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SUMMARY

For the delamination and matrix crack prediction of composite laminated structures, the methods based
on the damage mechanics and fracture mechanics are most commonly used. However, there are very few
methods that can accurately simulate the delaminations together with matrix cracks, although the in-plane
matrix cracks always exist alongside the delaminations under impact loading. In this work, an extended
layerwise method is developed to model the composite laminated beam with multiple delaminations and
matrix cracks. In the displacement field, the nodes in the thickness direction are located at the middle surface
of each single layer, the top surface and the bottom surface of the composite beams. The displacement
field contains the linear Lagrange interpolation functions, the one-dimensional weak discontinuous function
and strong discontinuous function. The strong and weak discontinuous function are applied to model the
displacement discontinuity induced by delaminations and the strain discontinuity induced by the interface
between the layers, respectively. Because the nodes in the thickness direction are located at the middle
surface of each single layer, the extended layerwise method can be conveniently employed to deal with the
in-plane matrix cracks combined with the extend FEM. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The behavior of composite laminated structures under low velocity impact is of concern in recent
years, because the internal damages induced by low velocity impact such as a dropped tool or debris
from runways could reduce the strength of the structure significantly and furthermore these inter-
nal damages are not visibly detectable. If the impact-induced internal damages are not detected and
repaired in time, the damage area will continuously grow and finally lead to complete structural col-
lapse. A number of investigations have demonstrated that upon impact by a low velocity [1–11], the
main part of damage in the composite laminates is caused by the matrix cracks and delaminations,
because the tensile failure strength of the fiber is high, and the damage induced by fiber breakage
is generally very limited and confined to the region under and near the contact area between the
impactor and the composite laminates. Choi et al. [7] reported that the intraply matrix cracking is
the initial damage mode. Because the matrix cracks induce local stress concentrations at crack tips,
the delaminations initiates once the matrix cracks reach the interface between the ply groups having
different fiber orientations. Joshi and Sun [12] presented a typical matrix cracks and delaminations
pattern resulted from low impact, as shown in Figure 1.

To model the matrix cracks and delaminations within the laminate structures, two methods based
on the damage mechanics and the fracture mechanics were usually used [13–21]. In the damage
mechanics methods, the stresses regimes at the layer interfaces are used to predict the onset of
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Figure 1. Typical matrix cracks and delaminations pattern resulted from low impact [12].

delamination by macro-scopic damage initiation criteria, such as Choi-Wu [6, 7] and Hashin criteria
[22, 23]. The cumulative effect of delamination can be described by the material degradation mod-
els at failure material point. The implementation of the damage mechanics methods is very simple.
Because the damage is incorporated within the constitutive model, the damage mechanics meth-
ods are easily adapted to numerical approaches such as the FEM. But the real extension process
of delamination can not be observed in the damage mechanics methods. In the fracture mechan-
ics methods, linear elastic fracture mechanics (LEFM) is commonly applied for the problem of
delamination. Although the fracture mechanics predictions for metallic materials has been widely
adopted because of its relative simplicity and accuracy, it is not true for the delamination problem of
composite laminates. LEFM is only suited to bonded composite where a realistic de-bonded defect
can be defined and the loads produce a uniform linear strain regime. The cohesive fracture model
addresses some of the limitations of LEFM, such as the material softening at the crack front and
the damage initiation of the delamination in monolithic composites. For the fracture mechanics, the
sensitivity to mesh shape still exists and will limit the applicability to the impact problems when
used in conjunction with current nonadaptive FE methods. The primary advantage of the fracture
mechanics methods is that fracture mechanics concepts can be readily incorporated, such as critical
energy release rate. However, the adaptation of the fracture mechanics methods to FEA is somewhat
more complicated, because it requires that the cracks be explicitly modeled, which in turn affects
the discretization scheme.

Recently, the Heaviside step function was introduced into the displacements field in the thickness
direction for modeling the delamination. Barbero and Reddy [24] extended the Reddy’s layerwise
laminate theory to account for multiple delaminations. Delaminations were modeled by jump dis-
continuous conditions at the interfaces through the thickness direction. At delaminated interfaces,
the displacements on adjacent layers remain independent, allowing for separation and slipping.
Chattopkdhyay and Gu [25] established a new higher order plate theory for modeling delamination
buckling and postbuckling of composite laminates. In both lower and higher order terms of dis-
placements, delaminations between layers of composite plates are modeled by jump discontinuity
conditions at the delaminated interfaces. Some higher order terms are identified at the beginning
of the formulation by using the conditions that shear stresses vanish at all free surfaces including
the delaminated interfaces. Williams [26, 27] presented a generalized multilength scale theory for
the laminated plates with delaminations based on a generalized two length scale displacement field
assumption obtained from a superposition of global and local displacement effects. By the appropri-
ate simplification, this displacement field can be reduced to any currently available theory, such as
the variationally derived, displacements based (discrete layer, smeared, or zig-zag) plate theory. Cho
and Kim [28, 29] presented a higher-order zig-zag theory for the laminated composite plates with
multiple delaminations by imposing top and bottom surface transverse shear stress-free conditions
and interface continuity conditions of transverse shear stresses including delaminated interfaces. The
influence of the number, shape, size, and locations of delaminations on the responses can be taken
into account systematically by using this displacement field model. In addition, other works [30, 31]
introduced the discontinuities into an otherwise continuous solution through well-designed coupling
techniques between continuous (differential based) and discontinuous (integral based) solutions.
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Although there are a larger number of works focus on the delamination or matrix cracks prob-
lems, only a few studies have been conducted on the problem of the delamination process induced by
transverse cracks. O’Brien [32] developed a simple analytical model to estimate the energy release
rate associated with the growth of delamination induced by a transverse crack. Dharani and Tang
[33] developed a micromechanics analytical model for characterizing the fracture behavior of a fibre
reinforced composite laminate containing a transverse matrix crack and longitudinal delaminations
along 0/90 interface. In this micromechanics analytical model, a consistent shear lag theory is used
to represent the stress-displacement relations. Nairn and Hu [34] extended the variational analysis of
transverse cracking developed by Hashin [17, 18] into cross-ply laminates to account for the initia-
tion and growth of delaminations induced by matrix microcracks. For the composite laminate having
microcracks and delaminations, a new two-dimensional stress analysis is used to calculate the total
strain energy, the effective modulus, and the longitudinal thermal expansion coefficient. Takeda
and Ogihara [35] evaluated the stress distribution in cross-ply laminates containing delamination
at the tips of transverse cracks by using the replica technique. Berthelot and Corre [36] developed
an analytical model to evaluate the stress distributions in cross-ply laminates containing transverse
cracks and delamination. In the region without delamination, the analytical approach is reduced
to the usual one-dimensional analysis. In the delaminated region, the analytical model is based on
a displacement approach in which the longitudinal displacement depends on the longitudinal and
transverse coordinates in each layer. Ladeze et al. [37, 38] present a relatively complete bridge
between the descriptions on the microscales and mesoscales of damaged laminated composites. The
coupling between delamination and transverse cracking in laminate structure can be actually sim-
ulated. Swindeman [39] developed a method to model coupled matrix cracks and delamination in
laminated composite materials and experimentally validated it. In this method, the delamination and
the matrix cracks are modeled by using the cohesive zones and a robust mesh-independent crack-
ing technique (regularized extended FEM, Rx-FEM), respectively. In the Rx-FEM, the regularized
forms of the Heaviside and Dirac Delta functions are used to transform the crack surface into a
volumetric crack zone.

