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Liquid sloshing is usually associated with violent changes and breakups of free surfaces and strong fluid
structure interactions. These phenomena present unique challenges for traditional computational fluid
dynamics methods. In this paper, the material point method (MPM) is extended to solve the dynamic
behavior of sloshing liquids in a moving container and a numerical scheme is developed to
calculate impact pressure based on a contact algorithm over background grids. Moreover, a weakly
compressible equation of state which employs an artificial sound speed is incorporated into the MPM
to compute the pressure field of the liquid phase and a special scheme is employed to apply harmonic
excitation to the particle-discretized container. The performance of the improved MPM in prediction of
liquid impact pressure is verified by modeling a water block dropping test onto an aluminum plate. To
further validate the proposed scheme, liquid sloshing experiments in a partially filled tank are conducted.
The slosh-induced impact pressures on the vertical walls of the tank obtained from the MPM simulation
are in good agreement with the experimental results.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of liquid sloshing is a problem of practical
interests in several industrial fields, such as mechanical engineer-
ing, marine engineering, in-land, aerospace transportation and civil
engineering [1]. All containers that carry liquids must address the
issue of sloshing. For example, ocean going liquefied natural gas
(LNG) vessels may suffer from external wave impacts and inertial
loads during the voyage, which can result in local damage as well
as global collapse to the main hull structure, and can then further
lead to leakage of fuel, or even overturn of the vessel. Sloshing
pressure is also an important parameter in the assessment of safety
of aeronautic and astronautic vehicles to prevent incidents induced
by violent sloshing of liquefied fuel inside the fuel tank. The liquid
oscillations in large storage tanks caused by earthquakes can
produce tremendous impact pressure on the walls, which may
result in serious casualties and economic losses. Hence, accurate
predictions of the sloshing impact loads on offshore structures,
space vehicles, storage tanks, water reservoirs, road vehicle tanks
and ships are of great concern to engineers, designers, physicists,
and mathematicians.

In the past decades, extensive mathematical formulations,
experimental studies and more recently numerical simulations
have been performed to deal with sloshing problems [2]. The early
research efforts of this issue focused on two dimensional linear
problems in containers with simple geometry, which can be solved
by analytical methods [3]. With the advent of the modern theory of
nonlinear dynamics, nonlinear models [4–7] with viscous damping
based on potential flow theory have been developed to further
study both two dimensional and three dimensional complex sur-
face dynamic phenomena of sloshing liquid in moving containers.
However, these researches are usually valid for simple cases with
linear or weakly nonlinear liquid sloshing dynamics, and analytical
techniques for predicting large-amplitude sloshing are still not
fully developed. Furthermore, liquid sloshing dynamics generally
involve strong nonlinear phenomena such as wave breaking, parti-
cle splash, and jet flow. Thus, taking into account all these factors
analytically is extremely difficult.

Sloshing pressure is an important parameter in an assessment
of safety of hull design when ships containing liquids sail through
rough seas. In order to find the characteristics of the impact pres-
sure [8], researchers have to conduct large-scale experiments
(even full scale tests) to reflect what happens in the tank and find
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phenomena which only occur in large-size tanks due to the three
dimensional effects since there is no proper scaling law [9] which
can transfer the model results to prototype conditions perfectly,
when it comes to impact loads. For these reasons, laboratory
experiments usually have problems of long experiment cycle and
high cost.

As mentioned above, experimental works are generally expen-
sive and sometimes certain physical phenomena related to liquid
sloshing cannot be scaled in a practical experimental setup.
Recently more and more researches on liquid sloshing are focused
on numerical simulations with the fast advancement of the
computer hardware and numerical algorithms. A number of
researchers have provided comprehensive reviews on the problem
of liquid sloshing, and the related two dimensional and three
dimensional numerical simulation methods [10–12]. Most of the
numerical simulations are focused on Eulerian and Arbitrary
Lagrangian–Eulerian grid-based methods, such as finite difference
method (FDM) [13,14], finite volume method (FVM) [15,16], finite
element method (FEM) [17,18] and boundary element method
(BEM) [5,6]. As a complex fluid motion, sloshing processes usually
involve the complex variation of liquid surface, violent turbulence
and vortex, as well as the strong coupling between the fluid and
container walls, which bring many difficulties to traditional
grid-based numerical methods when dealing with liquid sloshing
problems. These goals and simulation challenges have led to the
development of hybird methods building upon the work of others.
For example, traditional FDM and FVM often require special algo-
rithms such as volume-of-fluid (VOF) method [19,20] or level-set
method [21] to capture changing surfaces or moving interfaces
for certain classes of problems in liquid sloshing dynamics.

Besides the grid-based methods, particle methods (or meshfree
methods) in which fluid particles are followed in a Lagrangian
manner provide innovative alternatives to solve complex fluid
dynamics problems such as liquid sloshing dynamics. To name a
few, Idelsohn et al. [22] developed the PFEM (particle finite ele-
ment method) to solve incompressible flows with free-surfaces
and breaking waves. Koshizuka et al. [23] and Lee et al. [24] used
the MPS (moving particle semi-implicit method) to study violent
free surface motions and impact loads. Nestor et al. [25] estab-
lished the FVPM (finite volume particle method) for meshfree
simulation of viscous flow problems in engineering.

