in-
terval ratio of the coarse particles to the refined particles is also
equal to R. When the coarse particles travel into the refined grid, or
the refined grid moves into the coarse particles domain, the coarse
particle will be split to R? and R particles uniformly to avoid nu-
merical fracture for 2D and 3D problems, respectively. The mass,
volume, and internal energy of the coarse particle are distributed to
the new particles evenly; the stress, strain and other history vari-
ables of the new particles are set to those of the coarse particle.
Assuming that in the initial configuration each particle represents a
cubic, the length of the coarse particle domain in the current
configuration can be obtained by its strain as
L,' = L0(1 +£i) (25)
where Ly = {/m/p is the particle initial length, and ¢; indicates the
accumulated strain of the particle in ith direction. In 2D problem:s,
one coarse particle is split to four new refined particles, as shown in
Fig. 7.

4. Numerical implementation

A contact/friction/separation algorithm is implemented in
TIGMPM to handle the contact event between different bodies. The
refined grid is large enough to cover all the contact area, so it is
unnecessary to consider the contact conditions at the tied interface.
The detail of the contact method is given by Huang et al. [14].

Table 2

Material constants of Taylor bar.
p (g/mm?) E (MPa) v A (MPa) B (MPa) n c
893 x 1073 117 x 103 0.35 157 425 1.0 0.0
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(a) R=2 (b)R =4

Fig. 12. Discretization models of Taylor bar.

The detailed implementation of TIGMPM is presented here for
one time step.

1. Map the mass and momentum of all particles to the back-
ground grid. If the particle is located in the refined grid, map
its mass and momentum to the refined grid; otherwise map
to the coarse grid.

2. Apply boundary conditions on the background grid nodes.

3. Search for the slave nodes and master cells.

4. Map the slave nodal mass and momentum to the master
nodes by Egs. (17) and (20), respectively.

5. Reset the velocities of slave nodes by Eq. (22).

6. Calculate the strain rate and spin tensor of particles, and then
update particles stresses.

7. Integrate the momentum equations:

(a). Calculate the nodal forces of background grid;

(b). Map nodal force of the slave nodes onto the master grid
nodes by Eq. (18);

(c). Apply boundary conditions on the background grid
nodes again;

(d). Solve the momentum equations on the background grid;

(e). Reset the acceleration of the slave nodes by Eq. (24) and
calculate their velocities by Eq. (23).

8. Update particles positions and velocities by Egs. (15) and
(16), respectively.

9. Move the refined grid by the method presented in Section
3.3, if necessary; redefine the background grid.

(a) TIGMPM R =2

(b) TIGMPM R =4

10. Split the coarse particles that moved into refined grid by the
method presented in Section 3.4.

5. Numerical examples
5.1. Propagation of elastic stress wave

The propagation of elastic stress wave in an elastic rod is studied
to validate the accuracy of TIGMPM with different R. The length of
the rod is 100 mm and the cross sectional area is 6 mm x 6 mm. The
rod is loaded by a force of 2.5 N at the right side and fixed at the
other side, as shown in Fig. 8. The density of the rod is set as
p = 5 Kg/m®, and the elastic parameters are Young’s modulus,
E = 100 GPa, and Poisson ratio, » = 0. Therefore, the sound speed is
¢ = VE/p = 44721 m/s.

The right part of the rod with length of 40 mm is covered by a
refined grid, while the rest part covered by a coarse grid, as shown
in Fig. 8. The tied interface position is fixed. Symmetric boundary
conditions are applied on the top, bottom, front and back sides of
the rod to mimic a 1D problem. Hence, the stress distribution can
be obtained analytically from the 1D wave propagation theory. Four
cases with R = 1, 2, 3, 4 are studied. Fix the cell size of the refined
grid as 0.25 mm, while the cell sizes of the coarse grids are
0.25 mm, 0.5 mm, 0.75 mm, and 1 mm in the four cases, respec-
tively. In case with R = 1, TIGMPM is equivalent to MPM with cell
size 0.25 mm. For comparison, this problem is also solved by MPM
with cell sizes 0.25 mm(MPM1), 0.5 mm(MPM2), 0.75(MPM3), and
1 mm(MPM4), respectively.

The stress profiles obtained by TIGMPM and MPM are compared
in Figs. 9—11 at three different times for all cases. Fig. 9 shows the
stress profiles at time t = 7.6 x 103 ms. The wave front travel
distance is | = ct = 33.99 mm, which is less than the length of the
refined grid. The stress wave has not propagated into the coarse
grid through the tied interface, so the coarse grid does not influence
the result at this time. Therefore, all the results obtained by
TIGMPM with different R are the same to those obtained by MPM1,
as shown in Fig. 9(a). However, the accuracy of MPM depends on
the cell size of the background grid, as shown in Fig. 9(b).

