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Abstract: The material point method (MPM) discretizes the material domain5

by a set of particles, and has showed advantages over the mesh-based methods6

for many challenging problems associated with large deformation. However, at7

the same time, it requires more computational resource and has difficulties to con-8

struct high order scheme when simulating the fluid in high explosive (HE) explo-9

sion problems. A coupled finite difference material point (CFDMP) method is10

proposed through a bridge region to combine the advantages of the finite difference11

method (FDM) and MPM. It solves a 3D HE explosion and its interaction with12

the surrounding structures by dividing the problem domain into FDM region and13

MPM region in space. FDM is employed to simulate the region where the detona-14

tion products disperse into the surrounding air, while the FSI region is simulated by15

MPM. A bridging region is employed to exchange the information. In the bridge16

region, MPM provides the boundary condition for FDM region by mapping the17

variables from MPM background grid nodes to FDM fictitious points, while FDM18

provides the boundary condition for MPM region by mapping the variables from19

FDM cell-centre points to MPM interface grid nodes. The transportation between20

the two computational regions is implemented by moving particles in the bridge re-21

gion. Numerical results are in good agreement with those of theoretical solutions,22

empirical formula and experiments. No obvious interface effect are observed in the23

bridge region in numerical tests.24
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1 Introduction27

A high explosive (HE) explosion is characterized by a number of challenging be-28

haviors including the highly pressurized product gas propagating into the quiescent29

surrounding air and the following fluid structure interaction (FSI) with the struc-30

tures nearby [Zukas and Walters (1998)]. So a lot of research have been carried out31

to study these kind of problems.32

The traditional methods can be classified into Lagrangian method and Eulerian33

method based on the frame of reference [Benson (1992)]. The Lagrangian method34

has been widely used for structural analyses because of its capability of modeling35

history-dependent material and tracking material interface. A common practice36

in modeling HE explosion problems is to discretize the structure by Lagrangian37

finite elements and then the explosion effects are taken into account by applying38

the pressure load on the structure surface. For examples, a plate under air blast39

loading was studied by Jacinto et al. [Jacinto, Ambrosini, and Danesi (2001)] and40

the spallation in reinforced concrete plates subjected to blast loading was studied41

by Xu et al. [Xu and Lu (2006)]. However, the Lagrangian finite element method42

(FEM) suffers from mesh tangling which deteriorates its numerical accuracy and43

efficiency dramatically.44

Recently, many meshless methods based on Lagrangian framework have been pro-45

posed as the alternatives for the traditional finite element methods, which have46

showed advantages for problems associated with large deformation. Among them,47

the smoothed particle hydrodynamics (SPH) [Lucy (1977); Liu and Liu (2003)] and48

material point method (MPM) [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou,49

and Schreyer (1995)] have been successfully applied to HE explosion problems.50

Detonations of HE in air and underwater were simulated by SPH [Liu, Liu, Zong,51

and Lam (2003); Liu, Liu, Lam, and Zong (2003b)]. The numerical tests revealed52

the ability of SPH in modeling explosion problems with arbitrary charge shape and53

different orientations. Ma et al. [Ma, Zhang, Lian, and Zhou (2009)] proposed an54

adaptive MPM for simulating the HE explosion problems whilst Lian et al. [Lian,55

Zhang, Zhou, Ma, and Zhao (2011)] extended the MPM method to the explosively56

driven metal problems whose numerical results agreed well with the Gurney solu-57

tions. Zhang et al. [Zhang, Zou, VanderHeyden, and Ma (2008); Zhang, Ma, and58

Giguere (2011)] enhanced MPM to simulate a series of fluid-structure interactions59

and multi-material interactions problems. Using MPM, Banerjee [Banerjee (2004)]60

simulated the fragmentation of cylinders due to explosively expanding gases gen-61

erated by a high energy material inside the cylinders, and Hu et al. [Hu and Chen62

(2006)] studied the synergistic effects of blast and fragmentation on a concrete wall.63

Furthermore, a comparison study of MPM and SPH in modeling hyper velocity im-64

pact problems was conducted by Ma et al. [Ma, Zhang, and Qiu (2009)]. These65
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studies concluded that these two methods possesses a great potential for simulating66

large deformation FSI problems at high strain-rate. However, the particle methods67

require more computational resource and have difficulties to construct high order68

scheme when simulating the fluid in high explosive (HE) explosion problems.69

In contrast to the Lagrangian method, the Eulerian method employes fixed meshes70

so it is not plagued by mesh distortion. They usually solve the fluid region in HE71

explosion problem together with approaches for tracking the material interfaces and72

the internal history variables, such as the Youngs interface reconstruction method73

[Youngs (1982)], level set method [Osher and Fedkiw (2001)] and fuzzy interface74

method [Ning and Chen (2004)]. Ma et al. [Ma, Wang, and Ning (2008)] developed75

a multi-material Eulerian hydrodynamic code with modified Youngs’ interface re-76

construction algorithm for the simulations of explosion problems such as explosion77

in tunnel and steel shaped charge jet. Luccioni et al.[Luccioni, Ambrosini, and78

Danesi (2004)] employed AUTODYN to study the structural failure of a reinforced79

concrete building inflicted by an air blast load. The dispersion process of the HE80

products in air was simulated by the three-dimensional Euler FCT solver. Wu et81

al. [Wu and Hao (2005)] simulated the ground shock and air blast pressure gener-82

ated from surface explosions using AUTODYN2D. Furthermore, newly developed83

methods based on Eulerian framework such as Discontinuous Galerkin Method84

(DGM) [Cockburn, Hou, and Shu (1990)] has been used to solve the gaseous deto-85

nation problems [Wang, Zhang, Shu, and Ning (2012)]. These studies show sound86

ability of Eulerian method in solving wave propagation process in HE explosion87

problems. However, the Eulerian description limits its ability to handle the FSI88

problems by one single method, so it is usually coupled with a Lagrangian method89

to discretize the region of structures.90

There are also some mixed methods which take the advantages of both Lagrangian91

and Eulerian descriptions. A well-known example is the arbitrary Lagrangian-92

Eulerian method (ALE) [Liu, Belytschko, and Chang (1986)]. The major numerical93

difficulty of ALE is developing an effective and efficient mesh moving scheme for94

complicated 3D problems. Furthermore, the numerical diffusion and dissipation95

still exist in ALE method. A detailed review on Lagrangian, Eulerian and their96

mixed methods was presented by Benson [Benson (1992)].97

Since the Lagrangian method possess advantages in simulating the structures with98

historical variables and the Eulerian method handle the fluid better, much effort99

has been devoted to couple these two type of methods so as to take advantage of100

each method to simulate the HE explosion and the relevant large deformation prob-101

lems. Fairlie et al. [Fairlie and Bergeron (2002)] described a coupled methodology102

for simulating the surface-laid or buried charges explosions. In the methodology,103

the air and explosive were modeled in an Euler-FCT grid as a single ideal gas104
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while the surrounding soil and complex targets were modeled by Lagrangian grid.105