In order to solve the problems that exhibit strong and weak discontinuities in material and geomet-
ric behavior, the extended FEM (XFEM) is specifically developed by using the conventional FEM
and the concept of partition of unity [40–45]. This method was improved to model in-plane cracks
and crack growth in plates and shell [46–49]. For the problem of interface cracks between dissimilar
materials, XFEM was extended by the orthotropic enrichment functions [50–56]. For the dynamic
crack propagation of composites, Motamedi and Mohammadi [57–59] presented the dynamic crack
tip enrichments. Mohammadi and his coworkers [60–62] extended XFEM to fracture analysis of
orthotropic functionally graded materials. Recently, XFEM was further extended to the problem of
delamination in the composite laminated structures. Nagashima and Suemasu [63] applied XFEM to
stress analysis of thin-walled composite laminated plate, which contains an interface delamination.
In this method, the nodes on the interface are enriched in order to model the delamination. Curiel
Sosa and Karapurath [64] presented an application of the XFEM to the simulation of delamination
in fibre metal laminates. This study considers a double cantilever beam made of fibre metal laminate
in which crack opens in mode I.

Although the shell elements method improved by XFEM was applied to model thick-through
cracks or delaminations individually for the composite laminated structures, there is no work has yet
been reported for the typical damage pattern including matrix crack and delamination. It can be seen
from Figure 1 that the typical damage pattern of composite laminated structures is a complex three-
dimensional crack with layered characteristics. Because it is very difficult to apply XFEM directly
to deal with complex three-dimensional crack, we can convert the complex three-dimensional crack
with layered characteristics to a one-dimensional crack (matrix cracks) and a two-dimensional
crack (delaminations) by using an appropriate displacements model along thickness direction, see
Figure 2, assuming that the matrix cracks is perpendicular to the middle surface of each single layer.
There are a large number of displacements field along the thickness direction applied to the compos-
ite laminated structures [65], such as the equivalent single-layer theory, three-dimensional elasticity
theory and multiple model methods. For three-dimensional problems, such as the composite
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Figure 2. A simplified pattern for typical matrix cracks and delaminations resulted from low impact.

laminated structures with delaminations and cracks, the equivalent single-layer theories are often
not sufficiently accurate and often incapable of determining the 3D stress field at the ply level.

In contrast to the equivalent single-layer theory, the layerwise theories are established by assum-
ing that the displacement field exhibits only C0-continuity through the thickness. The layerwise
theories can represent the zigzag behavior of the in-plane displacements through the thickness, and
providing an effective way to accurately calculate the inplane and transverse stresses. The displace-
ments field employed in Layerwise theories can be used to calculate the three-dimensional stresses
and strains of each mathematics layer, particularly the finite element model of the displacement-
based full layerwise theory of Reddy is equivalent to the displacement-based finite element model
of 3D elasticity [65]. In the layerwise theory of Reddy [66–70], the transverse variations of the
displacement components are represented in terms of one-dimensional Lagrangian finite elements.
Thus, the displacement components are continuous through the laminate thickness, but the deriva-
tives of the displacements with respect to the thickness coordinate may be discontinuous at various
points through the thickness. So the layerwise theory with appropriate improvements is very suitable
to simulate the complex three-dimensional crack with layered characteristics together with XFEM.

In this work, an extended layerwise method (XLWM) is established for the composite laminated
beams with multiple delaminations and matrix cracks. A new displacement field is proposed in the
thickness direction, which contains the linear Lagrange interpolation functions, the one-dimensional
weak discontinuous function and strong discontinuous function. The strong and weak discontinu-
ous functions are applied to model the displacement discontinuity induced by delaminations and the
strain discontinuity induced by the interface between the layers, respectively. Because the nodes in
the thickness direction are located at the middle surface of each single layer, the in-plane matrix
cracks can be modeled conveniently by employing the XFEM in the in-plane discrete scheme.
Therefore, the XLWM has the capability to model the composite laminated beams with multiple
delaminations and matrix cracks.

The rest of the paper is organized as follows. In the next section, a new displacement field along
the thickness direction is proposed for the composite laminated beam. The in-plane displacement
approximation used to model the composite laminated beam with multiple delaminations and/or
matrix cracks is described as well. In Sections 3 and 4, the Hamilton’s principle, Euler–Lagrange
equations and constitutive equations are established for the XLWM. The governing equations for
multiple delaminations and/or matrix cracks are developed in Section 5. In order to demonstrate the
excellent predictive capability of the XLWM method, static analysis for several composite laminated
beams with multiple matrix cracks and/or delaminations is investigated in Section 6. Finally, some
conclusions are drawn in Section 7.

2. DISPLACEMENTS FIELD

2.1. Displacements field along the thickness direction

In order to model the displacement discontinuity of delaminations based on the strong discontinuous
functions, the nodes of the displacements field along the thickness direction should be located at
the top surface, the bottom surface, and the middle surface of each single layer. This node strategy
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Figure 3. Displacements field for the composite laminated beam with multiple delaminations.

is also necessary for the simulation of in-plane matrix cracks. However, the weak discontinuous
function is needed in this displacements field to model the strain discontinuity resulted from the
interfaces between the layers. For the composite laminated beam with multiple delaminations, the
displacements field proposed in the present work is schematically shown in Figure 3, where hk is
the thickness of the k-th layer and ´k is the coordinate of the interface between k-th layer and
.k � 1/-th layer in thickness direction. In Figure 3, the numbers on the left side denote the nodes of
the displacements field along the thickness direction, while the numbers on the right side denote the
interfaces between the layers.

