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MoF (Moment of Fluid) method is one of the most accurate approaches among various 
surface reconstruction algorithms. As other second order methods, MoF method needs 
to solve an implicit optimization problem to obtain the optimal approximate surface. 
Therefore, the partial derivatives of the objective function have to be involved during 
the iteration for efficiency and accuracy. However, to the best of our knowledge, the 
derivatives are currently estimated numerically by finite difference approximation because 
it is very difficult to obtain the analytical derivatives of the object function for an 
implicit optimization problem. Employing numerical derivatives in an iteration not only 
increase the computational cost, but also deteriorate the convergence rate and robustness 
of the iteration due to their numerical error. In this paper, the analytical first order 
partial derivatives of the objective function are deduced for 3D problems. The analytical 
derivatives can be calculated accurately, so they are incorporated into the MoF method 
to improve its accuracy, efficiency and robustness. Numerical studies show that by using 
the analytical derivatives the iterations are converged in all mixed cells with the efficiency 
improvement of 3 to 4 times.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of fluid flow with material interface is a great challenge in computational fluid dynamics. The 
description of grid motion can be classified into Lagrange frame and Eulerian frame. In Lagrangian frame, the computational 
grid is embedded with material so the material interface is always the grid boundary which can be traced innately. However, 
in Lagrangian frame, the computation will fall into stagnation with increasing grid distortion because fluid material will 
always experience a large deformation with respect to time. On the contrary, the computational grid is fixed in Euler 
frame which overcomes the grid distortion but loses the surface information because it advects across the grid during the 
simulation. In order to track the material interfaces, extra efforts are required.

Level-set method and VoF (Volume of Fluid) method are two major approaches for surface reconstruction. Level-set 
method [1–3] constructs the surface by an implicit distance function whose zero contour is the location of the surface. This 
method avoids complicate geometric analysis but on the other hand, the level-set equation must be solved in high order 
of accuracy to avoid serious dissipation which triggers a high level of volume loss especially in unstructured grid [1]. VoF 
method [4–10] explicitly constructs such an approximate linear surface in every mix cell that the total volume of every 
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material is conserved. VoF method is independent of grid type so it can be performed in both structured and unstructured 
grid.

The approximate surface n · x + d = 0 in a cell is constructed in VoF method in two steps. The first step determines the 
normal n of the linear surface and the second step calculates the constant d which satisfies the local volume enforcement, 
namely, the volume fraction of the polyhedron below the approximate material interface must exactly equal to the given 
volume fraction in the cell. The second step in different kinds of VoF method is almost the same because the constant d
can be determined uniquely as long as n and volume fraction are given. It can be calculated by an iterative or analytical 
approach. In 3D problems, the analytical solver is only suitable for simple polyhedron such as tetrahedron [7] or regular 
hexahedron [11] but for complicate grid such as generalized hexahedron, which is widely used in ALE method [12,13], the 
iterative method is a better choice [14].

The most important part in a VoF method is the first step because the estimation of n plays a significant role in the 
accuracy of surface reconstruction. Youngs’ method [8–10] estimates the normal n by the gradient of volume fraction which 
comes from the volume fraction of adjacent cells. This estimation can be calculated directly without iterative process but it 
is only first order accurate which even can not reconstruct linear surface precisely. For the sake of second order accuracy, 
additional requirement was proposed besides the local volume enforcement. LVIRA (Least square Volume Interface Recon-
struction Algorithm) [5] estimates the normal by finding a linear interface, which will be extended outside the mix cell, to 
minimize the discrepancy of volume fraction in adjacent cells. ELVIRA (Efficient least squares VOF interface reconstruction 
algorithm) [5] presents an alternative minimization approach by determining the normal from six candidates which is also 
second order accurate and does not require iterative process. Swartz method [15,16] calculates the normal by finding a com-
mon linear interface for a pair of neighbor mix cells which rigorously satisfies the given volume fraction. These methods are 
second order accurate but an implicit optimization is usually required to be solved in order to determine the appropriate 
normal except for the ELVIRA method which can only be performed on structured grid. Therefore the iterative process is 
inevitable for unstructured grid. All these methods need the volume fraction from adjacent cells and extra treatments have 
to be implemented for boundary cells which lead to increasing difficulty in programming and parallelization.

MoF (Moment of Fluid) method [17–19] is a new approach to estimate n in a cell which takes use of both the volume 
fraction and the material centroid of the cell. It calculates the normal n by finding a linear surface which minimize the dis-
crepancy between the given reference material centroid and the approximate material centroid. MoF method is also second 
order accurate which can reconstruct linear interface exactly. Moreover, this method is more accurate than previous second 
order VoF methods in fluid simulation [20]. Despite the higher accuracy, another attractive superiority of MoF method is that 
it does not need any information from neighbor cells. This feature allows MoF method to be implemented as a cell-by-cell 
black-box routine, which is a great predominance over other VoF methods. Alike to LVIRA [5] and Swartz method [15,16], 
an implicit nonlinear optimization problem is also needed to be solved and an iterative process is unavoidable.