More recently, smoothed particle hydrodynamics (SPH) is being
increasingly used to simulate fluid motions for its simple calcula-
tion and easy implementation [26]. The SPH method was originally
developed in the late 1970s to solve astrophysical problems in
three-dimensional open space [27]. In 1990s, Libersky et al. [28]
extended it to high strain hydrodynamics problems with material
strength. Since then, SPH has been extensively studied and
extended to different problems in science and engineering, includ-
ing high explosive detonation and explosion [29,30], high velocity
impact and penetration [31], multi-phase [32], free surface flows
[33,34] and sloshing type problems [35,36]. After being continu-
ously improved, SPH was extended first to weakly compressible
flows [37,38], then to strongly compressible [39] and truly incom-
pressible hydrodynamics [40] as well. In SPH, a series of particles
possessing individual material properties are used to represent
the state of a system and these particles are capable of moving in
the space according to internal particle interactions and external
forces. Since the collective movement of those particles is similar
to the movement of a liquid or gas flow, SPH can give a very good
description of violent fluid motion phenomenon like sloshing. As a
purely Lagrangian meshfree method, SPH can naturally track mate-
rial interfaces, free surfaces and moving boundaries, and the
history of flow field variables (such as pressure, velocity, density)
can be easily obtained by approximating the governing equations
which are discretized on the particles. However, special care are
required to the solid boundary treatment and the low accuracy
of the pressure measurement on solid walls when dealing with
fluid motions [2]. Moreover, a neighboring particles search is
needed at each time step, which makes the SPH computation much
expensive.

Among all kinds of particle-oriented methods, the material
point method (MPM) [41,42] is an extension to solid mechanics
problems of a hydrodynamics code named FLIP [43]. In MPM, the
material domain is discretized with a set of Lagrangian material
points (particles), each with local mass and other state variables
in order to model history-dependent behaviors. A spatial back-
ground grid that provides an Eulerian description of the material
domain is predefined to calculate the gradient and integrate the
momentum equation. At each time step, the particles are rigidly
attached to background grid and move with the grid. Kinematic
variables are firstly mapped from particles to grid nodes to estab-
lish the momentum equations on background grid, and the solu-
tions of the momentum equation are then mapped from grid
nodes back to particles to update their velocities and positions.
At the end of each time step, the deformed grid is discarded and
a new regular computational grid is set up for the next time step
so that there is no mesh distortion or element entanglement
associated with the FEM, while numerical dissipation normally
associated with Eulerian methods is reduced.

MPM combines the advantages of both Lagrangian and Eulerian
methods [44]. These features make it fairly attractive in modeling
liquid sloshing dynamics, which is usually associated with changes
of free surfaces and violent fluid–structure interactions, wave
interactions with other structures especially in ocean and coastal
hydrodynamics and offshore engineering. Typical applications of
MPM in this area include fluid–structure interaction [45–47], ice
dynamics [48], multiphase flows [49]. According to the Courant–
Friedrich–Levy (CFL) condition, the critical time step size in MPM
depends on cell size of the spatial background grid, rather than
the particle space in SPH, so that the time step used in MPM is
much larger than that of SPH. Furthermore, there is no neighboring
particles search which is very time consuming. Therefore, MPM is
much more efficient than SPH [50–52].

This paper aims at predicting sloshing impact pressure by
extending MPM to the simulation of dynamic behaviors of fluid
under external excitations. In this study, the liquid medium is
assumed to be weakly compressible by employing an artificial
equation of state (EOS) to relate the pressure and density, which
is the most commonly used procedure in particle-based method.
A novel algorithm based on contact algorithms proposed by Bar-
denhagen et al. [53,54] and Huang et al. [55] is then developed
for accurate calculation of impact pressure over the background
grid while a special scheme is employed to apply harmonic excita-
tion to the particle-discretized container.

The remaining parts of the paper are organized as follows. Sec-
tion 2 gives a brief description of the mathematical formulation of
MPM and its time integration scheme. Several numerical strategies
for the simulation of liquid sloshing dynamics are presented in
Section 3. In Section 4, the improved MPM is first verified by a
water block dropping test and then validated by fluid sloshing
experiments in a partially filled tank. Numerical results are in good
agreement with experimental observations. Finally, conclusions
are drawn in Section 5.

2. MPM formulations

The MPM discretizes a material domain by a set of particles, as
shown in Fig. 1. Each particle carries the position, velocity, mass,
density, stress, strain and all other internal state variables required
for the constitutive model. A background computational grid is
used to calculate the gradient terms.



Fig. 1. Typical particle discretization of a two dimensional material domain. Solid
line denotes the boundary of the material domain, solid dots are particles and dash
lines represent the background computational grid.

Δt n+1/2

tt=0

Δt n−1/2

Δt n

t n+1t n−1/2 t n+1/2t n−1 t n

Fig. 2. The leapfrog central difference method.
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The momentum balance equation in the updated Lagrangian
description is stated as

q
dv
dt
¼ r � rþ qb ð1Þ

where qðx; tÞ is the mass density, vðx; tÞ ¼ duðx; tÞ=dt is the velocity,
rðx; tÞ is the Cauchy stress tensor, and bðx; tÞ is the specific body
force. The vector x is the Cartesian coordinate of a particle at time t.