The displacements at point (y, ´) in the composite laminated beam with multiple delaminations
can be expressed as

u˛.y; ´; t/ D

NC2X
kD1

�k.´/u˛ik.y; t/C

NDX
kD1

„k.´/u˛lk.y; t/C

NX
kD1

‚k.´/u˛rk.y; t/ (1)

where ˛ D 1; 2 denotes the components in y and ´ directions. u˛ik , u˛lk , and u˛rk are the nodal
freedoms, the additional nodal freedoms to model displacement discontinuities induced by delam-
inations, and the additional nodal freedoms to model strain discontinuities induced by interfaces
between the layers, respectively. The subscripts i , l , and r denote the standard nodal freedom,
the additional nodal freedom for delaminations, and the additional nodal freedom for interfaces,
respectively. �k is the linear Lagrange interpolation functions along the thickness direction of the
composite laminated beam, see Figure 4(a). ‚k D �k.´/�k.´/ is the weak discontinuous shape
function used to model the strains discontinuity in the interface between the layers, see Figure 4(b),
where �k.´/ is the one-dimensional signed distance function.„k D �k.´/Hk.´/ is the shape func-
tion used to model delaminations, see Figure 4(c), where Hk.´/ is the one-dimensional Heaviside
function. N is the number of the mathematical layers of the composite laminated beam. It can be
seen from Figure 3 that the numbers of the standard freedoms and the additional freedoms for inter-
faces are N C 2 and N , respectively. ND is the number of nodes that have to be enriched to model
the delaminations.
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Figure 4. Shape functions in the displacement field. (a) �k ; (b)‚k D �k.´/�k.´/ ; (c)„k D �k.´/Hk.´/.

The linear Lagrange interpolation functions �k can be expressed as

�k.´/ D

8<
:
'1
k
D Ńk�1�´
Ńk�Ńk�1

Ńk�1 6 ´ 6 Ńk

'2
k
D

´�ŃkC1
ŃkC1�Ńk

Ńk 6 ´ 6 ŃkC1
(2)

where Ń0 D ´1; Ń1 D
´1C´2
2

; � � � ; Ńk D
´kC´kC1

2
; � � � ŃN D

´NC´NC1
2

; ŃNC1 D ´NC1. ´k are
defined in Figure 3.

The weak discontinuous shape function ‚k can be expressed as

‚k D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

'1
k
Ńk�1�´
Ńk�1�´k�1

Ńk�1 6 ´ 6 ´k

'1
k
´�Ńk
Ńk�´k

´k 6 ´ 6 Ńk

'2
k
Ńk�´
Ńk�´k

Ńk 6 ´ 6 ´kC1

'2
k

´�ŃkC1
ŃkC1�´kC1

´kC1 6 ´ 6 ŃkC1

(3)

The shape function „k used to model delaminations can be expressed as

„k D

8<
:

Ńk�1�´
Ńk�1�´k�1

´k 6 ´ 6 Ńk
´�ŃkC1
ŃkC1�´kC1

Ńk 6 ´ 6 ´kC1
(4)

The present layerwise concept is very general in that the number of subdivisions (mathemati-
cal layers) can be greater than, equal to, or less than the number of the material layers through the
thickness direction. A mathematical layer is represented as an equivalent, single, and homogeneous
layer. If there are continuous and uniform stacking sequences in composite laminated structures,
the computational cost of the layerwise theories can be reduced significantly by using the sublam-
inate concept, which makes the number of mathematical layers much less than the number of the
material layers.

Let

ˆik D �k.´/;ˆlk D „k.´/;ˆrk D ‚k.´/ (5)

Equation (1) can be simplified as

u˛ D ˆ�ku˛�k; � D i; l; r (6)

where the Einstein summation convention is used, namely, the repeated indexes k and � imply
summation over all its values. The values of k depend on the value of �, see Equation (1). For
example, k takes value from 1 to N C 2 when � equals to i , but takes value from 1 to N when �
equals to r . If there is no delaminations in the thickness direction, � in Equation (6) takes value of i
and r only.

In the displacement-based full layerwise of Reddy [65], the layerwise continuous functions,
such as the one-dimensional Lagrange interpolation functions along the thickness direction, are
used to develop the displacement field of the composite laminated structures. Because the nodes
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of the interpolation functions along the thickness direction are located at the surfaces and the
interfaces between the layers, the displacement components are continuous through the thickness
direction, but the derivatives of the displacements (strains) are discontinuous at the interfaces. There-
fore, the displacements field present here can be viewed as an improvement and extension to the
Reddy’s theory.

2.2. In-plane displacements discretization

Because the nodes in the thickness direction are located at the middle surface of each single layer,
the in-plane matrix cracks can be modeled conveniently by employing the XFEM in the extend
layerwise method. Therefore, the basic idea of the present method is to convert a complex three-
dimensional fracture problem to a one-dimensional and a two-dimensional fracture problem. For the
composite laminated beam with multiple delaminations and matrix cracks, the nodal displacements
and addition freedoms u˛�k (� D i; l; r) are expressed over each element as a linear combination
of the one-dimensional Lagrange interpolation function  m and a one-dimensional discontinuous
enrichment function as

u˛�k.y; t/ D  m.y/U˛�km.t/Cƒs.y/ NU˛�ks.t/ (7)

where m D 1; � � � ; NE is the number of in-plane finite element nodes and U˛�km is the nodal value
of in-plane finite element nodes. s D 1; � � � ; NP

E is the number of in-plane enriched nodes, which
are affected by the in-plane cracks, NU˛iks , NU˛lks , and NU˛rks are the additional freedoms introduced
by the in-plane matrix cracks. ƒs D  s.y/Hs.y/ is the shape function used to model the in-
plane cracks, see Figure 5, where Hs.y/ is the Heaviside function. If the XLWM is extended to
the composite laminated plates/shells with multiple delaminations and in-plane matrix cracks, the
additional freedoms need to be added into Equation (7) to model the tip of the in-plane matrix cracks.

As shown in Figure 1, the tips of the matrix cracks are often located at the interface. Because
the nodes in the thickness direction are located at the middle surface of each single layer, the tip of
mathematics matrix crack in the XLWM is located at the middle surface, instead of the interface,

1.0
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0.5

1.0

node jnode j-1

node j
node j-1

Figure 5. Shape function ƒs .

Figure 6. Location of the tip of real and mathematical matrix crack.
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see Figure 6(a) and (c). Therefore, the mathematical crack in XLWM is hk=2 longer than that of
the real crack. In order to better model the tip of a real crack, which is often located at the interface,
we can divide the single layer near the tip of the real crack into two sublayers, see Figure 6(b) and
(d). Assuming that the thickness of the sublayer near the tip of real crack is hk=n, the mathematical
crack is just hk=2n longer than that of the real crack, instead of hk=2 .

For the composite laminated beam with multiple delaminations only, the node displacements and
the addition freedoms in the extend layerwise method can be expressed over each element as a linear
combination of the one-dimensional Lagrange interpolation function  m as follows:

u˛�k.y; t/ D  m.y/U˛�km.t/ (8)

wherem D 1; � � � ; NE is the number of in-plane finite element nodes, and U˛�km is the nodal value
of in-plane finite element nodes.