Zhang et al. [Zhang and Xu (2007)] investigated a cylindrical shell loaded by blast106

wave from a central charge. Finite volume method (FVM) was used to model the107

HE in ALE framework and FEM was adopted to model the shell in Lagrangian108

framework. Guillkey et al. [Guilkey, Harman, and Banerjee (2007)] developed109

an approach for solving full-physics FSI problems using the Eulerian description110

(FVM) for fluids and the Lagrangian description (MPM) for solids. To simulate111

FSI problems with large deformations in the structure, Gilmanov et al. [Gilmanov112

and Acharya (2008)] developed an effective numerical method in which the hybrid113

immersed boundary method (HIBM) was employed to resolve complex boundaries114

for the fluid flow and MPM was coupled to resolve the structural stresses and de-115

formation. The combined method was implemented in the framework of finite116

difference method (FDM). Flekkoy et al. [Flekkoy, Wagner, and Feder (2000)] in-117

troduced a “hybrid model” that permits a continuum description in one region to be118

coupled to an atomistic description in another region. The two regions were solved119

by FDM and molecular dynamics (MD) respectively.120

Coupling between meshless methods and FEM are also carried out to simulate the121

problems with large deformation. Aktay et al. [Aktay and Johnson (2007)] devel-122

oped a FEM/SPH coupling technique for high velocity impact (HVI) simulation of123

composite panels. In the technique, contact interfaces were employed to couple the124

discrete smoothed particles and finite elements which were employed to model the125

parts undergoing large and small deformation, respectively. Zhang et al. [Zhang,126

Sze, and Ma (2006)] developed an explicit material point finite element method127

for HVI. In their method, the momentum equations were solved on a predefined128

regular grid in the severely deformed region and on FE mesh elsewhere. Lian et129

al. [Lian, Zhang, Zhou, and Ma (2011)] developed a coupled approach in which130

the bodies with large and mild deformation were discretized by MPM and FEM,131

respectively. The interaction between two bodies was handled by a contact method132

and the FE nodes on the contact interface were treated as special particles. To fur-133

ther improve the efficiency, Lian et al. [Lian, Zhang, and Liu (2012)] proposed an134

adaptive material point finite element method in which material domains were ini-135

tially discretized into finite elements (FE). Depending on severity of the distortion136

or plastic strain being developed, some elements were adaptively converted into137

MPM particles during the solution process.138

Most of the coupling between Lagrangian methods and Euler methods divide the139

computational domain by an interface between fluid and structure in solving FSI140

problems. Individual materials occupy distinct regions in space, with interactions141

occurring at the material interfaces. Because of the separated nature of the materi-142

als, the interface requires additional treatment and often introduce numerical error.143
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In this paper, a coupled finite difference material point (CFDMP) method is de-144

veloped to model the 3D HE explosion and its interaction with the surrounding145

structures. Taking the advantage of handling the shock wave propagation, FDM146

is employed to simulate a large proportion of the fluid region, while MPM is em-147

ployed in the FSI region which contains the structures and the fluid near the struc-148

tures. Therefore, the interface between two computational regions is located in the149

same material region (fluid) and the interface effect could be significantly reduced.150

The material interface is located in the MPM region so that the fluid-structure in-151

teraction is solved in MPM region to fully take its sound ability for simulating152

history-dependent material and tracking the material interface. Hence, the region153

involved shock wave dispersion problem is simulated by FDM and the region in-154

volved history-dependent materials and FSI problems are simulated by MPM. The155

interaction between FDM region and MPM region are implemented by a “bridge156

region” which contains only one material. MPM provides the boundary condition157

for FDM region by mapping the value from background grid nodes to the fictitious158

points outside the boundary of FDM, while FDM provides the boundary condi-159

tion for MPM region by mapping value from cell-centre points to MPM interface160

grid nodes. The transportation between the two computational regions is imple-161

mented by moving particles in the bridge region. The proposed scheme has been162

implemented in our 3D explicit material point method code, MPM3D, to simulate163

HE explosion problems. Several numerical examples are presented to validate the164

efficiency and accuracy of the proposed method.165

The remaining part of this paper is organized as follows. Section 2 presents the166

governing equations and the numerical scheme in each computational region. A167

description of CFDMP and the numerical implementations are presented in Sec-168

tion 3. Then the material models employed are introduced in Section 4. Several169

numerical tests are given in Section 5, and the conclusions are summarized in Sec-170

tion 6.171

2 Governing equations and schemes172

The problem domain can be divided into two computational regions in space. FDM173

is employed to simulate the fluid region, while the FSI region is simulated by MPM.174

Since the primary materials and their properties are different in two regions, differ-175

ent governing equations and schemes are employed as follows.176

2.1 Governing equations and scheme in FDM region177

The dispersion process of detonation products to the surrounding air is a flow
with strong discontinuity. Owing to the extremely high detonation and disper-
sion speeds, the explosion process is adiabatic. The detonation products and the
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surrounding air can be assumed to be inviscid and compressible, which can be de-
scribed by the three-dimensional compressible Euler equations

∂U
∂ t

+
∂ f (U)

∂x
+

∂g(U)

∂y
+

∂h(U)

∂ z
= 0 t > 0, (x,y,z) ∈ R3 (1)

with suitable equation of state (EOS). In Eq. (1),
U = [ρ,ρ u̇1,ρ u̇2,ρ u̇3,E]T

f (U) = [ρ u̇1,ρ u̇2
1 + p,ρ u̇1u̇2,ρ u̇1u̇3,(E + p)u̇1]

T

g(U) = [ρ u̇2,ρ u̇1u̇2,ρ u̇2
2 + p,ρ u̇2u̇3,(E + p)u̇2]

T

h(U) = [ρ u̇3,ρ u̇1u̇3,ρ u̇2u̇3,ρ u̇2
3 + p,(E + p)u̇3]

T

(2)

where u̇1, u̇2 and u̇3 are the velocity components along the x-, y- and z- directions,178

respectively; E = 1
2 ρ(u̇2

1+ u̇2
2+ u̇2

3)+ρe is the total energy per unit volume; e is the179

specific internal energy and pressure p can be obtained from an EOS.180

The explicit three-dimensional scheme of fractional step FDM is outlined in a time
step (from n to n+ 1) as below [Yanenko (1971)]. Take x direction as an exam-
ple, adaptive artificial viscosity [Zhang (2010)] is used to avoid the non-physical
oscillations near the shockwave which can be written as

Ūn
i =Un

i +
1
2

ηθ
n
i (U

n
i+1−2Un

i +Un
i−1) (3)