In order to obtain a solution for Eq. (1), boundary conditions

rðx; tÞ � njCt
¼ �tðtÞ; uðx; tÞjCu

¼ �uðtÞ ð2Þ
and initial conditions

uðx;0Þ ¼ u0ðxÞ; vðx;0Þ ¼ v0ðxÞ ð3Þ

are required, where Ct is the part of the boundary with a prescribed
traction vector �t; Cu is the boundary with a prescribed displace-
ment �u, n is the outward normal to the surface Ct , u0ðxÞ and
v0ðxÞ are the initial displacement and velocity.

The Galerkin weak form of Eq. (1) can be stated asZ
V
q€u �wdV þ

Z
V
r : rwdV �

Z
V
qw � bdV �

Z
Ct

w � �tdC ¼ 0 ð4Þ

where w 2 R0; R0 ¼ fwjw 2 C0;wjCu
¼ 0g denotes the test func-

tion, V is the current configuration of the continuum.
Since the whole domain is described with np particles, the mass

density can be approximated as

qðx; tÞ ¼
Xnp

p¼1

mpdðx� xt
pÞ ð5Þ

where mp is the mass of particle p; d is the Dirac delta function, xt
p is

the current position of particle p at time t. Substituting Eq. (5) into
Eq. (4) converts the integrals to the sums of quantities evaluated at
the particles, namelyXnp

p¼1

mp €up �wp þ
Xnp

p¼1

mp

qp
rp :rwp �

Xnp

p¼1

mpbp �wp �
Xnp

p¼1

mp

qph
�tp �wp ¼ 0

ð6Þ
with h being the thickness of the boundary layer. In Eq. (6), €up is the
acceleration of particle p.

In three dimensional MPM, a background grid is constructed by
using 8-node hexahedron cells. In all notations, the subscript index
p is associated with particles and subscript index I is associated
with background grid nodes. For the 8-node cell, the nodal shape
functions are given by

NI ¼
1
8
ð1þ nnIÞð1þ ggIÞð1þ ffIÞ; I ¼ 1;2; . . . ;8 ð7Þ

where nI; gI and fI are the natural coordinates (�1) at node I. The
displacements of any particle in a cell can then be represented by
the nodal displacements uI as
up ¼
Xng

I¼1

NIpuI ð8Þ

where NIp ¼ NIðxpÞ is the value of shape function associated with
node I evaluated at particle p, ng is the total number of nodes of
the background mesh. The test function w has the same form,
namely

wp ¼
Xng

I¼1

NIpwI ð9Þ

where wI is the value of test function evaluated at node I.
Substituting Eqs. (7)–(9) into Eq. (6) and invoking the arbitrar-

iness of wIðI R Cv Þ yields

_pI ¼ f int
I þ f ext

I ; I R Cv ð10Þ

where

pI ¼
Xng

J¼1

mIJ _uJ ¼ mI _uI ð11Þ

is the momentum of grid node I,

mIJ ¼
Xnp

p¼1

mpNIpNJp; mI ¼
Xnp

p¼1

mpNIp ð12Þ

are the mass matrix and lumped mass matrix respectively,

f ext
I ¼

Xnp

p¼1

mpNIpbp þ
Xnp

p¼1

NIp
�tph�1 mp

qp
ð13Þ

is the external nodal force vector,

f int
I ¼ �

Xnp

p¼1

mp

qp
rp � GIp ð14Þ

is the internal nodal force vector, and GIp ¼ $NIjxp
is the gradient of

the shape function.
The central difference method is employed to solve Eq. (10)

explicitly with the variable time step, Dtn, satisfying the CFL
condition

Dtn
6 Dtcr ¼

dc

max
p
ðcs þ jvpjÞ

ð15Þ

where dc is the cell size of the background grid, cs is the sound
speed. The nodal momentum is updated with a leapfrog scheme
by (shown in Fig. 2)

pnþ1=2
I ¼ pn�1=2

I þ ð f n;int
I þ f n;ext

I ÞDtn ð16Þ

where Dtn ¼ tnþ1=2 � tn�1=2 ¼ 1
2 ðDtn�1=2 þ Dtnþ1=2Þ; Dtnþ1=2 ¼ tnþ1 � tn.

It should be noted that the superscript n indicates the value of a
variable at time tn.

Based on the three-dimensional explicit material point method
code MPM3D� [56], a step-by-step modified update stress last
(MUSL) [42] MPM scheme is described as follows.

1. At the beginning of time step tn, the mass and momentums of
particles are mapped onto the background grid to calculate
the nodal mass mn

I and momentum pn�1=2
I , namely
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mn
I ¼

Xnp

p¼1

mpNn
Ip ð17Þ

pn�1=2
I ¼

Xnp

p¼1

mpvn�1=2
p Nn

Ip ð18Þ
where mp and vn�1=2
p are the particle mass and current velocity vec-

tor respectively.
2. Apply essential boundary conditions to the fixed grid nodes,

that is
pn�1=2
I ¼ 0 ð19Þ
3. Compute the nodal force vector f n
I ,
f n
I ¼ f n;int

I þ f n;ext
I ð20Þ
where f n;int
I and f n;ext

I are obtained from Eqs. (13) and (14) respec-
tively. For grid nodes on the fixed boundary, let f n