3. HAMILTON’S PRINCIPLE AND EULER–LAGRANGE EQUATIONS

Substituting the displacements field Equation (6) into the strain-displacement relationship results in

"yy D ˆ�ku1�k;y

"y´ D ˆ�k;´u1�k Cˆ�ku2�k;y

"´´ D ˆ�k;´u2�k

(9)

where the subscript (,) denotes differential operation.
Hamilton’s principle [65] is employed to derive the equations of motion for the composite lam-

inated beam with multiple delaminations. Using the first order variation of strain, which can be
obtained from Equation (9), the virtual strain energy for the present problem is given by

ıU D

Z
L

Z H
2

�H2

�
�yyı"yy C �´´ı"´´ C �y´ı"y´

�
d´dy

D

Z
L

�
N
y

�k
ıu1�k;y CQ

y´

�k
ıu1�k CN

y´

�k
ıu2�k;y CQ

´´
�k
ıu2�k

�
dy

(10)

where H is the thickness of the composite laminated beams. The stress resultants in Equation (10)
are given by

�
N
y

�k
; N

y´

�k

�
D

Z H
2

�H2

�
�yy ; �y´

�
ˆ�kd´;

�
Q
y´

�k
;Q´´

�k

�
D

Z H
2

�H2

�
�y´; �´´

�
ˆ�k;´d´

(11)

The virtual work carried out by applied forces is given by

ıV D �

Z
L

�
qb.y; t/ıu2

�
y;�

H

2
; t

�
C qt .y; t/ıu2

�
y;
H

2
; t

�	
dy

D �

Z
L

�
qbıu

NC1
2 C qtıu

0
2

�
dy

(12)

where qb.y; t/ and qt .y; t/ are the distributed force at the bottom surface
�
´ D �H

2

�
and the top

surface
�
´ D H

2

�
of the laminated beam, respectively.
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The variation of kinetic energy is given by

ıM D

Z
L

Z H
2

�H2

�0 . Pu1ı Pu1 C Pu2ı Pu2/ d´dy

D

Z
L

Z H
2

�H2

�0
�
ˆ�kˆ�e Pu1�eı Pu1�k Cˆ�kˆ�e Pu2�eı Pu2�k

�
d´dy

D

Z
L

�
I��ke Pu1�eı Pu1�k C I��ke Pu2�eı Pu2�k

�
dy

(13)

where

I��ke D

Z H
2

�H2

�0ˆ�kˆ�ed´ (14)

Substituting Equations (10), (12), and (13) into the Hamilton’s principle [65], and integrating by
parts, leads to

Z T

0

.ıU C ıV � ıM/dt D
Z T

0

�
N
y

�k
ıu1�kj�� CN

y´

�k
ıu2�kj��

�

Z
L

�
N
y

�k;y
ıu1�k �Q

y´

�k
ıu1�k

CN
y´

�k;y
ıu2�k �Q

´´
�k
ıu2�k

�
dy

C

Z
L

�
I��ke Ru1�eıu1�k C I��ke Ru2�eıu2�k

�
dy

�

Z
L

�
qbıu

NC1
2 C qtıu

0
2

�
dy

	
dt D 0

(15)

where ıU is the virtual strain energy. ıV is the virtual work carried out by applied forces. ıM is the
virtual kinetic energy.

From the Hamilton’s principle Equation (15), the Euler–Lagrange equations of the composite
laminated beam with multiple delaminations, which contain 2 Œ.N C 2/CN CND� equations, can
be obtained as

ıu1�k W N
y

�k;y
�Q

y´

�k
D I��ke Ru1�e

ıu2�k W N
y´

�k;y
�Q´´

�k
C qbı

NC1
k
C qtı

0
k D I��ke Ru2�e

(16)

with natural boundary conditions

ıu1�k W N
y

�k
j�� D 0

ıu2�k W N
y´

�k
j�� D 0

(17)

4. CONSTITUTIVE EQUATIONS

Assume that the beam is laminated of orthotropic laminates with arbitrary fiber direction in the x-y
plane with respect to the y-axis. The constitutive law of the �-th lamina with respect to the global
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x-y-´ coordinate system is

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

�xx
�yy
�´´
�y´
�x´
�xy

9>>>>>=
>>>>>;

.�/

D

2
666664

C11 C12 C13 0 0 C16
C12 C22 C11 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

3
777775

.�/ 8̂̂ˆ̂̂<
ˆ̂̂̂̂:

"xx
"yy
"´´
"y´
"x´
"xy

9>>>>>=
>>>>>;

.�/

(18)

For the beam problem, the three-dimensional constitutive equations can be reduced to a two-
dimensional form by eliminating the normal stress �xx , the shear stress �xy , and the transverse shear
stress �x´. Thus, the constitutive equations of composite laminated beam are obtained as8<

:
�yy
�´´
�y´

9=
;
.�/

D

2
4 NC11 NC13 0
NC13 NC33 0

0 0 NC44

3
5
.�/8<
:
"yy
"´´
"y´

9=
;
.�/

(19)

where 2
4 NC11 NC13 0
NC13 NC33 0

0 0 NC44

3
5
.�/

D

2
4C11 C13 0

C13 C33 0

0 0 C55

3
5
.�/

�

2
4C12 0 C16
C23 0 C36
0 C45 0

3
5
.�/
0
B@
2
4C22 0 C26

0 C44 0

C26 0 C66

3
5
.�/
1
CA
�12
4C12 C23 0

0 0 C45
C16 C36 0

3
5
.�/

(20)

Substituting the constitutive Equation (20) into the stress resultants Equation (11) leads to

N
y

�k
D

Z H
2

�H2

. NC11"yy C NC13"´´/ˆ�kd´ D A
1
11��keu1�e;y C A

2
13��keu2�e (21)

Q
y´

�k
D

Z H
2

�H2

. NC44"y´/ˆ�k;´d´ D A
4
44��keu1�e C A

3
44��keu2�e;y (22)

N
y´

�k
D

Z H
2

�H2

. NC44"y´/ˆ�kd´ D A
2
44��keu1�e C A

1
44��keu2�e;y (23)

Q´´
�k
D

Z H
2

�H2

. NC13"yy C NC33"´´/ˆ�k;´d´ D A
3
13��keu1�e;y C A

4
33��keu2�e (24)

where the laminate stiffness coefficients A1
pq��ke

, A2
pq��ke

, A3
pq��ke

, and A4
pq��ke

are given in
terms of the modified elastic constants and the through-thickness interpolation polynomials as

A1pq��ke D

Z H
2

�H2

ˆ�k NCpqˆ�ed´;

A2pq��ke D

Z H
2

�H2

ˆ�k;´ NCpqˆ�ed´;

A3pq��ke D

Z H
2

�H2

ˆ�k NCpqˆ�e;´d´;

A4pq��ke D

Z H
2

�H2

ˆ�k;´ NCpqˆ�e;´d´;

p; q D 1; 3; 4 (25)
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5. GOVERNING EQUATIONS

5.1. Governing equations for multiple delaminations

Substituting Equations (8) into (15), for static problem, results in the finite element formulation of
the composite laminated beam with multiple delaminations as

K ��kemnU �en D F �km (26)

where m; n D 1; � � � ; NE ; K ��kemn is the element stiffness matrix given by

K ��kemn D

"
 m;yA

1
11��ke

 n;y C  mA
4
44��ke

 n  m;yA
2
13��ke

 n C  mA
3
44��ke

 n;y

 m;yA
2
44��ke

 n C  mA
3
13��ke

 n;y  m;yA
1
44��ke

 n;y C  mA
4
33��ke

 n

#
(27)

It can be seen from Equation (27) that for the composite laminated beam with multiple delam-
inations the submatrices of the element stiffness matrix in the extend layerwise method have the
same form with the element stiffness matrix of the layerwise method developed by Reddy [71].
However, the laminate stiffness coefficients in Equation (25) are not different with that in Reddy’s
layerwise method.