θ
n
i =

∣∣∣∣∣
∣∣ρn

i+1−ρn
i

∣∣− ∣∣ρn
i −ρn

i−1

∣∣∣∣ρn
i+1−ρn

i

∣∣+ ∣∣ρn
i −ρn

i−1

∣∣
∣∣∣∣∣ (4)

where η is a parameter to be adjusted empirically to meet the requirements for
different problems or determined according to the time step ∆t, spatial step ∆x and
sound speed c as

η =
c∆t
∆x

(1− c∆t
∆x

) (5)

The fractional steps method [Yanenko (1971)] is introduced to split the three-
dimensional problem into three one-dimensional flow problems. To reduce the
artificial affect introduced by the integration sequence, the splitting can be imple-
mented as

Un+1 = Lz(
1
2

∆t)Ly(
1
2

∆t)Lx(
1
2

∆t)Lx(
1
2

∆t)Ly(
1
2

∆t)Lz(
1
2

∆t)Un (6)

where Lx(
1
2 ∆t) is the difference operator in x direction of Eq. (1), Ly(

1
2 ∆t) is the

difference operator in y direction of Eq. (1) and Lz(
1
2 ∆t) is the difference operator
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in z direction of Eq. (1), Un are the conservation variables Ūn
i defined in Eq.(3). In

this paper, a second order Lax-Wedroff [Lax and Wendroff (1964)] finite difference
scheme is employed for each direction so that

Lx(∆t)Un
i =Un

i −
1
2

∆t
∆x

[ f (Un
i+1)− f (Un

i−1)]+
1
2
(

∆t
∆x

)2[ f (Un
i+1)−2 f (Un

i )+ f (Un
i−1)]

(7)

Ly(∆t)Un
j =Un

j−
1
2

∆t
∆y

[g(Un
j+1)−g(Un

j−1)]+
1
2
(

∆t
∆y

)2[g(Un
j+1)−2g(Un

j)+g(Un
j−1)]

(8)

Lz(∆t)Un
k =Un

k−
1
2

∆t
∆z

[h(Un
k+1)−h(Un

k−1)]+
1
2
(

∆t
∆z

)2[h(Un
k+1)−2h(Un

k)+h(Un
k−1)]

(9)

2.2 Governing equations and scheme in MPM region181

During fluid-structure interaction, the history variables are important to describe
the behavior of the structure. Therefore, the updated Lagrangian description is
employed for the continuum which is governed by the momentum equation

σi j, j +ρ fi = ρ üi ∀xi ∈V (10)

where V is the current material domain, σi j is the Cauchy stress, ρ is the current
density, fi is the body force density, üi is the acceleration. The weak form of gov-
erning equation (10) can be obtained from the weighted residual method as [Sulsky,
Chen, and Schreyer (1994)]

δΠ =
∫

V
ρ üiδuidV +

∫
V

σi jδui, jdV −
∫

V
ρ fiδuidV −

∫
At

t̄iδuidΓ = 0 (11)

where At is the portion of boundary prescribed with traction t̄i.182

The mass conservation equation is

ρJ = ρ0 (12)

where J is the determinant of the deformation gradient matrix Fi j = ∂xi/∂X j and
ρ0 is the initial density. The energy equation is given by

Ė = Jσi jε̇i j = Jsi jε̇i j− Jpε̇kk (13)



CMES Galley Proof Only Please Return in 48 Hours.

Pr
oo

f
8 Copyright © 2014 Tech Science Press CMES, vol.1, no.1, pp.1-35, 2014

where E is the energy per unit initial volume, ε̇i j is the strain rate, si j = σi j− pδi j183

is the deviatoric stress and p represents the pressure.184

In CFDMP method, these governing equations will be solved by MPM as described185

in existing literature [Ma, Hanan, Komanduri, and Lu (2012)]. MPM is an ex-186

tension of the FLIP particle in cell (PIC) method [Brackbill and Ruppel (1986)]187

in computational fluid dynamics to computational solid mechanics. As a pre-188

processing step, we define the background grid in the FSI region, and discretize189

the material region by a set of particles, see Fig.1. All the material variables in-190

cluding mass, position, velocity, strain and stress are carried by the particles. In191

each time step, the particles are rigidly attached to the background grid in which192

the momentum equation is solved in the framework of the standard finite element193

method. Then, the positions and velocities of all particles are updated based on the194

grid nodal velocities and accelerations. Afterward, the deformed grid is discarded195

and a new regular grid is used in next time step, and the initial grid nodal mass and196

momentum can be obtained from the mass and momentum of particles. Thus, com-197

plications associated with mesh distortion are avoided. In general, a fixed regular198

grid can be used throughout the computation.199

Figure 1: Material point discretization

Since the material domain is discretized with a set of particles, the density can be
approximated as

ρ(x) =
np

∑
p=1

mpδ (x− xp) (14)

where np denotes the number of particles; δ is the Dirac Delta function; mp is200

the mass and xp is the position of particle p. Since the masses are carried by the201

particles, the mass conservation is automatically satisfied in MPM.202
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Since the particles are rigidly attached to the computational grid, the displacement
of particle p can be obtained by mapping from their grid node values uI using the
standard finite element interpolation functions of the grid as

up =
ng

∑
I=1

NI puI (15)

where NI p = NI(xp) is the interpolation function of grid node I evaluated at the
position of particle p. The 8-node hexahedron interpolation is used whose shape
function is given by

NI p =
1
8
(1+ξpξI)(1+ηpηI)(1+ζpζI) I = 1,2, ...,8 (16)

where (ξI,ηI,ζI) take their nodal value of ±1 on grid node I, and (ξp,ηp,ζp) de-203

note the natural coordinates of particle p. If the particle p is outside the hexahedron,204

NI p = 0.205

Substituting (14) and (15) into the weak form (11) and using a lumped mass matrix
lead to

ṗiI = f int
iI + f ext

iI (17)

where

piI =
np

∑
p=1

mpNI pvip (18)

is the grid nodal momentum,

f int
iI =−

np

∑
p=1

NI p, jσi jp
mp

ρp
(19)

is the grid nodal internal force and

f ext
iI =

np

∑
p=1

mpNI p fip +
np

∑
p=1

NI ph−1tip
mp

ρp
(20)

is the grid nodal external force. In Eq.(20), h denotes the thickness of the boundary
layer used to calculate the surface integral. The grid nodal masses can be obtained
by

mI =
np

∑
p=1

NI pmp (21)
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From time step n to n+1, the momentum equation is integrated by

pn+1
iI = pn

iI + f n
iI∆tn (22)

where

f n
iI = f int,n

iI + f ext,n
iI (23)

The velocity and position of particles are updated by mapping the increments from
background grid nodes back to particles as

vn+1
ip = vn

ip +
8

∑
I=1

f n
iI

mn
I

Nn
I p∆tn (24)

xn+1
ip = xn

ip +
8

∑
I=1

pn+1
iI
mn

I
Nn

I p∆tn (25)

Before calculating the incremental strain and spin tensors, the updated velocities of
the particles are mapped back to the grid nodes to update their velocities, namely

vn+1
iI =

np

∑
p=1

mpNn
I pvn+1

ip

mn
I

(26)