Whenever the normal n is changed during the iterative process, the constant d has to be recalculated to update the 
objective function which is a heavy expenditure especially for 3D problem. Therefore, in order to reduce the number of the 
objective function calculations and solve the optimization problem efficiently and accurately, its derivatives must be used 
in the iterative process. In 2D problem, Dyadechko and Shashkov [21] presented the first-order derivative of the objective 
function and Lemoine et al. [22] deduced the analytic solution of the normal n on a rectangular grid without solving a 
nonlinear optimization problem. However, to the best of our knowledge, the derivatives of the objective function in 3D MoF 
method are currently estimated by numerical difference due to the nonlinearity and implicity of the objective function. 
Numerical difference needs extra calculations of the objective function and the error in the differential approximation may 
also deteriorate the convergence rate and robustness of the iteration.

In this paper, the analytical first order partial derivatives of the objective function in MoF method are deduced for 3D 
problems. Little extra effort is needed in calculating the analytical derivatives and they can be calculated accurately. More-
over, the analytical derivatives not only accelerate the convergence of iteration but also improve its robustness. Numerical 
experiments show that iteration using the analytical derivatives is about 3 to 4 times faster than that using the numerical 
derivatives.

The rest of this paper is organized as follow. The local volume enforcement requirement is briefly reviewed in Section 2, 
while the normal estimation by MoF method is introduced in Section 3. A centroid rotation rule to fulfill the local vol-
ume enforcement is proposed in Section 4 and then the analytical derivatives are deduced in Section 5. Several numerical 
tests are presented in Section 6 to validate our analytical derivatives and demonstrate their advantages. Finally, Section 7
concludes this paper.

2. Local volume enforcement requirement

Local volume enforcement is a fundamental requirement in any VoF surface reconstruction algorithm. As shown in Fig. 1, 
if the normal n of the approximate plane surface is given, there will be a series of parallel planes with different constant d, 
such as n · x + d1 = 0, n · x + d2 = 0 and n · x + d3 = 0. Each plane is intersected with the grid and a new polyhedron below 
the plane is generated. For instance the polyhedron Pp1 p2 p3 p4C D is generated from n · x + d1 = 0 in Fig. 1. Therefore, the 
volume of the new generated polyhedron V below can be uniquely determined by the constant d, namely V below = V (d) so 
its volume fraction is v = v (d) = V (d) /V cell, where V cell is the total volume of the mix cell. The local volume enforcement 
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Fig. 1. The local volume enforcement. Different constants d determine different surfaces and the volume fraction below the approximate surface must equal 
to the given volume fraction vref .

requires the volume fraction of the new generated polyhedron below the approximate surface must equal to the given 
reference volume fraction vref, namely Eq. (1) must be solved for d∗ to obtain the approximate surface n · x + d∗ = 0.

v
(
d∗) = vref (1)

This requirement ensures the total material volume is conserved during the surface reconstruction.
The clipping and capping algorithm [14,23] is used here to calculate the volume fraction v (d), which first calculates the 

intersected vertexes on the cutting plane, namely the approximate surface, and then generates a new polyhedron below the 
cutting plane. For example, the intersected vertexes on the cutting plane n · x + d1 = 0 are p1, p2, p3 and p4, and the new 
generated polyhedron below the cutting plane is Pp1 p2 p3 p4C D . Finally it converts the volume integral to surface integrals 
on each face by Gauss’s theorem. It is obvious that v (d) is rigorously monotonous with v (dmin) = 0 and v (dmax) = 1 so 
there will be a unique d∗ that fulfills Eq. (1). On the other hand, v (d) is a nonlinear and implicit function so an iteration 
process is inevitable. The bisection or secant method was used for iteration in Ahn and Shashkov (2008) [14], whereas the 
Brent’s iteration method is used in this paper.

It should be mentioned that the coordinates of the vertexes on the cutting plane obtained in this process are sufficient 
for constructing the analytical derivatives in Section 5.

The plane constant d can be uniquely calculated by the local volume enforcement once the normal n of the approximate 
surface is determined, so the accuracy of the approximate surface is dependent on the normal estimation. The normal 
estimation by MoF method seems to be the most promising one compared with other approaches because it is more 
accurate [18–20] and does not need any information from neighbor cells. For material i, MoF method estimates the normal 
by minimizing the discrepancy between the given reference material centroid xref

m,i and the approximate material centroid 
xm,i (n), namely calculating a particular n∗

i to minimize the following function:

f i (n) =
∥∥∥xm,i (n) − xref

m,i

∥∥∥ (2)

where ‖.‖ represents the L2 norm squared. The material centroid is defined as

xm,i =
´
�i

(x, y, z)dxdydz´
1dxdydz

(3)

where �i is the domain occupied by the material i. In following discussions, all formulations are associated with material i
so that the subscript i is omitted.