5.2. Governing equations for multiple delaminations and matrix cracks

For static problem, substituting Equation (7) into (15) leads to the finite element formulation of the
composite laminated beam with multiple delaminations and matrix cracks as

K ��ke��U �e� D F �k� (28)

where 	 D m; s; 
 D n; g; m; n D 1; 2; � � �NE ; s; g D 1; � � �NP
E ; K ��ke�� is the element stiffness

matrix given by

K ��kemg D

"
 m;yA

1
11��ke

ƒg;y C  mA
4
44��ke

ƒg  m;yA
2
13��ke

ƒg C  mA
3
44��ke

ƒg;y

 m;yA
2
44��ke

ƒg C  mA
3
13��ke

ƒg;y  m;yA
1
44��ke

ƒg;y C  mA
4
33��ke

ƒg

#
(29)

K ��kesn D

"
ƒs;yA

1
11��ke

 n;y CƒsA
4
44��ke

 n ƒs;yA
2
13��ke

 n CƒsA
3
44��ke

 n;y

ƒs;yA
2
44��ke

 n CƒsA
3
13��ke

 n;y ƒs;yA
1
44��ke

 n;y CƒsA
4
33��ke

 n

#
(30)

K ��kesg D

"
ƒs;yA

1
11��ke

ƒg;y CƒsA
4
44��ke

ƒg ƒs;yA
2
13��ke

ƒg CƒsA
3
44��ke

ƒg;y

ƒs;yA
2
44��ke

ƒg CƒsA
3
13��ke

ƒg;y ƒs;yA
1
44��ke

ƒg;y CƒsA
4
33��ke

ƒg

#
(31)

For the composite laminated beam with multiple delaminations and matrix cracks, it can be seen
from Equations (29–31) that the submatrices of the element stiffness matrix in the extend layer-
wise method is composed of four submatrices. K ��kemn and K ��kesg are the submatrices of the
nodal freedoms and the additional nodal freedoms, respectively. K ��kemg and K ��kesn are the
coupling submatrices of the nodal freedoms and the additional nodal freedoms. These four subma-
trices have the same form with the element stiffness matrix of the layerwise method developed by
Reddy [71].

6. NUMERICAL EXAMPLES

6.1. Composite laminated beam without damages

The composite laminated beams without damage are considered in this numerical example.
Because the addition freedoms u˛lk used to simulate delaminations vanish, the indices � and � in
Equation (26) only take value of i and r , and the values of k and e depend on the value of �, see
Equation (1).
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Figure 7. Composite laminated beams without damages. (a) one end clamp beam (CF); (b) doubly-clamp
beam (CC).

Table I. Maximum displacements obtained by Reddy’s Layerwise theory and the XLW method.

CF CC

u1 .10
�5m/ u2 .10

�4m/ u1 .10
�7m/ u2 .10

�5m/

LW XLWM LW XLWM LW XLWM LW XLWM

2 Ele. (5 nodes) 3.00185 3.00242 7.56014 7.56158 0.85294 0.85303 0.13899 0.39000
4 Ele. (9 nodes) 3.00167 3.00215 7.92479 7.92601 9.42912 9.44562 1.05667 1.05801
8 Ele. (17 nodes) 3.00145 3.00181 8.00036 8.00103 9.41905 9.43285 1.25029 1.25161
16 Ele. (33 nodes) 3.00206 3.00251 8.01092 8.01142 9.39910 9.40742 1.27789 1.27907
Euler beam theory 8.0

XLWM, extended layerwise method; LW, layerwise; CF, one end clamp beam; CC, doubly-clamp beam.

The size, the load cases, and the boundary conditions of the composite beam employed in this
example are shown in Figure 7. There are two kinds of boundary conditions, one end clamp (CF)
and doubly-clamp (CC).

An isotropic beam is used to validate the proposed method. The isotropic beam is divided into
four sublayers, whose material properties are taken as E D 4 � 104MPa, v D 0:3. Table I and
Figure 8 compare the maximum displacements and the deformation pattern of the isotropic beam,
respectively, obtained by the proposed XLWM, Reddy’s Layerwise theory and Euler beam theory.
The magnification of the displacements in the deformation pattern of this example and the following
examples is 3:0=max.u2/. It can be seen from Table I that the present method is accurate and reliable
for the beams without delamination and in-plane cracks. In addition, the present results are slightly
larger than that of Reddy’s Layerwise theory, because the number of the nodes along the thickness
direction for the present method is more than that of Reddy’s Layerwise theory.

The XLWM is also employed to model the cross-ply laminated beam with six elastic layers.
The size, the load cases, and the boundary conditions are shown in Figure 7. All the layers have
the same thickness and material properties. The material properties of a single layer are taken as
E11 D 1:81 � 105MPa, E22 D E33 D 1:03 � 104KPa, G12 D G13 D 7:17 � 103MPa, G23 D
6:21 � 103MPa, G12 D 0:28, G13 D 0:02, and G23 D 0:40.

Table II compares the maximum displacements obtained by the proposed XLW method and
Reddy’s Layerwise theory for the cross-ply laminated beams with different stacking sequences,
which shows that the proposed method is also accurate and reliable for the cross-ply lami-
nated beams.

6.2. Composite laminated beam with multiple delaminations

In this example, the XLWM is used to model the composite laminated beams with multiple delam-
inations. The size, the load case, the boundary condition, and the discretization schemes of the
composite beam with delamination are shown in Figure 9, together with the size and location of
the delamination. Two kinds of boundary conditions, CF and CC, are studied. There are three kinds
of stacking sequences: Œ0�8, Œ0=90=0=90�s , and Œ90=0=90=0�s . The material properties of each sin-
gle layer are taken as E11 D 1:81 � 105MPa, E22 D E33 D 1:03 � 104MPa, G12 D G13 D
7:17 � 103MPa, G23 D 6:21 � 103MPa, G12 D 0:28, and G13 D 0:02, G23 D 0:40. In order to
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Figure 8. Deformation pattern obtained by present method and Reddy’s Layerwise theory. (a) one end clamp
beam (CF); (b) doubly-clamp beam (CC).

Table II. Maximum displacements for the composite laminated beams.