The incremental strain and spin tensors are calculated by (take three-dimensional
problems for example)

∆ε
n
i jp =

1
2

8

∑
I=1

(Nn
I p, jv

n+1
iI +Nn

I p,iv
n+1
jI )∆tn (27)

∆Ω
n
i jp =

1
2

8

∑
I=1

(Nn
I p, jv

n+1
iI −Nn

I p,iv
n+1
jI )∆tn (28)

Finally, the density and stress of particles are updated by

ρ
n+1
p = ρ

n
p/(1+∆ε

n
kkp) (29)

σ
n+1
i jp = σ

n
i jp +σ

n
ikp∆Ω

n
jkp +σ

n
jkp∆Ω

n
ikp +∆σ

n
i jp (30)

where ∆σn
i jp is calculated by a material constitutive model introduced in Section 4.206

After all the history information has been updated and stored in particles, time step207

n ends up and the deformed background grid is discarded. Time step n+ 1 starts208

with a new regular grid being employed.209
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3 Coupled finite difference material point method210

Fig. 2 shows a typical HE air explosion problem. A HE charge is burned into211

gaseous products which disperse to the surrounding air and then interact with the212

structure. The whole region can be divided into a fluid region and a FSI region213

separated by the dash line. The traditional FDM is employed to simulate the dis-214

persion process in fluid region. When the pressure of cell-centres near the region215

interface, i.e. the dash line in Fig. 2, attains a prescribed threshold, arrival of the216

shock wave front is detected and the interaction region will be activated. The inter-217

action process is simulated by MPM so that the history variables of structure can218

be recorded to characterize the material damage. The detailed governing equations219

and schemes for the two regions have been presented in Section 2. The interaction220

between FDM region and MPM region is provided as follow.221

TNT Structure AirAir

Fluid region

(FDM)
FSI region

(MPM)

Figure 2: A typical HE explosion problem

3.1 Bridge region222

As shown in Fig. 3, the whole problem domain is discretized to m regular cells in223

x direction (y, z directions are also applicable). The size of FDM cells and MPM224

background cells are the same. The cells from 0 to k are FDM cells and the cells225

from k−w to m are MPM background cells, where w denotes the number of cells226

in the bridge region in direction x. Cells from k−w to k define the bridge region,227

in which the FDM cells are coincident with the MPM background cells. As shown228

in Fig. 3, two different materials in the MPM region are marked by circles and229

triangles respectively. The material in the FDM region is the same as the fluid230
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material in the MPM region, air is taken for example here, and the structures in the231

MPM region could have complex geometry because it is discretized by particles.232

The variables of fictitious points (hollow squares) outside the FDM region in cell233

k+1 is obtained by interpolating the background grid nodes while the variables of234

interface nodes (hollow circles) of the MPM region is adjusted by interpolating the235

centers of cell k−w−1 after being initialized by Eqs. (18) to (21). The transport236

between the two computational regions is implemented by moving the particles237

through the cell interface between the cells k−w− 1 and k−w. The detailed238

methods and equations will be described in the following subsections.239

cell-centers

air particles

structure particles

particles in bridge region

k-w-1

FDM region

MPM region

fictitious points for FDM region

interface nodes for MPM region

... k-w k... k+1 ...0 m

Figure 3: The computational region for CFDMP

3.2 Interface boundary condition for FDM region240

To solve Eq. (1) in FDM region, the variables of fictitious points (k+ 1) outside
FDM region as shown in Fig. 3 should be given. The mass mn

c and momentum
pn

ic of the FDM’s fictitious points in time step n can be obtained by mapping the
MPM grid nodal mass and momentum via the shape function, namely (take three-
dimensional problems for example)

mn
c =

8

∑
I=1

mn
I Nn

Ic (31)

pn
ic =

8

∑
I=1

pn
iIN

n
Ic (32)

The internal energy eint,n
c is calculated by adding all the particles’ internal energy in
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the cell as

eint,n
c =

np

∑
p=1

eint,n
p (33)

Finally, the variables of the cell-centre k+1 for FDM can be obtained by

ρ
n
c =

mn
c

Vc
(34)

(ρv)n
ic = ρ

n
c

pn
ic

mn
c

(35)

En
c =

eint,n
c + 1

2 mn
c(

pn
ic

mn
c
)2

Vc
(36)

3.3 Interface boundary condition for MPM region241

To solve the governing equations in MPM region, the variables of grid interface
nodes between cell k−w−1 and cell k−w of MPM region (see Fig. 3) should be
adjusted to consider the effect from the FDM region. The FDM cell-centers with
cell number k−w−1 in direction x are considered as particles and take part in the
mapping process from particles to background nodes as in Eqs. (18), (19) and (21).
Therefore, the mass, momentum and internal force of the background grid interface
nodes of MPM are adjusted by

mn
I =

np

∑
p=1

Nn
I pmp +

nc

∑
c=1

ρ
n
c Nn

IcV
n
c (37)

pn
iI =

np

∑
p=1

mpNn
I pvn

ip +
nc

∑
c=1

ρ
n
c V n

c vn
icNn

Ic (38)

f int,n
iI =−

np

∑
p=1

Nn
I p, jσi jp

mp

ρp
+

nc

∑
c=1

Nn
Ic,i p

n
cV n

c (39)

where the first term is the same as those in Eqs. (18), (19) and (21) in the standard242

MPM, while the second term is the contribution from the FDM region. The sub-243

script “c” denotes the cells in the FDM region which are connected to the MPM244

interface node being adjusted, nc is the number of the cells, and pn
c denotes the245

pressure.246
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3.4 Transportation between FDM and MPM regions247

After integrating the governing equations in FDM region, the variables have been248

updated for every cell, and the transportation between the two computational re-249

gions is carried out by moving the particles through the boundary of the MPM250

region. We take a pair of the interface cells as an example as shown in Fig. 4. Both251

two cells are in the FDM region and the right cell, which is a bridge cell, is also252

in the MPM region. The interface between these two cells are the boundary of the253

MPM region.254

k-w

MPM region

cell-centers

particles in MPM region

newly generated particles from

interface

k-w-1

FDM to MPM region

p

Figure 4: The transportation between FDM and MPM

Assume that the time step n has been solved and the transportation is needed. We
first get the density, velocity and pressure of the interface by interpolating the cell-
center values of these two cells

ρ
n
f =

1
2
(ρn

k−w−1 +ρ
n
k−w) (40)

vn
i f =

1
2
(vn

k−w−1 + vn
k−w), i = 1,2,3 (41)

pn
f =

1
2
(pn

k−w−1 + pn
k−w) (42)