I ¼ 0.
4. Update the grid nodal momentum by
pnþ1=2
I ¼ pn�1=2

I þ f n
I Dtn ð21Þ
5. Update the particle velocity and position, respectively, by
vnþ1=2
p ¼ vn�1=2

p þ
XnI

I¼1

f n
I

mn
I

Nn
IpDtn ð22Þ

xnþ1
p ¼ xn

p þ
XnI

I¼1

pnþ1=2
I

mn
I

Nn
IpDtn ð23Þ
6. Recalculate the nodal momentum from the updated particle
velocity
pnþ1=2
I ¼

Xnp

p¼1

mpvnþ1=2
p Nn

Ip ð24Þ
7. Calculate the strain and vorticity increment of a particle by
Denþ1=2
p ¼ 1

2

Xng

I¼1

ðGn
Ipv

nþ1=2
I Þ

T
þ Gn

Ipv
nþ1=2
I

h i
Dtnþ1=2 ð25Þ

Dxnþ1=2
p ¼ 1

2

Xng

I¼1

ðGn
Ipv

nþ1=2
I Þ

T
� Gn

Ipv
nþ1=2
I

h i
Dtnþ1=2 ð26Þ
where the nodal velocity are determined by vnþ1=2
I ¼ pnþ1=2

I =mn
I .

Then update the particle density
qnþ1
p ¼ qn

p=ð1þ trðDenþ1=2
p ÞÞ ð27Þ
and input the strain and vorticity increment into a material consti-
tutive law to obtain the updated particle stresses
rnþ1
p ¼ rn

p þ Drnþ1=2
p ðDenþ1=2

p ;Dxnþ1=2
p Þ ð28Þ
For an incompressible Newtonian fluid like water, the deviatoric
stress tensor s may be expressed as a function of the velocity field
through the dynamical molecular viscosity l by
snþ1
p ¼ l

Xng

I¼1

ðGn
Ipv

nþ1=2
I Þ

T
þ Gn

Ipv
nþ1=2
I

h i
ð29Þ
8. Discard and reinitialize the grid for the next time step.

3. Numerical strategies for sloshing problems

3.1. Incompressible flow with artificial equation of state

In the particle method, an artificial compressibility technique is
usually used to model the incompressible flow as a weakly
compressible flow. Hence, slight compressibility is allowed
through the following relation

@p
@t
þ qc2r � v ¼ 0 ð30Þ

which is derived from the mass conservation by assuming an
incompressible liquid with artificial compressibility. The artificial
compressibility considers that every theoretically incompressible
fluid is actually compressible. It is therefore feasible to use a
quasi-incompressible EOS to model the incompressible flow by an
artificial relation between the pressure and the fluid density. In this
paper, the artificial EOS [57]

p ¼ qc2 ð31Þ

is used, where c is the numerical sound speed which is normally
taken smaller than reality but ten times higher than the maximum
fluid velocity in order to reduce the density fluctuation down to 1%.
In this way, a good compromise between efficiency and accuracy
can be obtained by allowing larger time steps and still ensuring
approximate incompressible behavior for the fluid. Monaghan
[37] argued that the relative density variation d is related to the
fluid bulk velocity and sound speed in the following way

d ¼ Dq
q0
¼ jq� q0j

q0
¼

v2
f

c2 ¼ M2 ð32Þ

where q0 is the reference density, Dq is the absolute density varia-
tion, v f is the fluid bulk velocity and M is the Mach number
respectively.

The advantage of artificial EOS is that it is easy to program since
the pressure is obtained from Eq. (31) explicitly. However, some
drawbacks appear. Firstly, this scheme requires a very small time
step associated with a numerical speed of sound which is at least
ten times higher than the maximum fluid velocity. Secondly, small
density fluctuations always cause significant unphysical high-fre-
quency pressure oscillations that are often numerically filtered
out as part of a simulation.

In MPM, the material domain is discretized with a set of
Lagrangian particles. At each time step, the particles are rigidly
attached to the background grid and move along with it. The back-
ground grid serves as a finite element discretization to the material
domain, on which the momentum equations are solved. Similar to
FEM, the natural boundary condition is satisfied automatically in
MPM. Therefore, the free surface is captured by the Lagrangian par-
ticles without any additional treatment.
3.2. Contact method in MPM

Contact phenomena are widely observed in a broad range of
engineering fields. Since a single-valued velocity field is used to
update the positions of particles, the no-slip contact between
two different bodies can be handled automatically without any
extra cost using the original MPM and the contact surface need
not to be detected. Furthermore, Bardenhagen et al. [53,54]
extended the original MPM to the friction (or slip) contact between
deformable solid bodies, which allows Coulomb friction and slip at
contact nodes. The contact force between bodies is obtained from
the relative nodal velocity at the contact surface. To release the
no-slip contact algorithm in MPM, a global multi-mesh mapping
scheme was proposed by Hu and Chen [58]. In the multi-mesh
environment, each material lies in an individual background grid
rather than in the common one. Therefore, the algorithm occupies
vast memory if there are a lot of bodies. To solve this problem, Ma
and Zhang et al. [56] proposed a local multi-mesh contact
algorithm, which creates individual grid for each body only at
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contacted nodes and needs much less memory than the global
multi-mesh scheme.

The impenetrability constraints need to be imposed only when
the bodies are approaching (Fig. 3). If the momenta of two bodies
are projected on to the same node I, the contact between bodies
r and s may occur when

ðv r
I � vs

I Þ � nr
I > 0 ð33Þ

where nb
I ðb ¼ r; sÞ is the outward unit normal vector of body b at

node I along the boundary, vb
I is the nodal velocity.