CF CC

u1 .10
�6m/ u2 .10

�4m/ u1 .10
�7m/ u2 .10

�6m/

LW XLWM LW XLWM LW XLWM LW XLWM

Œ0�6 6.67219 6.67878 1.80237 1.80301 2.13246 2.13985 3.64261 3.65843
Œ0=90=0�s 8.81100 8.81737 2.37405 2.37486 2.77654 2.78673 4.52997 4.54978
Œ0=0=90�s 6.91140 6.91800 1.86863 1.86925 2.21097 2.21885 3.79713 3.81269
Œ90=0=0�s 19.8391 19.8483 5.30265 5.30431 6.37617 6.39798 9.37764 9.41769
Œ0=90=90�s 9.23314 9.23923 2.48939 2.49021 2.90995 2.92068 4.75319 4.77363
Œ90=90=0�s 72.3246 72.3284 19.2956 19.2987 22.7792 22.8184 31.1946 31.2572
Œ90=0=90�s 22.1225 22.1327 5.91451 5.91627 7.09253 7.11614 1.03963 1.04396

XLWM, extended layerwise method; LW, layerwise; CF, one end clamp beam; CC, doubly-clamp beam.

validate the proposed XLW method, this problem is also analyzed using MSC.Nastran with Hex8
solid elements, in which nodes pair along the interface are employed to model the delamination. The
discretization scheme of the present method is the same with that used in the finite element analysis.
The delamination can be denoted as Œ�=�=�=�= \ =�=�=�=�� in the damage region, which means
that the delamination is located at the interface between 4th layer and 5th layer.

The maximum displacements obtained by the FEM analysis and the present method for the lam-
inated beams with delamination in the middle of the span for CF and CC boundary conditions
are compared in Tables III and IV, respectively. In the XLWM column, the results in brackets are
obtained by 2-node elements, while the remaining results are obtained by 3-node elements. It can
be seen from Tables III and IV that the increase of the maximum displacement is less than 1% as
the number of the nodes increased from 79 to 101. For different element type, reasonable converged
values have been achieved, but the convergence rate of 3-node elements is higher than that of 2-
node elements. The maximum displacement obtained by 3-node elements are slightly larger than
that of 2-node elements. The most important reasons is that this example is a bending problem, and
the shape function of the 3-node elements have bending modal. The deformation patterns obtained
by the present method for composite beam with delamination are shown in Figure 10, where the
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Figure 9. Composite laminated beam with delamination. (a) one end clamp beam (CF); (b) doubly-clamp
beam (CC).

Table III. Maximum displacements for the composite laminated beam with delamination at
the free end (CF).

u1 .10
�5m/ u2 .10

�4m/

Stacking sequences Number of nodes MSC XLWM MSC XLWM

Œ0�8

79 8.25315 8.28552 2.07623 2.08307
(8.23609) (2.07139)

101 8.25848 8.29079 2.07725 2.08383
(8.25698) (2.07076)

Œ0=90=0=90�s

79 1.21638 1.22722 3.13409 3.16742
(1.21660) (3.14017)

101 1.21695 1.22829 3.13544 3.17020
(1.22157) (3.15293)

Œ90=0=90=0�s

79 2.29316 2.31304 5.59327 5.61992
(2.28079) (5.54563)

101 2.29477 2.31551 5.59542 5.62149
(2.29282) (5.57115)

XLWM, extended layerwise method; MSC, finite element analysis code MSC.Patran/Nastran.

stacking sequence is Œ0�8. It is obvious that the maximum values and the fringes of the displacements
obtained by present method are in good agreement with those of MSC.Nastran.

Figure 11 presents the comparison of the stresses �yy and �y´ calculated by XLWM and
MSC.Nastran for the composite laminated beam with a unit pressure at the bottom surface, where
the size, the load case, the boundary condition, and the discretization schemes of the composite
beam with delamination are same with that employed in aforementioned numerical examples. It can
be seen from Figure 11 that the maximum value and the distribution of stresses obtained by XLWM
agree with the results of MSC.Nastran. The stress �y´ formed severe stress concentration at the
front of the delamination and nearby the boundaries.

The influence of the location in thickness direction and the size of delamination on the maxi-
mum displacements are investigated by using the XLWM. The influence of delamination location
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Table IV. Maximum displacements for the composite laminated beam with delamination
in the middle of the span (CC).

u1 .10
�7m/ u2 .10

�6m/

Stacking sequences Number of nodes MSC XLWM MSC XLWM

Œ0�8

111 2.13887 2.15082 4.34984 4.36381
(2.14684) (4.38274)

131 2.13905 2.15117 4.36242 4.36740
(2.14814) (4.39888)

Œ0=90=0=90�s

111 2.97151 2.99313 6.22773 6.29975
(2.98571) (6.29328)

131 2.97165 2.99440 6.24240 6.29376
(2.98803) (6.32132)

Œ90=0=90=0�s

111 6.00012 6.05247 10.0818 10.2310
(6.02489) (10.2004)

131 6.00068 6.05462 10.0978 10.2329
(6.02521) (10.2025)

XLWM, extended layerwise method.

0

Figure 10. Deformation obtained by extended layerwise method for the composite beam Œ0�8 with
delamination. (a) one end clamp beam (CF); (b) doubly-clamp beam (CC).

along the thickness direction on the deformation and the maximum displacements are shown in
Figures 12 and 13, respectively. The stacking sequence of the composite presented in Figure 13
is Œ0=90=0=90�s . The delamination is located at the middle of the span, and vary from the first
interface to the seventh interface. u.1/1 and u.1/2 are the displacements of the composite beams with
delamination at the first interface. It can be seen from Figures 12 and 13 that the local deforma-
tion is more obvious as the delamination approaching to the surface of the load side. The maximum
displacements of the laminated beam with stacking sequence Œ90=90=90=0�s are more sensitive to
the location of delamination in the thickness direction than that of the other two kinds of stacking
sequences Œ0�8 and Œ0=90=0=90�s .

For different location, the influence of delamination size on the deformation pattern and the max-
imum displacements are shown in Figures 14 and 15, respectively. The stacking sequence of the
composite presented in Figure 14 is Œ0=90=0=90�s . The size of the delamination is 10 mm. u.10/1 and
u
.10/
2 are the displacements of the composite beams with delamination of 10 mm. It can be seen from

Figures 12 and 13 that the local deformation is more obvious as the size of delamination is increas-
ing. The maximum displacements increase significantly as the delamination size is increasing. As
the delamination is approaching to the surface of the load side, the influence of the delamination
size on the maximum displacements is more significant. When the delamination is located in the
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Figure 11. Stresses obtained by extended layerwise method (XLWM) and MSC for the composite beam
Œ0=90=0=90�s with delamination. (a) XLWM; (b) MSC.