The fluxes of mass and momentum transfered during this time step can be calcu-
lated as

f n
m = ρ

n
f vn

1 f ∆y∆z∆tn (43)

f n
ip = ρ

n
f vn

i f v
n
1 f ∆y∆z∆tn, i = 1,2,3 (44)

where vn
1 f is the normal velocity of the interface determined by Eq.(41).255
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Referring to the work by Flekkoy [Flekkoy, Wagner, and Feder (2000)] on coupling
FDM and molecular dynamics(MD), particles are generated in cell k−w to guaran-
tee the conservation of mass and momentum. The newly generated particles have
the same density, velocities and pressure as they are in the “donor cell”. To make
sure the newly generated particles do not have extreme distinction with existing
particles in mass to improve the stability, we determine their number and mass by

s = ceiling(
f n
m

mn
e
) (45)

mp =
f n
m

s
(46)

where mn
e is the mass of the existing particles. We slightly adjust s to an integer

multiple of 4 to distribute particles uniformly. The furthest particles’ distance from
the center of the interface are calculated by their velocity in this step as

di = vn
i ∆tn, i = 1,2,3 (47)

Moreover, the internal energy of the newly generated particles are given by their
EOS as (air taking for example)

eint,n
p =

pn
pmn

p

(γ−1)ρn
p

(48)

where pn
p is the pressure of the newly generated particles. Since the equation is256

linear about mass, the conservation of internal energy is protected here. The newly257

generated particles in same cells have single velocity, and the mass conservation258

is automatically protected, so kinetic energy flow into the MPM region is equal to259

that carried by the newly generated particles. Together, the energy conservation is260

protected in this process.261

If the particles in cell k−w cross the boundary of MPM region in this step, the
transportation is from MPM to FDM. The crossing particles will not take part in
the computation of MPM any more, and their conservation variables are added to
the cell they move into. So the conservation is also protected in this process. For
example, the particle p moves from cell k−w into cell k−w− 1 in Fig. 4, so the
cell-center values of cell k−w−1 should be adjusted by

ρ
n′
c =

ρn
c ∆x∆y∆z+mn

p

∆x∆y∆z
(49)

ρun′
ic =

ρn
c un

ic∆x∆y∆z+mn
pun

ip

∆x∆y∆z
(50)

En′
c =

En
c ∆x∆y∆z+ en

p

∆x∆y∆z
(51)
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3.5 Numerical implementation262

One explicit step using CFDMP (from n to n+1) is summarized below.263

(1) Calculate the time step for MPM and FDM by CFL criterion respectively, and264

take the smallest one as the time step for CFDMP.265

(2) Map the mass m and momentum p of all MPM particles to the background grid266

except the interface nodes by Eqs. (21) and (18).267

(3) Map the mass m and momentum p of corresponding MPM particles to the268

interface nodes of background grid by Eqs. (37) and (38).269

(4) Compute the grid nodal internal force f int and external force f ext except the270

interface nodes by Eqs. (19) and (20).271

(5) Compute the grid nodal internal force f int of interface nodes by Eq. (39).272

(6) Integrate the momentum equation by Eq. (22).273

(7) Update the fictitious points’ variables by Eqs. (34) to (36).274

(8) Integrate the governing equations of FDM by Eq. (6), where the operators in275

three directions are defined by Eqs. (7) to (9).276

(9) Update the velocity and position of particles by mapping their increments back277

to particles by Eqs. (24) and (25).278

(10) Map the velocity back to the grid nodes by Eq. (26).279

(11) Calculate the incremental strain and spin tensors by Eqs. (27) and (28).280

(12) Update the density of particles by Eq. (29).281

(13) Update the stress of particles σ
n+1
i jp by Eq. (30).282

(14) Carry out the transportation process between FDM region and MPM region as283

described in Section 3.4 and this completes the current time step .284

4 Material models285

Equations of state, constitutive models and reaction models complete the whole286

governing equations. Brief descriptions of the models used in this paper are given287

below. Some of the parameters are taken from the references as well as the com-288

mercial software such as AUTODYN and LS-DYNA.289

4.1 High explosive EOS290

In detonation process, the reactive wave propagates at very high speed inside the291

HE [Zukas and Walters (1998)]. The exothermic reaction is completed within a292

few microseconds with the HE completely converted to gaseous products. Most of293

the earlier works use the “artificial detonation model” [Liu and Liu (2003)] which294
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considers the explosive as a group of gaseous products with the same energy and295

volume of the initial explosive charge. For most simulations in this paper, we use296

the “real detonation model” [Liu and Liu (2003)] which lights the explosive ac-297

cording to the reactive wave’s propagation, the pressure jump which occurs when298

the shock front arrived at material interface is better captured [Cui, Zhang, Sze, and299

Zhou (2013)]. For saving computational resources and accelerating the simulation,300

we refer to the remap method in AUTODYN for air explosion problem, solving an301

1D TNT explosion problem first and map the result to the 3D region as the initial302

condition in FDM region. Finer grid can be allocated for the 1D simulation, which303

is in favour of describing the strong discontinuity during the detonation process and304

the initial stage of the dispersion process.305

We simulate the 1D TNT explosion by MPM so as to conveniently model the det-
onation process by “real detonation model”. In the initialization phase, a lighting
time tL is calculated for each particle (MPM) by dividing the distance from the det-
onation point by the detonation speed. After the detonation, the gaseous products
are controlled by the EOS. The real pressure p of the gaseous products is deter-
mined by multiplying the pressure pE obtained from EOS with a burn fraction F
that controls the release of chemical energy [Hallquist (1998)], namely

p = F · pE (52)

F =

{
(t−tL)D

1.5h t > tL
0 t < tL

(53)

where h is the characteristic size of a particle and t denotes the current time. Several306

time steps are often required for F to reach unity. Once it is done, F is kept at unity.307

Using this method, the discontinuous detonation wave is smoothed and assumes a308

continuous but rapidly changing wavefront.309

After detonation, the gaseous products are described by Jones-Wilkins-Lee(JWL)
EOS

p = A(1− ω

R1V
)e−R1V +B(1− ω

R2V
)e−R2V +

ωE0

V
(54)

Moreover, TNT with a density of 1630kg/m3 and a detonation speed of 6930m/s310

are used in the simulation. The parameters of JWL EOS are taken from [Liu, Liu,311

Lam, and Zong (2003a)] as A = 3.712× 1011 N/m2, B = 3.21× 109 N/m2, R1 =312

4.15, R2 = 0.95, ω = 0.3, energy per initial volume E0 = 6993×106 J/m3.313
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4.2 Air model314

Air is modeled as a null material model with the following ideal gas EOS

p = (γ−1)ρe = (γ−1)[E− 1
2

ρ(u2
1 +u2

2 +u2
3)] (55)

where ρ = 1.225kg/m3 and e = 2.0685×105 J/kg.315

4.3 Concrete model with tensile damage316

The concrete is modeled by Holmquist Johnson Cook (HJC) model with tensile
damage. The HJC model was originally presented for concrete damage problems
involving hydrostatic pressure, strain rate and compressive damage. The equivalent
strength is expressed as