Bardenhagen et al. [54] proposed a method to compute the unit
surface normal vector with the gradient of the nodal mass mb

I in
the individual body, that is

nb
I ¼

P
GIpmb

p

j
P

GIpmb
pj
; b ¼ r; s ð34Þ

where mb
p is the mass of particle p in body b. However, the normal

vectors given by Eq. (34) cannot guarantee the collinearity
condition

nr
I þ ns

I ¼ 0 ð35Þ

which should be satisfied at the contact surface. Non-collinearity of
normal vectors at contact surface will lead to the non-conservation
of momentum in the contact computation. To solve this problem,
Huang and Zhang et al. [55] proposed a modification to determine
the surface normal vectors nb

I which satisfies the collinearity condi-
tion Eq. (35) at the contact surface. In this paper, the contact normal
vector is set to be consistent with the normal of solid surface when
hit by liquid medium.

A more accurate solution in MPM is obtained using the nodal
momentum rather than the nodal velocity. The fundamental idea
of the contact algorithm [59] is illustrated in detail below.

In each time step, the bodies are first integrated independently
to obtain the trial values of nodal variables, as if they were not in
contact. Integrating the momentum equation of bodies indepen-
dently gives the trial nodal momenta

�pb;nþ1=2
I ¼ pb;n�1=2

I þ Dtnf b;n
I ð36Þ

At the end of the time step, a body would penetrate its neighbor
body in the vicinity of grid node I when

ð�v r;nþ1=2
I � �v s;nþ1=2

I Þ � nr;n
I > 0 ð37Þ

where �vb;nþ1=2
I ¼ �pb;nþ1=2

I

.
mb;n

I is the trial nodal velocity vector of
body b, which should be corrected so that the impenetrability
condition

ðv r;nþ1=2
I � v s;nþ1=2

I Þ � nr;n
I ¼ 0 ð38Þ

is satisfied. Otherwise, the trial values of nodal velocities represent
the true solution, let vb;nþ1=2

I ¼ �vb;nþ1=2
I .

Once body r and s contact, the corrected nodal momenta are
obtained by
r s

I

Fig. 3. Two bodies (r and s) may contact at node I when they are approaching.
pb;nþ1=2
I ¼ �pb;nþ1=2

I þ Dtnf nor;n
I ð39Þ

Substituting Eq. (39) into Eq. (38) gives the normal contact force

f nor;n
I ¼ ðm

r;n
I

�ps;nþ1=2
I �ms;n

I
�pr;nþ1=2

I Þ � nr;n
I

ðmr;n
I þms;n

I ÞDtn ð40Þ

The contact algorithm has been finished if there is no friction
between bodies. The tangential contact force, or friction, can be
determined according to the Coulomb friction model, which can
be written as

f fric;n
I ¼minðlf nor;n

I ; f tan;n
I Þ ð41Þ

where

f tan;n
I ¼ ðm

r;n
I

�ps;nþ1=2
I �ms;n

I
�pr;nþ1=2

I Þ � sr;n
I

mr;n
I þms;n

I

� �
Dtn ð42Þ

with sr
I being the unit tangential at node I along the boundary of

body r, l is the friction coefficient.

3.3. Impact pressure calculation based on the contact algorithm

The slosh-induced impulsive loads on tank walls are of particu-
lar interest when studying sloshing flows. However, sloshing
impact pressure is often influenced by many parameters of liquid,
gas and structure involved in the impact, such as the local geome-
try, gas/liquid density, viscosity, environmental temperature and
atmospheric pressure, surface tension, compressibility, structure
elasticity, and local bubbles. High impact pressure is strictly local-
ized in the space and the time, being very sensitive to the local
effects. Moreover, sloshing is a highly stochastic phenomenon. This
highly nonlinear behavior may cause different impact pressures
though drive motions are the same. Experiments show that even
under harmonic oscillations, the pressure variation is neither har-
monic nor periodic because the magnitude of the pressure peaks
vary from cycle to cycle [2].

Consequently, the accurate prediction of hydrodynamic impact
is a very challenging task and careful treatments are essential for
the MPM simulation. Fluid slamming denotes the impact between
a liquid surface and a solid boundary (e.g., a tank bulkhead). Since
impact pressure occurs when the liquid collides with the wall or
ceiling, a special numerical scheme based on the aforementioned
contact algorithm is proposed to predict the impact pressure.

Impact may occur when two bodies (r and s) are approaching.
To calculate the impact pressure at the gauge located on a specified
body surface (shown in Fig. 4(a)), the following steps are proposed
in the framework of MPM3D� [56]. At the beginning, the particle p
nearest to the gauge point on the surface is found out. This particle
will move along with the body and record all of the state variables
including the local impact pressure. At each time step, the cell
where the particle p is located in is firstly found out and then its
ncn influencing nodes are obtained. For each contact node, the nor-
mal contact force f nor

I at node I is computed using Eq. (40), and the
normal contact force divided by the influencing area AI is consid-
ered to be the nodal impact pressure, that is, pnor