Figure 12. Influence of delamination location along the thickness direction on the deformation of composite
laminated beam (Œ0=90=0=90�s). (a)one end clamp beam (CF); (b) doubly-clamp beam (CC).

interface between second layer and third layer, the maximum displacements u1 and u2 of the lam-
inated beam with stacking sequence Œ90=90=90=0�s and Œ0=90=0=90�s are more sensitive to the
delamination size than that of the stacking sequences Œ0�8. When the location of delamination
in the thickness direction approaches to the reverse side of load side, the maximum displace-
ment u1 of the laminated beam with stacking sequence Œ0�8 is more sensitive to the location of
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Figure 13. Influence of delamination location along the thickness direction on the maximum displacements
of composite laminated beam. (a) Displacement u1; (b) displacement u2.

Figure 14. Influence of delamination size on the deformation of composite laminated beam with delamina-
tion. (a) The delamination is located in the interface between second and third layer; (b) The delamination

is located in the interface between fourth and fifth layer.

delamination in the thickness direction than that of the other two kinds of stacking sequences
Œ90=90=90=0�s and Œ0=90=0=90�s . When the delamination is located in the interface between fourth
layer and fifth layer, the maximum displacements of the laminated beam with stacking sequence
Œ0=90=0=90�s are most sensitive to the delamination size. However, it is the laminated beam with
stacking sequence Œ90=90=90=0�s when the delamination is located in the interface between sixth
layer and seventh layer.

The composite laminated beams with multiple delaminations are investigated by the present
method in this numerical example as well. The delaminations can be denoted as Œ�=�= \

=�=�= \ =�=�= \ =�=�� in the damage region. The stacking sequence is Œ0=90=0=90�s . For two
kinds of boundary conditions CF and CC, the deformations are plotted in Figures 16 and 17,

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



D. H. LI, Y. LIU AND X. ZHANG

Figure 15. Influence of delamination size on the maximum displacements of composite laminated beam
with delamination. (a) The delamination is located in the interface between second and third layer; (b) the
delamination is located in the interface between fourth and fifth layer; and (c) the delamination is located in

the interface between sixth and seventh layer.

respectively, which show that the XLWM is well suited to model the composite laminated beam
with multiple delaminations.

6.3. Composite laminated beam with in-plane matrix cracks

In this example, a composite laminated beam with in-plane matrix cracks is investigated. Because
the addition freedoms used to simulate delaminations vanish, the indices � and � in Equation (28)
take the value of i and r , and the values of k and e depend on the value of �, see Equation (1).

In order to validate the present method, an isotropic beam with in-plane matrix cracks is con-
sidered. The size, the load case, and the boundary condition of the composite beam with a matrix
crack in the middle of the span employed in this example are shown in Figure 18. There are two
kinds of boundary conditions, CF and CC. There are four different crack depths, see the cases
1–4 in Figure 18, where � denotes that the tip crack is located at the middle of the single layer
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Figure 16. Deformation of composite beam (Œ0=90=0=90�s) with multiple delaminations in the middle of
the span. (a) Unsymmetrical load; (b) symmetric load.

Figure 17. Deformation of composite beam (Œ0=90=0=90�s) with multiple delaminations at the free end. (a)
Unsymmetrical load; (b) symmetric load.

and bold � denotes that the crack cross of the single layer. The material properties are chosen as
E D 5:2 � 104MPa, v D 0:3.

The maximum displacements obtained by MSC.Nastran with Hex8 solid elements and the present
method for the isotropic beam with in-plane matrix crack are listed in Table V. In the FEM analysis,
node pairs are employed to model the in-plane matrix cracks. The isotropic beam is divided into

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



D. H. LI, Y. LIU AND X. ZHANG

Figure 18. Composite laminated beams with in-plane matrix crack. (a) One end clamp beam (CF); (b)
doubly-clamp beam (CC).

Table V. The maximum displacements for the isotropic beam with in-plane crack.

CF CC

u1 .10
�5m/ u2 .10

�3m/ u1 .10
�6m/ u2 .10

�5m/

Case 3D elastic XLWM 3D elastic XLWM 3D elastic XLWM 3D elastic XLWM

No crack 114 4.55346 1.21266 1.42218 1.94384
172 4.61608 4.59202 1.22959 1.22335 1.44044 1.43450 1.96762 1.96107

Case 1 114 4.63745 1.22613 1.47790 2.03352
172 4.70263 4.67409 1.24369 1.23677 1.49919 1.49006 2.06417 2.05116

Case 2 114 4.84212 1.25429 1.59860 2.19467
172 4.91672 4.87994 1.27307 1.26510 1.62520 1.61166 2.23275 2.21379

Case 3 114 5.25768 1.30853 1.81735 2.45192
172 5.34736 5.29800 1.32914 1.31968 1.85066 1.83175 2.49772 2.47337

Case 4 114 6.13258 1.41652 2.18169 2.82043
172 6.25794 6.17848 1.44134 1.42839 2.22423 2.19869 2.87611 2.84507

XLWM, extended layerwise method; CF, one end clamp beam; CC, doubly-clamp beam.

Figure 19. Deformation patterns for the isotropic beam with four different crack depth.

eight sublayers. With four different crack depths, the deformation patterns for the isotropic beam are
shown in Figure 19, in which the fringes represent the distribution of displacement u2. It is obvious
that the maximum values and the fringes of the displacements obtained by present method are in
good agreement with those of MSC.Nastran.

The cross-ply laminated beams with matrix cracks are studied as well. The size, the load case,
and the boundary condition are shown in Figure 18. All the layers have the same thickness and
material properties. The material properties of a single layer are E11 D 1:81 � 105MPa, E22 D
E33 D 1:03 � 104MPa, G12 D G13 D 7:17 � 103MPa, G23 D 6:21 � 103MPa, G12 D 0:28,
G13 D 0:02, G23 D 0:40. For different stacking sequences, the maximum displacements of the
composite laminated beams with in-plane matrix cracks are plotted in Figure 20. The tip of the
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Figure 20. Effect of the crack length on the maximum displacements of the composite laminated beam with
a matrix crack. (a) Displacement u1; (b) displacement u2.

Figure 21. Composite laminated beams with multiple matrix cracks. (a) One end clamp beam (CF); (b)
doubly-clamp beam (CC).

cracks changes from the middle of the second layer to the middle of the seventh layer. It can be
seen from Figure 20 that the maximum displacements for both the boundary conditions CF and CC
increase as the size of crack increase. The increase speed of the maximum displacements for the
boundary condition CF is faster and faster as the size of crack increases, but the increase speed of
the boundary condition CC is just the opposite.

The composite laminated beam with multiple matrix cracks is further investigated by the present
method. The size, the load case, and the boundary condition are shown in Figure 21, where the
stacking sequence is Œ90=0=90=0�s . Three cases are studied, namely, Case 1, Œ�=�=�=�=�=�=�=��;
Case 2: Œ�=�=�=�=�=�=�=��; and Case 3: Œ�=�=�=�=�=�=�=��. The deformation patterns of the
composite beam with multiple matrix cracks are shown in Figure 22.