σ
∗ = [A(1−D)+Bp∗N ][1+C ln ε̇

∗] (56)

where σ∗ = σ/ f ′c denotes the normalized equivalent stress, σ is the actual equiva-
lent stress, f ′c represents the quasi-static uniaxial compressive strength. p∗ = p/ f ′c
denotes the normalized pressure, p is the real pressure. ε̇∗ = ε̇/ε̇0 represents the
dimensionless strain rate, ε̇ is the real strain rate and ε̇0 is the reference strain rate.
A, B, N, C and Smax are normalized cohesive strength, normalized pressure harden-
ing coefficient, pressure hardening exponent, strain rate coefficient and normalized
maximum strength, respectively. D is an index describing the material damage in
the range of 0∼ 1. According to the original HJC model [Holmquist, Johnson, and
Cook (1993)], an accumulated damage failure model, also known as compression-
shear damage, is considered, which is written as

Dc = ∑
4εp +4µp

D1(p∗+T ∗)D2
(57)

where Dc denotes the compression-shear damage parameter,4εp and4µp denote317

the equivalent plastic strain and plastic volumetric strain, respectively. D1 and D2318

are the damage constants. In order to allow for a finite amount of plastic strain319

to fracture, a third damage constant E f min is provided. T ∗ = T/ f
′
c denotes the320

normalized maximum tensile hydrostatic pressure.321

However, the tensile damage of concrete is not considered in the original HJC
model. The tensile behavior of concrete is simply considered through maximum
tensile hydrostatic pressure. A new brittle tensile failure model based on micro
cracking growth of concrete was presented by Jiang similarly as the metal brit-
tle tensile failure [Jiang (2010)]. According to this model, every crack can be
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viewed as a sphere cavity zones with the maximum diameter of crack which is
called "equivalent micro holes". This model can be formulized as

Ḋt = aDt(1−Dt)(
σs

σ0
−1)γ (58)

where a is damage factor of micro-crack growth, or frequency of micro-crack322

growth, σ0 is threshold stress of damage development involving micro voids’ nu-323

cleation and growth, γ is dependent coefficient of the ultra threshold stress. When324

the tensile damage reaches the limit of damage, spall of material will occur. Con-325

sidering high pressures and air voids, the equation of state (EOS) in HJC model326

is divided into three response regions including linear elastic zone, transition zone327

and full dense zone. More details can be found in papers [Lian, Zhang, Zhou, and328

Ma (2011); Holmquist, Johnson, and Cook (1993)].329

4.4 Soil model330

The soil in this work is modeled by Drucker-Prager constitutive model [Itasca
(2005)]. It is made up by shear failure and tension failure. For judging the shear
failure region and tension failure region, function h(σm,τ) is defined as

h = τ− τ
p−α

p(σm−σ
t) (59)

where τ =
√

J2 is the effective shear stress and J2 denotes the second stress invari-
ant. σm = I1/3 is the spheric stress and I1 denotes the first stress invariant. τ p and
α p are constants and can be defined as

τ
p = kφ −qφ σ

t (60)

α
p =

√
1+q2

φ
−qφ (61)

where σ t is the tensile strength, kφ and qφ are material constants which can be
obtained from the cohesion and frictional angle. When h > 0, shear failure is em-
ployed and the yield function can be described as

f s = τ +qφ σm− kφ (62)

If h < 0, tension failure is employed and yield function can be described as

f t = σm−σ
t (63)

The parameters of soil are taken from [Luccioni and Luege (2006)] as ρ = 1200331

kg/m3, E = 100MPa and ε = 0.3. The cohesion is 0.11MPa and the internal fric-332

tion angle is 20◦.333



CMES Galley Proof Only Please Return in 48 Hours.

Pr
oo

f
20 Copyright © 2014 Tech Science Press CMES, vol.1, no.1, pp.1-35, 2014

4.5 Steel model334

The Johnson-Cook material model [Johnson and Cook (1983)] is employed in the
numerical example to describe the property of the steel plate. The model accounts
for the strain rate effect and has widely used to model the behavior of metal during
impact and explosion. The yield stress is given by

σy = (A+Bε
n)(1+C ln ε̇

∗)(1−T ∗m) (64)

where ε is the equivalent plastic strain, ε̇∗ = ε̇/ε̇0 is the dimensionless plastic335

strain rate with ε̇0 = 1s−1. T ∗ = (T −Troom)/(Tmelt−Troom) ∈ [0,1] is the dimen-336

sionless temperature. T is the material’s temperature, Troom is the room temper-337

ature, and Tmelt is the material’s melting temperature. The material constants are338

taken from the reference [Neuberger, Peles, and Rittel (2007)] to be A = 950MPa,339

B = 560MPa, n = 0.26, C = 0.014 and m = 1.340

The pressure of steel is updated by the Mie-GrÃ¼neisen EOS as

p = pH(1−
γµ

2
)+ γρE (65)

where

pH =

{
ρ0C2

0 [µ +(2S−1)µ2 +(S−1)(3S−1)µ3] µ > 0
ρ0C2

0 µ µ < 0
(66)

The subscript H refers to the Hugoniot curve and µ = ρ/ρ0−1 is used to represent341

the compression of solid with ρ0 being the stress-free solid density. Moreover, γ ,342

C0 and S are the material constants which are taken as γ = 2.17, C0 = 4569m/s and343

S = 1.49 for the numerical example in this paper.344

5 Numerical examples345

The three dimensional CFDMP scheme has been implemented in our 3D explicit346

material point method code, MPM3D [Ma, Zhang, and Huang (2010)], to solve HE347

air explosion problems. Five numerical examples are presented in this section to348

validate the scheme and demonstrate its capabilities.349

5.1 One-dimensional Shock tube problem350

Sod shock tube problem [Sod (1978)] is a benchmark for validating codes for351

compressible fluid, so it is taken to demonstrate the FDM solver in CFDMP. As352

shown in Fig. 5, this problem consists of a shock tube with a diaphragm sep-353

arating two regions whose initial states are ρleft = 1.0g/mm3, pleft = 1.0MPa,354
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ρright = 0.125g/mm3 and pright = 0.1MPa. The fluids in both regions are initially355

at rest. At time t = 0ms, the diaphragm is ruptured. Then, the shock and the356

contact interface travel at different speeds. The results are usually examined at357

t = 0.143ms when the shock has traveled a distance of about 0.25mm. This prob-358

lem is employed to test the capability of the FDM solver in CFDMP on simulating359

compressible fluid and does not involve coupling between FDM and MPM. The360

profiles of density, velocity and pressure are plotted in Fig.6 for a grid with 1000361

cells, which shows that the FDM solver’s results are in excellent agreement with362

the analytical results. The simulation results obtained by MPM using the same cells363

are also plotted in the figures in which obvious numerical oscillations can be noted.364