Fig. 10 shows the stress profiles at time t = 15.6 x 103 ms. The
wave front travel distance is | = 69.76 mm, which is longer than the
length of the refined grid. At this time, the stress wave has prop-
agated into the coarse grid domain from the refined grid domain.
Therefore, the influence of R could be studied. As shown in
Fig. 10(a), the stress profiles are different to each other at the wave
front with different R. For case with R = 1, TIGMPM is equivalent to
MPM1. Meanwhile, the oscillation of the stress profile is increased

(c) MPM

Fig. 13. Final shape of Taylor bar obtained by TIGMPM with different R and MPM with cell size of 0.19 mm.
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Table 3 Table 5
The computational results comparison. Material constants of steel.
DCell (mm)/R L (mm) D (mm) p (g/mm?) E(GPa) v A (GPa) B(GPa) n C c(m/s) s ¥
Experiment 16.2 13.5 7.85 x 1073 200 03 06 0.275 036 0 3600 19 1.7
MPM 0.19 16.21 13.28
0.38 16.29 13.14
0.76 16.39 12.68 ) ) o )
TIGMPM R=2 16.29 13.28 given. The cell size of the refined grid is 0.19 mm, and R is chosen as
R=4 16.29 13.24 2 and 4 for case I and case II, respectively, as shown in Fig. 12. For

when R increasing, similar to MPM with different cell sizes as
shown in Fig. 10(b). Comparing Fig. 10(a) with (b) shows that the
accuracy of the TIGMPM is lower than MPM with refined grid but
higher than MPM with coarse grid. Furthermore, for case with
R = 4, there is a little oscillation between 80 mm and 90 mm which
is far away from the wave front. This is caused by the wave
reflection from the tied interface due to the large cell size difference
between the refined grid and the coarse grid when the stress wave
is propagating from the refined grid to the coarse grid. In addition,
Table 1 compares the root mean square (RMS) error for each case,
which shows that the result of TIGMPM is better than that of MPM
for the cases with same sample points.

Fig. 11 shows the stress profiles at time t = 41.6 x 10~> ms ob-
tained by TIGMPM and MPM. At this time, the stress wave has re-
flected from the left side forward to the right side, so the value of
the stress wave is doubled due to the fixed boundary conditions.
Comparing Fig. 11(a) and (b) shows that the results in the coarse
domain obtained by TIGMPM are the same to that by MPM with the
same coarse cell sizes. There is no wave reflection from the tied
problem interface in case with R = 4, because the stress wave
propagates from the coarse grid into the refined grid.

In summary, before the stress wave reaches to the tied interface,
the accuracy of TIGMPM is only dependent on the refined grid cell
size. Once the stress wave passes through the tied interface, the
accuracy of TIGMPM is between that of MPM with the coarse grid
and MPM with the refined grid. In addition, the influence of wave
reflection at the tied interface is dependent on the cell size ratio R.
When the stress wave travels from the coarse grid into the refined
grid, the accuracy of TIGMPM is mainly influenced by the coarse
grid cell size.

5.2. Taylor bar impact

The typical Taylor bar test conducted by Johnson et al. [36] is
studied, in which a cylinder with an initial velocity of 190 m/s
traveled to a rigid wall. The initial length and diameter of the cyl-
inder are Ly = 25.4 mm and Dy = 7.6 mm, respectively. Johnson—
Cook model is applied for the cylinder with the material constants
listed in Table 2 [36].

The discretization model is shown in Fig. 12. The tied interface of
the background grid is fixed at 3.8 mm from the bottom of the
cylinder. The bottom part of the cylinder is covered by a refined
grid, while the top part covered by a coarse grid. Two cases are

Table 4
The computational cost comparison.
DCell End time n, Total CPU time (s)
(mm)/R (ms) steps
MPM 0.19 0.08 1 342 408 3531 9488
0.38 0.08 169 376 1765 963
0.76 0.08 21172 882 27
TIGM R=2 0.08 696 416 3530 5158

R=4 0.08 614 572 3532 3767

comparing, this problem is also simulated by MPM with cell sizes of
0.19 mm (MPM1), 0.38 mm (MPM2), and 0.76 mm (MPM2).

The final shapes of the cylinder obtained by TIGMPM and MPM
with cell size of 0.19 mm (MPM1) are shown in Fig. 13 in color of
equivalent plastic, which shows that Fig. 13(a) is close to Fig. 13(c),
but Fig. 13(b) is not very close to Fig. 13(c) due to the big value of
R = 4. Besides, the final bottom diameter D and length L of the
deformed cylinder obtained by TIGMPM and MPM are compared
with the experimental data in Table 3. The variable D mainly
measures the result obtained by the refined grid, while the variable
L measures the result obtained by the whole background grid.
Therefore, the value of D in case I is very close to MPM1, while the
value of L in case I is close to MPM2 due to the influence of the
coarse grid. For case II, the value of D is between those obtained by
MPM1 and MPM2, while the value of L is very close to that of case I,
because the extreme deformation mainly occurs at the bottom of
the cylinder.