I ¼ f nor
I =AI . Finally,

the impact pressure at particle p is updated by mapping from the
influencing nodes, that is

pn
p ¼

Xncn

I¼1

eNIppnor;n
I ð43Þ

where

eNI ¼
1
4
ð1þ nnIÞð1þ ggIÞ; I ¼ 1;2; . . . ;4 ð44Þ

is the shape function of a quadrilateral element. The above steps to
solve the impact pressure are illustrated in Algorithm 1.
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Algorithm 1. Steps to calculate the impact pressure

1. At the initial time step t ¼ 0 find the particle p nearest to
the gauge

2. At the time step tn
(a) find the cell Ic where the particle p is located in
(b) find the contact nodes of cell Ic

(c) for I = 1:ncn do

compute normal contact force f nor;n

I

compute nodal impact pressure pnor;n
I

(d) update impact pressure pn
p at particle p
1200

1600

M
Pa

)

MPM
Theory
To validate the accuracy of the above contact algorithm, the
impact of two symmetric bars is investigated. In this simulation,
the initial gap between the two bars is set as 1 mm, and the friction
coefficient is zero. The length of the bar is 21 mm and the area is
3� 3 mm2. Two bars are traveling with an equal and opposite
velocity of 100 m/s towards each other. Elastic material law is
applied for both bars with Young’s modulus E = 6:5� 104 MPa,
Poisson’s ratio v = 0 and density q ¼ 2:75 g=cm3. The discretization
of the two bars is shown in Fig. 5. Plane strain assumption is
applied along the sides of the model with symmetrical boundary
conditions, which result in one-dimensional wave propagation in
the bars. The grid cell size is set as 0.5 mm and the initial particle
space is 0.25 mm.

The analytical impact pressure in this problem is given by

p ¼ v1 þ v2
1

q1c1
þ 1

q2c2

¼ 1:34� 103 MPa ð45Þ

where ci ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ei=qi

p
(i = 1, 2).

Fig. 6 compares the time history of the contact pressure in the
bars obtained by MPM and one dimensional analytical solution,
which shows that MPM results are in good agreement with the
analytical solution obtained by Eq. (45).
Fig. 5. MPM discretization of two impacting bars.
3.4. Sloshing loads assignment procedure

In our sloshing experiments, the tank platform fixed on the base
frame was driven by a motor controlling the rotational/swaying
motions. As the tank moves, it supplies energy to sustain the fluid
motion. Similarly in MPM simulation, the tank is assigned an exter-
nal excitation to move in accordance with the experimental design.
In this paper, two kinds of excitations, aðtÞ ¼ a0 sinðxrtÞ for the roll
case while sðtÞ ¼ s0 sinðxstÞ for the sway case, are studied. Since
the deformation of the tank undergoing sloshing is tiny, the tank
could be considered as rigid during the MPM simulation. Therefore,
for all the particles of the tank, the new particle velocity in Eq. (22)
is updated based on the assigned rigid body motion. For the roll
excitation illustrated in Fig. 7, the new particle velocity is updated
by vpðtÞ ¼ XrðtÞrp where XrðtÞ ¼ _aðtÞ ¼ X0

r sinðxrt þ h0Þ is the
angular velocity. For the sway case, the new particle velocity is
updated by vpðtÞ ¼ _sðtÞ ¼ v0

s sinðxst þ h0Þ. In this paper, the equi-
librium position is chosen at the initial configuration, therefore,
the value of h0 is set as p=2. As a final step, the new position of each
wall particle is updated by Eq. (23) based on the assigned particle
velocity.

4. Numerical investigations and experimental validations

4.1. Water block impacting onto a plate

To validate the performance of the mathematical model and
MPM scheme in the prediction of liquid slamming, a water block
impacting onto a plate is first simulated. In Edahiro’s experiment
[60], a cylindrical water block was dropped onto a horizontal plate
from rest at an initial height H0 ¼ 500 mm, as shown in Fig. 8. The
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Fig. 6. Time history of impact pressure.
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Fig. 8. Sketch of the experiment device: (a) top view; (b) side view.

Table 1
MPM simulation of the water block dropping test.

Particles Time step (s) Peak pressure (kPa) Error

Experiment – – 100.4 –
Model-1 17,884 5:91� 10�7 98.8 1:59%ð�Þ
Model-2 17,910 5:91� 10�7 101.9 1:49%ðþÞ
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water was initially kept in a circular tube, which kept the inner
water block with a diameter and height of 100 mm. An aluminum
plate with the dimension of 250 mm � 250 mm � 20 mm was
located at the bottom and a pressure sensor was fixed at the center
of the bottom plate.

In MPM simulation, elastic material law is used to model the
aluminum plate, whose density q ¼ 2:75� 103 kg=m3, the Young’s
modulus E ¼ 7:548� 104 MPa and the Poisson’s ratio m ¼ 0:33. In
all the numerical studies presented herein, the density of water
is chosen as qw ¼ 1000 kg=m3 with corresponding dynamic viscos-
ity lw ¼ 1:02� 10�3 kg=m s. The effects of surface tension and air
flow are ignored in this investigation.