Generalized interpolation material point method (GIMP) [Bardenhagen and Kober365

(2004)] can effectively inhibit the numerical oscillations and get better results than366

MPM, however, more computational resources are needed. Unlike the MPM and367

GIMP in which both the particles and background grid are created, the FDM solver368

in CFDMP method updates the variables only in the cell-center points. In this re-369

gard, the CPU times consumed by GIMP and MPM are 78s and 52s, respectively,370

while FDM only takes 46s. Furthermore, the convergence properties of FDM and371

GIMP are studied by plotting the global error norms of the results against the back-372

ground cell length (h), as shown in Fig. 7. The convergence rate of FDM is about373

50% higher than that of GIMP. What’s more, the global errors of FDM using 500374

cells are almost equal to that of GIMP using 1000 cells, which demonstrates the ra-375

tionality of employing FDM to simulate the fluid region which contain shock wave376

propagation in HE problems in CFDMP.377

length=1mm

leftρ rightρ rightp
leftp

diaphragm (x = 0.5mm)

Figure 5: 1D shock tube problem

5.2 Two-dimensional HE explosion and interaction with a concrete slab378

A two-dimensional HE explosion problem is simulated as shown in Fig. 8. A379

HE charge with a radius of 50mm detonates and drives the surrounding air to380

interact with a concrete slab. The HE and surrounding air are simulated by the381

high explosive model and air model presented in Section 4 and the boundary con-382

ditions of the fluid region are all “flow out”. The concrete is simulated by the383
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Figure 6: Profiles of density, velocity and pressure obtained by analytical solution,
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Figure 7: Pressure convergence curves

concrete model with tensile damage presented in Section 4. The computational384

domain (−180,160mm)× (0,500mm) is divided into FDM region (Fluid region)385

of (−180,120mm)× (0,500mm) and MPM region (Interaction region) of (110,386

160mm)× (0,500mm), as shown in Fig. 8. All regions are discretized by square387

cells of side length 2 mm. The bridge region is (110,120mm)× (0,500mm) and388

w = 5, i.e., the width of the bridge region is equal to 5 times of the cell’s side length.389

The center of the HE charge is located at (0,250).390

Fig.9 shows the colored contours of the pressure at 20µs in FDM and MPM region391

respectively. It can be recognized that the wave propagation transport through the392

bridge region correctly. To quantitatively demonstrate that CFDMP does not in-393
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Figure 8: Computational regions of 2D HE explosion

troduce obvious interface effect, the pressure time history of two symmetric gauge394

points in the air, which have the same distance from the center of the HE charge395

(see Fig. 8), are shown in Fig.10. The gauge 1 (−125,250) is in the FDM region396

while the gauge 2 (125,250) is in MPM region. The pressure time histories of397

the two gauge points are in good agreement, which demonstrates that the proposed398

coupling method between FDM and MPM works very well.399

To further study the effects of the width of the bridge region, Fig.11 plots the pres-400

sure time histories for w equals to 2 and 8, respectively, which shows that the bridge401

region would smooth the shock wave excessively when w is too large. Therefore,402

the width of the bridge region should not be too large, and w = 5 performs very403

well as shown in Fig.10.404

The pressures in the interaction region obtained by MPM and CFDMP are com-405

pared in Fig. 12. Not only the time step used in MPM simulation is much smaller406

than that of CFDMP due to some particles with extraordinary high speed near the407

contact discontinuity, but also the MPM result suffers more numerical oscillations.408

Besides, MPM requires more memory because it places particles in the whole re-409

gion. As a result, the total computational time of MPM is 181 minutes 9 seconds,410

while the total computational time for CFDMP is only 50 minutes 30 seconds.411
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Figure 9: Contours of pressure at t = 20µs. (a). FDM region; (b). MPM region

P
re

ss
u
re

/M
P

a

0

5

10

15

20

25

30

35

0.000 0.004 0.008 0.012 0.016 0.020 0.024

t/ms

Gauge 1(FDM region)

Gauge 2(MPM region)

Figure 10: Time history of the pressures at two gauge points of the same distance

5.3 Three-dimensional HE explosion and interaction with a concrete slab412

To validate the capability of CFDMP in simulating HE explosion problem and the413

damage effect to the structure nearby, a concrete slab under blast loads experi-414

ment [Luccioni and Luege (2006)] is studied. The geometrical configuration of the415

experiment and the load locations are shown in Fig.13. Spherical HE charges of416

5Kg (TNT equivalent mass of 4Kg) and 12.5Kg (TNT equivalent mass of 10Kg)417

of Gelamon VF80 were employed placed at 0.5m height above the top surface of418

the slab as shown in Fig.13(a). There were three tests on the same slab succes-419

sively, the first produced a fracture parallel to the short side, so for the following420
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Figure 11: Time history of the pressures at two gauge points of the same dis-
tance(different width of the bridge region)
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Figure 12: Contours of pressure in interaction region at t = 32.5µs. (a). MPM; (b).
CFDMP

detonations, the original slab behaved as two square independent slabs so we sim-421

ulate two tests independently. The average compressive strength of the concrete422

(25MPa) was obtained from compression tests with the same concrete as the slab.423

In [Luccioni and Luege (2006)], AUTODYN was used to simulate the experiments,424

and their material parameters are used in our simulations. In both AUTODYN and425

our simulations, a remap method is used to map the 1D simulation results of the426
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detonation process to 3D region as the initial condition in the FDM region and then427

simulate the propagation of blast wave in air by 3D code.428

(a) (b)

Figure 13: (a). Concrete slab dimensions and charge positions; (b). Placement of
the explosive charge suspended above slab [Luccioni and Luege (2006)]

In the experiment, the charges of 5Kg and 12.5Kg Gelamon produced the crushing
of concrete in a circular zone of about 250mm and 300mm diameter, respectively.
Hereby, Luccioni et al. [Luccioni and Luege (2006)] overfitted an empirical for-
mula for the estimation of explosive charges from crushing diameters or crushing
dimensions from explosive charges as

ln(3.63D/h) = 0.1838(W 1/3/h) (67)

where D is the diameter of the crushing zone and h is the height of the charge from429

the concrete slab. W denotes the TNT equivalent mass of the charge.430

In order to reproduce the crushing or disintegration of the concrete and counteract431

the great distortion that can cause excessive deformation of the mesh, erosion was432

used in [Luccioni and Luege (2006)]. Profit from MPM’s ability to deal with the433

large deformation problems, we use CFDMP to simulate this test without use of434

the erosion model. The particles fail when their damage value reaches unit. Fig.435

14 shows the numerical results for the test of 5Kg charge obtained by CFDMP, in436

which (a) is the failure area on the front of the slab and (b) is the tensile damage437

on the back of the slab. The diameter of the crushing area is about 261mm and the438

damage on the back of the slab expands from the center to the surrounding radially439

which conforms to the analysis in [Luccioni and Luege (2006)].440
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Figure 14: Numerical results for 5Kg charge test. (a). Concrete crushing area on
the front of the slab; (b). Tensile damage on the back of the slab

To compare the CFDMP results with those obtained from the experiment and the441

empirical formula (67), we conducted a series of numerical tests with TNT equiv-442

alent mass of 2Kg, 4Kg, 10Kg and 20Kg. The results are plotted in Fig.15. For the443

cases of 4Kg and 10Kg, the numerical results are in good agreement with those ob-444

tained by the experiment and the empirical formula. For the case of 2Kg and 20Kg,445

the crushing regions also agree well with the prediction of the empirical formula.446

10

1

D
/h

0 2 4 6 8 10

W1/3/h (Kg1/3/m)

Empirical formula

Experimental results

CFDMP results

Figure 15: Relative diameter of the crushing zone D/h as a function of the inverse
of the scaled distance W 1/3/h



CMES Galley Proof Only Please Return in 48 Hours.