Furthermore, the CPU time and the total number of particles n,
for all cases are listed in Table 4. The CPU time used by TIGMPM is
between that used by MPM with the refined grid and MPM with the
coarse grid. Except that, n, of TIGMPM is smaller than that of MPM
with refined grid, so the memory requirement by TIGMPM is
smaller than that by MPM.

In summary, the numerical accuracy in the material domain
covered by the refined grid can be improved. The results of
TIGMPM with R = 2 are close to MPM1, while the computational
cost of TIGMPM is about half of MPM. The results of TIGMPM with
R = 4 are close to TIGMPM with R = 2, while the CPU time is about
73% of case 1. Therefore, the accuracy and efficiency of TIGMPM is
dependent on R. But, by comparing the results of case II with
MPM2, the computation cost of TIGMPM is expensive with a little
accuracy improved, which indicates that TIGMPM is suitable for
impact and penetration problems with localized extreme
deformation.

5.3. Penetration of steel sphere

A steel sphere penetration problem [14,37] is studied. The
sphere impacted to a circular steel plate in its normal direction. The
initial velocity of the sphere is 200 m/s. The diameter of the sphere
is 10 mm, while the thickness and diameter of the target plate are
1 mm and 178 mm, respectively. Both the sphere and the plate are
modeled as an elastic—plastic material, whose deviatoric stress is
updated by the Johnson Cook constitutive model, and pressure

Refined grid

Fig. 14. Discretization model of sphere impacting plate.
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t=0.06ms

=0.14ms

(a) TIGMPM

=0.22ms

=0.06ms

=0.14ms

=0.22ms

(b) MPM

Fig. 15. The configurations at various time step obtained by both TIGMPM and MPM.

(a) Experiment

v

(b) TIGMPM

'v—

(c) MPM

Fig. 16. Final deformed shape of the target plate.

Table 6
The computational results and cost comparison.
DCell (mm) h/D  Total particles Total steps CPU time (s)
Experiment — 084 -— - -
MPM 0.5 0.85 404 344 6737 12314
TIGMPM 0.5/1 0.85 201074 6737 4875

updated by the Mie—Griineisen equation of state. The material
constants are listed in Table 5 [ 14]. When the effective plastic strain
efjl reaches the strain of 0.5, the deviatoric components of the
stress tensor are set to zero to take account of the material failure.
The frictional coefficient between the sphere and target is set to
zero.

One-fourth of the model is studied due to symmetry. As shown
in Fig. 14, the background grid near the sphere is locally refined. The
cell sizes of the refined grid and the coarse grid are 1 mm and
2 mm, respectively. The ratio R is 2. For comparing, this problem is
also simulated by MPM with the refined cell size of 1 mm.

The configurations in color of equivalent plastic strain at
different times obtained by TIGMPM and MPM are compared in
Fig. 15, which show that the results agree well with each other. The

3 CRH

12.9 mm

| ———67.5 mm ————>|<21.4 mm

Fig. 17. Schematic of the ogive-nosed projectile.

final configurations of the deformed plate obtained by TIGMPM and
MPM are compared with that obtained by the experiment in Fig. 16,
where h is the height of the final deformed plate and D is the
diameter of penetrated hole. As listed in Table 6, the values of h/D
obtained by both methods are the same 0.85, which is close to the
experiment value of 0.84. The final shapes of the deformed plate
obtained by both TIGMPM and MPM are in good agreement with
experiment data, while the CPU time used by TIGMPM is only about
1/3 of that by MPM.

5.4. Penetration of thick plate

The impact of an ogive-nosed high strength steel projectile
against an A6061-T651 thick plate [38] is studied. The projectile has
a length of 88.9 mm and a diameter of 12.9 mm with a 3.0 caliber-
radius-head, as shown in Fig. 17. The target has a thickness of
26.3 mm and an area of 110x 110 mm, and the projectile impacts the
target obliquely with an angle of 30°.

In the experiment, the configurations of the projectiles were
kept well but with a little permanent deformation after penetra-
tion. Hence the projectile is modeled by an elastic—plastic material
law with isotropic hardening. The target is modeled by an elastic—
plastic material law, whose deviatoric stress is updated by the
Johnson Cook constitutive model, and pressure by the Mie—Grii-
neisen equation of state. The material constants for the projectile
and target are listed in Tables 7 and 8 [38,39]. For target, material
failure is taken into account by setting the deviatoric components
of the stress tensor to zero when the effective plastic strain reaches
the strain eg,j = 1.6. The friction coefficient between projectile and
target is set as zero.