It can be observed from the experiment that before the water
column reaches the plate, the front-end shape of water block
changes to approximate hemisphere (as shown in Fig. 9(a)). Edahi-
ro’s experiments showed that the front-end shape had a significant
effect on the impact pressure result [60]. Consequently, the initial
shape (Fig. 9(b)) of the water droplet in the MPM simulation was
changed to a cylinder with a hemispherical nose (Fig. 9(c)) under
R

(a) (b)

H

Fig. 9. Initial shape of the water block observed from
the premise that the equivalent model (Fig. 9(c)) has the same mass.
Two equivalent models are studied here. The first model assumes
r ¼ R so that r ¼ 50 mm and h ¼ 66:67 mm. The second model
assumes r þ h ¼ H so that r ¼ 55:37 mm and h ¼ 44:63 mm, where
R and H are the original radius and height of the cylindrical water
block respectively, r and h denote the equivalent radius and height
respectively. In the present simulation, we do not simulate the
dropping process, but the simulation starts when the water droplet
reaches just above the plate (as shown in Fig. 9(d)) with an initial
impact velocity of v0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2gH0

p
¼ 3:1321 m/s, where the local

gravity g ¼ 9:8 m=s2.
Table 1 lists the peak pressure obtained by MPM simulation for

the two models described above while Fig. 10 plots the time
history of pressure pðtÞ and the pressure impulse

PðtÞ ¼
Z t

0
pðsÞds ð46Þ

at the center of the plate. They indicate that MPM results are in
good agreement with the experimental results. This reveals that
the improved MPM is capable of predicting liquid impact pressure.
However, high frequency pressure oscillations can be observed from
Fig. 10(a), which is a common issue caused by the weakly com-
pressible EOS used for the simulation of incompressible fluid.
4.2. Impact pressure of sloshing fluid

To further investigate the performance of the improved MPM in
sloshing simulation, several sloshing experiments were conducted
using a rectangular tank of dimensions 1800 mm� 1700 mm�
1000 mm subjected to a harmonic sway or roll excitation at pre-
scribed frequencies. The sloshing experiment setup and the water
tank are shown in Fig. 11(a). The tank wall is made of polyvinyl
chloride (PVC). The experimental tank was fixed on a moving plat-
form driven by a motor. The center of rotation coincides with the
geometric center of the tank as shown in Fig. 11(b). The moving
system was designed strong enough to ensure that the sloshing
water inside the tank had a small effect on the tank motion. In
order to record the time history of pressure, a total of nine pressure
sensors which were inserted in holes on the side wall of the tank
were used as illustrated in Fig. 11(c). The pressure sensors used
in the experiments are KYOWA PGMC-A-200KP with a range of
v0

(c) (d)

r

h

vv

experiment [60] and the MPM discretization.
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Table 2
Description of the experiment conditions and MPM simulations.

Motion type Amplitude Filling level (%) Exciting frequency (Hz) Time step (s)

Case1 Roll 0:75� 15 0.4255 5:5� 10�5

Case2 Roll 1:5� 15 0.4255 5:5� 10�5

Case3 Sway 36 mm 15 0.4255 5:5� 10�5

(a)

(b)
0
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t = 63.69s t = 64.28s t = 64.87s t = 65.46s

pressure(KPa)

Fig. 12. Snapshots of the inner sloshing water in the rolling tank within a typical cycle. (a) Experimental observations. (b) Particle distributions and pressure fields obtained
with MPM.
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200 KPa. The sampling frequency was 1024 Hz while the sampling
interval was 9:76562� 10�4 s.

For all sloshing cases, the inner fluid is water and the liquid fill-
ing level is 255 mm, which is 15% of the total height of the tank.
Three different harmonic tank motions were carried out herein.
In the first two cases, the tank was allowed to rotate around the
transverse axis hence a pitch motion of the rectangular tank
was studied. The external excitation can be described as aðtÞ ¼
a0 sinðxrt þ h0Þ with different rotation amplitudes 0:75� and 1:5�

respectively. In the third case, the water tank moved under a exter-
nal sway excitation of sðtÞ ¼ s0 sinðxst þ h0Þwith a horizontal exci-
tation amplitude of s0 ¼ 36 mm. The frequency of the external
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excitation was set to 0.4255 Hz in all cases. Table 2 summarizes the
test conditions of the three different experiments and MPM simu-
lations. The initial particle space in MPM was set to 5 mm and
215,232 particles were used with a time step of 5:5� 10�5 s
approximately.

When the amplitude of an external excitation is very large or its
frequency is close to the natural frequency of the liquid sloshing
system, the liquid inside the container can exhibit violent oscilla-
tions thus exert strong impact load on the container. The ith natu-
ral sloshing frequency of the fluid motion in a rectangular tank
obtained by linear theory [2] is given as

f i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

i
4pl

tanh
h
l
pi

� �s
ð47Þ

where h is the water depth, l is the length of the tank, g is the grav-
itational acceleration and i is the mode number. For all cases listed
in Table 2two values are adopted: h ¼ 255 mm and l ¼ 1800 mm,
therefore the fundamental frequency (i ¼ 1) of this sloshing system
is f n ¼ 0:4255 Hz. Note that the excitation frequency in these three
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Fig. 15. Impact pressure obtained by experiment and MPM for roll case 1. Left column:
1102; (c) gauge ID: 1103.
experiments coincides exactly with the fundamental frequency of
the sloshing system.

Liquid sloshing in a moving rectangular tank can be simplified as
a two-dimensional liquid flow if the tank width is much smaller
than its breadth. Therefore, in order to reduce the MPM computa-
tional cost, a limited width (40 mm) of the tank was designed to
keep the flow as two-dimensional as possible when the motion is
approximately contained in the plane of its two largest dimensions.