Pr
oo

f
28 Copyright © 2014 Tech Science Press CMES, vol.1, no.1, pp.1-35, 2014

5.4 Response of steel plates subjected to air-blast loading447

Understanding the dynamic behavior of blast loaded armor steel plates is a key to448

design a protection structure successfully. A series of experiments and numerical449

calculations were carried out by Neuberger et. al. [Neuberger, Peles, and Rittel450

(2007)] to study the scaling characteristics of the dynamic response of circular RHA451

steel plates to large bare spherical air blast. As shown in Fig.16(a), the target plate452

was supported by two thick armor steel plates with circular holes. The spherical453

TNT charges were hanged in air using fisherman’s net and were ignited from the454

center of the charge. The numerical model is shown in Fig.16(b), in which the455

charge’s weight is W , distance from the plate’s surface to the center of the charge is456

R, plate thickness is t and diameter is D, all of them are variables in the tests. The457

maximum deflection of the plate δ is measured during the experiments. Steel, TNT458

and air are simulated by the material models presented in Section 4. Two series of459

cases are simulated, and the experimental and numerical parameters are listed in460

Tab. 1. The normalized peak deflection, δ/t, obtained by CFDMP are compared461

with those obtained by the experiments and LS-DYNA in Tab. 2.462

(a) (b)

W

tR

D

Figure 16: (a). Experimental setup [Neuberger, Peles, and Rittel (2007)]; (b). The
numerical model

For series 1 (cases 1, 2 and 3), which represents a charge of 30Kg TNT for the463

full scale prototype, the structural response is mostly dynamic elastic. The first two464

cases show that the experimental and numerical results are in excellent agreement465

and the scaling are hardly affected by the varying the geometry scale as stated in466

[Neuberger, Peles, and Rittel (2007)]. The third case is the numerical result of the467

full scale problem given by CFDMP, it proves the conclusion again.468

For series 2 (cases 4, 5 and 6), which represents a charge of 70Kg TNT for the469

full scale prototype, the increasing plastic strains arise in the structural dynamic470
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Table 1: Experimental and numerical cases

case scaling factor t(m) D(m) W (Kg TNT) R(m)
1 4 0.01 0.5 0.468 0.1
2 2 0.02 1 3.75 0.2
3 1(full scale) 0.04 2 30 0.4
4 4 0.01 0.5 1.094 0.1
5 2 0.02 1 8.75 0.2
6 1(full scale) 0.04 2 70 0.4

Table 2: Normalized peak deflection δ/t

case scaling factor Experiment CFDMP LS-DYNA
1 4 2.60 2.69 2.59
2 2 2.70 2.71 2.62
3 1(full scale) 2.68
4 4 4.85 5.2 4.98
5 2 5.35 5.45 5.24
6 1(full scale) 5.625

response. Thus the scaling is affected, as discussed in [Neuberger, Peles, and Rittel471

(2007)]. Case 4 and case 5 show that the experimental and numerical results are in472

good agreement, and the effect on the scaling are also represented. As the scaling473

factor vary approaching to 1, the normalized peak deflection δ/t increase, which474

tells the effect on the scaling. The last case is the numerical result of the full scale475

problem obtained by CFDMP, whose normalized peak deflection δ/t is the largest476

which conform to the conclusion.477

Fig.17 shows the final configuration of case 5. The figure obtained by CFDMP is478

similar to the shape of experimental photograph. Fig.18 shows the colored contours479

of the Mises stress at time of 0.3ms, 0.5ms and 1.0ms respectively for case 2 and480

case 5 (the scaling factor are both 2). For case 2, most of the region are in elastic481

period, while a large portion has entered into plastic period for case 5. So the482

scaling of case 5 are affected as discussed in [Neuberger, Peles, and Rittel (2007)].483

5.5 Damage of concrete slab with defect subjected to air-blast loading484

Based on the examples shown in Section 5.3, we bring a little modification to the485

slab to illustrate the ability of CFDMP to solve the strong FSI problem for more486

complex geometry structure. As shown in Fig. 19(a), in a block region right against487

the center of the HE charge (the red region), the concrete slab is weakened by488
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(a) (b)

Figure 17: Final configuration of case 5. (a). Experimental photograph; (b).
CFDMP
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Figure 18: Mises stress. (a). case 2; (b). case 5

reducing its thickness from 0.15m to 0.02m so as to simulate the effect of the defect489

in the slab, other conditions are the same as those in Section 5.3 (5Kg charge). The490

tensile damage in the back of the slab is presented in Fig. 19(b). All the defect491

region is crushed and the damage region of the slab is larger than that of the slab492

without defect shown in Fig. 14. Besides, the damage shape of the two case are493
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also different. The damage shape of the slab without defect is expanded from the494

center to the surrounding radially while the damage shape of the slab with defect is495

annular around the center.496

1.0

0.8

0.6

0.4

0.2

0

damt

Figure 19: (a). Initial condition; (b). The tensile damage in the back of the slab

6 Conclusion497

A coupled finite difference material point (CFDMP) method is proposed through498

the bridge region to combine the advantages of FDM and MPM in this paper. It499

uses an Eulerian frame in the fluid region and a Lagrangian frame in the FSI re-500

gion. FDM is employed in the Eulerian frame, while MPM is employed in the501

Lagrangian frame. So the region involving shock wave dispersion problem is sim-502

ulated by FDM whereas the region involving history dependent materials and FSI is503

simulated by MPM. In this way, the advantages of FDM and MPM are fully utilized504

in different regions of the problem. Both shock tube problem and 2D HE explosion505

simulation have verified the accuracy and efficiency of this algorithm. CFDMP is506

applied to simulate the dynamic responses of concrete slab and steel slab under air507

blast loading, whose numerical results coincide to the available experimental results508

and the conclusion reported in literature. Therefore the proposed CFDMP method509

provides a powerful numerical tool for the study of explosion problems. What’s510

more, the methodology can be generalized to combine other methods which are511

based on different frames of reference.512
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