6.4. Composite laminated beam with multiple delaminations and in-plane matrix cracks

In this example, composite laminated beams with multiple in-plane matrix cracks and delaminations
are investigated. In order to validate the present method, an isotropic beam with an in-plane matrix
crack and a delamination in the middle of the span are considered in three cases. The size, the load
case, and the boundary condition of the composite beam employed are shown in Figure 23. There
are two kinds of boundary conditions, CF and CC. The material properties are taken as E D 5:2 �
104MPa, v D 0:3. The isotropic beam is divided into eight layers with the same thickness. In case 1,
the in-plane matrix crack and the delamination are independent, namely Œ�=�=�=�= \ =�=�=�=��.
In case 2, the in-plane matrix crack and the delamination are just intersect, namely Œ�=�=�=�= \
=�=�=�=��. In case 3, the in-plane matrix crack cross the delamination, namely Œ�=�=�=�= \
=�=�=�=��.

The maximum displacements obtained by MSC.Nastran with Hex8 solid elements and the present
method for the isotropic beam with in-plane matrix crack and delamination are listed in Table VI.
The fringe and deformation patterns are shown in Figure 24. It can be seen from Table VI that the
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Figure 22. Deformation of composite beam Œ90=0=90=0�s with multiple matrix cracks. (a) One end clamp
beam (CF); (b) doubly-clamp beam (CC).

Figure 23. Composite laminated beams with in-plane matrix crack and delamination. (a) Three kinds of
cases; (b) loading modes of one end clamp beam (CF) and doubly-clamp beam (CC).

increase of the maximum displacement is less than 2% as the number of the nodes increased from
79 to 101. For different boundary conditions, reasonable converged values have been achieved, but
the convergence rate for boundary condition CF is faster than that for boundary condition CC. It is
obvious that the maximum values and the fringes displacements obtained by present method are in
good agreement with those of MSC.Nastran. The material penetration phenomenon, which is not
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Table VI. The maximum displacements obtained by FEM and XLWM for the isotropic beam with
in-plane matrix crack and delamination.

CF CC

u1 .10
�4m/ u2 .10

�3m/ u1 .10
�6m/ u2 .10

�5m/

Cases Nodes 3D elastic XLWM 3D elastic XLWM 3D elastic XLWM 3D elastic XLWM

Case 1 114 0.52430 1.32557 2.24325 3.34366
172 0.53613 0.52810 1.35102 1.33696 2.35240 2.26824 3.46823 3.39372

Case 2 114 1.78343 2.94517 5.38330 5.66587
172 1.82965 1.82445 3.01921 3.00632 5.50849 5.46782 5.81501 5.78318

Case 3 114 2.6996 3.96512 5.41953 5.67657
172 2.84072 2.7427 4.1443 4.02866 5.54002 5.49919 5.82865 5.79240

XLWM, extended layerwise method; CF, one end clamp beam; CC, doubly-clamp beam.

Figure 24. Fringe and deformation pattern for the composite laminated beams with in-plane matrix crack
and delamination. (a) Displacement u1 one end clamp beam (CC); (b) displacement u2 doubly-clamp beam

(CC).

Figure 25. Stresses obtained by extended layerwise method (XLWM) and MSC for the composite laminated
beams with in-plane matrix crack and delamination. (a) XLWM; (b) MSC.
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Figure 26. Fringe and deformation results calculated by the present method for the composite laminated
beams Œ0=90=0=90�s with in-plane matrix crack and multiple delaminations.

admissible, is found in the results shown in Figure 24, because the contact behavior of the matrix
crack interface has not been considered.

Figure 25 presents the comparison of the stresses �yy and �y´ calculated by XLWM and
MSC.Nastran for the composite laminated beam with delamination and matrix crack, where the size,
the load case, the boundary condition, and the discretization schemes of the composite beam are
same with that employed in aforementioned numerical example. This composite beam is subjected
on a unit pressure at the bottom surface. It can be seen from Figure 25 that the maximum value and
the distribution of stresses obtained by XLWM agree with the results of MSC.Nastran. The stress
�y´ formed severe stress concentration at the front of the delamination, nearby the boundaries and
the tip of the matrix crack, while the stress �yy only formed severe stress concentration at the tip of
the matrix crack.

The composite laminated beams with widespread matrix crack and multiple delaminations are
studied by the XLWM to further prove its capacity to deal with the complex damage form. The
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Figure 27. Stresses results calculated by the present method for the composite laminated beams
Œ0=90=0=90�s with in-plane matrix crack and multiple delaminations.

stacking sequence is Œ0=90=0=90�s . The material properties of the single layer are chosen as E11 D
1:81 � 105MPa, E22 D E33 D 1:03 � 104MPa, G12 D G13 D 7:17 � 103MPa, G23 D 6:21 �
103MPa, G12 D 0:28, G13 D 0:02, and G23 D 0:40. Fringe and deformation pattern are shown in
Figure 26 for the composite laminated beams with the complex damage form. In Figure 26(a) and
(b), the matrix crack and delamination are denoted as Œ�=�=�=\=�=�=�=\=�=��. In Figure 26(c),
the matrix crack and delamination are denoted as Œ�=�=�= \ =�=�=�= \ =�=�� in sections I and
III, Œ�=�=�= \ =�=�= \ =�=�=�� in section II. In Figure 26(c), the matrix crack and delamination
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are denoted as Œ�=�=�= \ =�=�= \ =�=�=�� in sections I and III, Œ�=�=�= \ =�=�=�= \ =�=��
in section II. It can be seen from Figure 26 that the present method is capable to simulate complex
damage form of the composite laminated beams. In addition, the stresses results for the composite
laminated beams with multiple delaminations and widespread matrix cracks are shown in Figure 27.

7. CONCLUSION

In the present work, a new analysis method is established for the composite laminated beams with
in-plane matrix cracks and multiple delaminations. Firstly, an XLWM is developed for the com-
posite laminated beam with multiple delaminations and matrix cracks by employing a displacement
field constructed with the linear Lagrange interpolation functions, the one-dimensional signed dis-
tance function and strong discontinuity function. The strong and weak discontinuity functions are
applied in the displacements field along the thickness direction to model the displacement discon-
tinuity induced by delaminations and the strain discontinuity induced by the interface between the
layers, respectively.

To demonstrate the excellent predictive capability of the XLWM, several numerical examples
were carried out to investigate the problem of static analysis for the composite laminated beams
with multiple matrix cracks and/or delaminations. Good agreement had been achieved between the
predictions and the 3D elastic results of MSC.Nastran. The results shown that the present methods
are well suited to the static problem of the composite laminated structures with complex damage
form. If the contact behavior of the interface of the matrix cracks and delaminations is taken into
account and the virtual crack closure technique is employed to calculate the energy release rate of
the delaminations front, the XLWM can be extended to predict the onset and growth of matrix cracks
and delamination introduced by the low impact.

In addition, the influences of the delamination size and location on the maximum displacements
are investigated for the composite laminated beams, together with the effects of the matrix crack
length on the maximum displacements.
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