Table 7
Material constants of Projectile.
p (g/mm?) E (GPa) n ay (GPa) Er (GPa)
0.00785 202 0.3 143 14.759
Table 8
Material constants of Target.
p (g/m3) E(MPa) u A(MPa) B (MPa) n C m
0.0027 69 0.3 262 52.1 0.41 0 0.859
Co (mm/ms) s Yo Tmei (K)  Troom (K)
5350 1.34 2.0 875 293
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Refined Grid

Refined Grid

(a) =0 ms (b) =0.08 ms

Fig. 18. The positions of refined background grid at different times.

Due to symmetry, one half of the model is studied as shown in set as length of 48 mm in x direction, 24 mm in y direction, and
Fig. 18(a). The background grid near the projectile is locally refined. 110 mm in z direction. At the beginning of the simulation, the
The cell sizes of the refined grid and coarse grid are 1 mm and refined grid is set to cover the whole projectile. Then, it is moved

2 mm, respectively. In this example, the range of the refined grid is with the geometry center of the projectile throughout the

=829 us t=152.8 pus t=1944 ps
(a) Experiment

e

=83 pus =153 ps t=194 ps
(b) TIGMPM
=383 s t=153 ps =194 ps
(c) MPM

Fig. 19. Projectile-target interactions at three different times with the striking velocity vo = 575 m/s.
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Table 9
The projectile’s residual velocities v, for different striking velocities vo.
Vo (m/s) v, (m/s)
Experiment TIGMPM MPM
446 288 299 306
575 455 470 471
730 655 651 652
Table 10

The computation cost comparison.

Vo End time Total steps CPU time (min)

(ms) TIGMPM MPM TIGMPM MPM
446 0.4 7652 7679 119 467
575 03 5879 5885 95 391
730 021 4228 4227 68 258

computational process to track the localized extreme deformation,
and therefore more and more particles of the target are split as
shown in Fig. 18. Hence the accuracy for the contact between
projectile and target is guaranteed by the refined grid and refined
particles. For comparison, this problem is also simulated by MPM
with the refined cell size of 1 mm.

We focus first on the case with striking velocity, vo = 575 m/s.
The residual velocity of the projectile obtained by TIGMPM and
MPM are 470 m/s and 471 m/s, respectively, both of which are in
good agreement with the experiment data 455 m/s. Moreover, the
projectile—target interactions at three impact times are compared
in Fig. 19, where Fig. 19(a) shows the results obtained by experi-
ment, Fig. 19(b) by TIGMPM, and Fig. 19(c) by MPM. The projectile’s
shapes obtained by TIGMPM and MPM are consistent with the
experimental results at the three impact times.

Furthermore, the projectiles with different striking velocities
are investigated with the same background grid used above. With
different initial velocities, the time needed by projectile to pene-
trate the plate is different. So, the end time setting for each case is
different. The residual velocities of the projectiles obtained by
TIGMPM and MPM are listed in Table 9, which shows that the nu-
merical results agree well with the experimental data. The residual
velocities obtained by TIGMPM are less than that by MPM due to
the tied interface and the coarse grid. However, the difference be-
tween two methods is negligible. The efficiency of TIGMPM is much
higher than that of MPM as shown in Table 10, while the steps used
by both methods are close to each other. The increasing efficiency
factor is not a determinate number for different cases due to
different parameters such as initial velocity and end time.

6. Conclusion

Different with other meshless methods, material point method
(MPM) uses two descriptions to discretize material domain, a set of
Lagrangian particles and an Eulerian background grid. The accuracy
of MPM mainly depends on the cell size of the background grid, and
the computational cost is related to the total number particles and
cells used in MPM. MPM usually employs a uniform regular back-
ground grid with a uniform particles discretization, which makes it
time consuming and memory consuming for problems with local-
ized extreme deformation, where refined grid and refined particles
are only needed in the local material domain.

In order to avoid the shortcomings of MPM, a tied interface grid
material point method (TIGMPM) is proposed, in which the back-
ground grid could be composed of several sub regular grids with
different cell sizes. By this method, the background grid and

particles covering the material domain undergoing localized
extreme deformation are locally refined. The interaction between
adjacent sub grids is implemented via a tied interface method.
Furthermore, the refined grid could be moved to track the material
domain involving extreme deformation. A series of numerical ex-
amples are studied, which show that the efficiency of TIGMPM is
much higher than that of MPM, and the accuracy is close to that of
MPM with refined mesh for whole material domain.
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