In our experiments, the measurements of transient impact pres-
sures were typically 90s long. The stable stage generally occurred
after 60s when the inner water was fully excited. Typical sloshing
behavior was then repeated with a periodic beating effect. Fig. 12
shows the flow pattern of sloshing liquid at four specific time
instants within one period for Case 2. MPM can effectively capture
the flow dynamics associated with the changing and breaking free
surfaces. Pictures obtained from the MPM simulation show close
agreement with the experimental ones. At the beginning of a
typical cycle, water particles run up along the right wall and
impact onto the right and top side of the tank when the water tank
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is approaching positions with maximum rolling angle with some
particles splashed away from the bulky water. Water particles then
fall downwards and propagate leftwards with some splashed water
particles falling onto the bulky water. With the leftward propagat-
ing movement of water, a number of surge fronts appear depend-
ing on the geometry and angular velocity of the water tank as well
as water height. Later, water particles aggregate and run up along
the left wall and then impact onto the left and top side of the tank
also with some particles splashed away from the bulky water. As
such one period ends followed by similar flow patterns during
the next period.

In particle methods with an EOS, small density fluctuations
always cause significant unphysical high-frequency pressure oscil-
lations if special care is not taken. Since the water is treated as a
weakly compressible fluid with an artificial EOS, which may leads
to an unphysical compressibility of the fluid particles in MPM
results. The pressure field obtained from MPM are therefore not
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Fig. 16. Impact pressure obtained by experiment and MPM for roll case. Left column: tim
(c) gauge ID: 1103.
smooth as shown in Fig. 12(b). Performing a filter over the density
of particles provides a feasible technique to further smooth the
pressure field.

Fig. 13(a) and (b) compare the time history of impact pressure
of Case 1 at gauge 1101 obtained from the experiment and MPM
simulation, respectively. Obvious high frequency noises are
observed in both experimental and MPM results. To filter out these
high frequency noises, a low-pass filter based on the FFT algorithm
with a cutoff frequency of 5 Hz is employed and the filtered results
are shown in Fig. 13(c) and (d).

It can be observed from the experiments that when the hight of
pressure sensor increases, less water run up to the sensor location
and the impact pressure obtained from the sensor become smaller.
Since the gauge points 1104 and 1105 were initially located
170 mm and 255 mm above the still water level, as shown in
Fig. 11(c), impact pressure recorded by these two sensors in exper-
iments were small and drowned out by the signal noises [61,62] as
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shown in Fig. 14. For this reason, only the pressure obtained from
the gauge points 1101, 1102 and 1103 are chosen for results com-
parison between experiment and MPM simulation in this paper.

As mentioned previously, the excitation frequency is exactly
equal to the fundamental frequency of fluid motion in the experi-
mental tank, the phenomenon of second impact can be observed
and two successive peaks in each period of the pressure curves
(see Figs. 15–17) are always recorded in both experimental obser-
vations and MPM simulations. The reason for this particular fea-
ture is that the water movement cannot catch up with the tank’s
rolling/swaying in this stage. When the tank has reached the
maximum amplitude and is moving back toward the equilibrium
position, the rest of the fluid reaches the side wall of the tank
and produces a second impact (shown in Fig. 12) showing as the
double peaks within each period in the pressure curves.

The slosh-induced impact pressures on the tank wall obtained
by the MPM simulations and experiments for all three cases are
presented in both time domain and frequency domain in Figs.
15–17, respectively. These figures show that the impact pressures
obtained by the MPM simulations are in good agreement with the
experimental data in both time domain and frequency domain.
The magnitudes of the recorded impact pressure generally
decrease with the increase of height of the pressure sensor.
Moreover, due to the suction on the rigid tank wall caused by
the high velocity of air and water at the interface the impact pres-
sure has negative peaks in the experimental results. However, in
our numerical scheme, only impact pressure is calculated so there
is no negative pressure in MPM simulation results.

In summary, by examining the impact pressure in both time
domain and frequency domain, it is revealed that by use of MPM
simulation, high accuracy impact pressure of sloshing liquid can
be obtained.
5. Conclusions

In this paper, the MPM is extended to model the dynamic
behavior of sloshing liquid. The improved MPM includes
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corrections of the impact pressure calculation, enhancement in the
sloshing loads assignment and incorporation of a weakly com-
pressible equation of state. The accuracy is verified by simulating
a water block dropping onto an aluminum plate. The comparisons
between the MPM results and experimental results available in the
literature show satisfactory agreements.

To further validate the improved MPM in the prediction of liquid
sloshing dynamics, several sloshing experiments were conducted.
The numerical investigation indicates that the improved MPM can
well capture the sloshing phenomenon related to splashing, break-
ing surfaces and the second impact on the side wall. The MPM with
weakly compressible EOS can effectively resolve the flow pattern
and violent impact on the solid walls of water tank. The numerical
results are in good agreement with the experimental observations
both in time domain and frequency domain showing the feasibility
and accuracy of applying MPM to sloshing simulations.

However, the weakly compressible EOS used in MPM leads to
an unphysical compressibility of the fluid particles thus oscilla-
tions appear in the time history of impact pressure. Further
improvements for MPM are required to eliminate the unphysical
compressibility and pressure oscillations.
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