3. Normal estimation by MoF method

The normal n can be represented by two parameters θ and ϕ in space, i.e. n = (sin θ cosϕ, sin θ sinϕ, cos θ), so that 
Eq. (2) can be rewritten as

f (θ,ϕ) =
∥∥∥xm (θ,ϕ) − xref

m

∥∥∥ (4)

The objective function f (θ,ϕ) is implicit because xm (θ,ϕ) has to be calculated from Eq. (1), so an iteration process is 
inevitable in solving the optimization problem. Whenever θ or ϕ changes during the iteration, the local volume enforcement 
process have to be performed to update the objective function which is very expensive. Therefore, in order to reduce the 
number of the objective function calculations and solve the optimization problem efficiently and accurately, its derivatives 
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Fig. 2. Infinitesimal rotation of the approximate surface. The derived triangle Tq1q2q3 is generated by an infinitesimal rotation of the base surface Tp1 p2 p3

about an arbitrary line O 1 O 2. The polyhedrons Pp1 p2q1q2 O 1 O 2 and Pp3q3 O 1 O 2 are denoted by �1 and �2, respectively, and the dihedral angle between 
the base and derived triangle will be denoted by �α.

should be used in the iteration. However, due to the nonlinearity and implicity of the objective function, the derivatives are 
currently approximated by their numerical differences in the literature and two extra local volume enforcement equations 
have to be solved to calculate f (θ + �θ,ϕ) and f (θ,ϕ + �ϕ). Moreover, the error in these approximated derivatives may 
deteriorate the convergence rate and robustness of the iteration. In this paper, the analytical first order partial derivatives 
of the objective function are firstly deduced, which allows the derivatives and the objective function could to be calculated 
simultaneously, and then incorporated into the MoF method to improve its accuracy, efficiency and robustness.

In order to deduce the analytical expression, just as the previous work by Dyadechko and Shashkov [21], these derivatives 
can be rewritten by the chain rule as

∂ f

∂θ
= 2[xm(θ,ϕ) − xref

m ] · ∂xm (θ,ϕ)

∂θ
(5)

∂ f

∂ϕ
= 2[xm(θ,ϕ) − xref

m ] · ∂xm (θ,ϕ)

∂ϕ
(6)

In practice, once the constant d∗ of the approximate surface n · x +d∗ = 0 is obtained from the local volume enforcement 
Eq. (1), the polyhedron below the approximate surface can be constructed, so that xm(θ,ϕ) in Eq. (5) and Eq. (6) can be 
calculated accurately from Eq. (3) by converting the volume integral to surface integrals on each face. Therefore, our major 
objective is to deduce the analytical expression for ∂xc (θ,ϕ) /∂θ and ∂xc (θ,ϕ) /∂ϕ .

4. Centroid rotation rule

Based on the definition of a derivative, ∂xc (θ,ϕ) /∂θ and ∂xc (θ,ϕ) /∂ϕ can be reformulated as

∂xm (θ,ϕ)

∂θ
= lim

�θ→0

xm (θ + �θ,ϕ) − xm (θ,ϕ)

�θ
(7)

∂xm (θ,ϕ)

∂ϕ
= lim

�ϕ→0

xm (θ,ϕ + �ϕ) − xm (θ,ϕ)

�ϕ
(8)

The �θ and �ϕ in Eq. (7) and Eq. (8) represent an infinitesimal rotation of the approximate surface about two specific 
lines. For the sake of clarity, a tetrahedron is illustrated in Fig. 2, but the deduction given below is also valid for any 
complex polyhedrons. It should be mentioned that when calculating the partial derivatives, only two specific rotation axes 
are considered, but in general, the rotation can be about an arbitrary axis. As shown in Fig. 2, the triangles Tp1 p2 p3
and Tq1q2q3 are termed as the base approximate surface and derived approximate surface respectively. The derived surface 
Tq1q2q3 is obtained by an infinitesimal rotation of the base surface Tp1 p2 p3 about an arbitrary axis O 1 O 2 and the dihedral 
angle between them is denoted by �α, as illustrated in Fig. 3. In this section, we will prove that in order to make the 
derived surface fulfill the local volume enforcement, the base surface must be rotated around its centroid. This centroid 
rotation rule is not only valid for MoF method, but also applicable for any VoF algorithm.

4.1. Approximate alternative columns

Local volume enforcement in Fig. 2 requires

VPp p p C B D = VPq q q C D B (9)
1 2 3 1 2 3
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Fig. 3. The local coordinate system and the alternative column Pp1 p2 O 1 O 2h1h2 for the polyhedron �1.

where V denotes the volume of a polyhedron. Subtracting the common portion Pp1 p2 O 1 O 2q3C B D from both sides of 
Eq. (9) leads to

VPp1 p2q1q2 O 1 O 2 = VPp3q3 O 1 O 2 (10)

Denoting the polyhedron Pp1 p2q1q2 O 1 O 2 as �1 and polyhedron Pp3q3 O 1 O 2 as �2, Eq. (10) can be rewritten asˆ

�1

dV =
ˆ

�2

dV (11)

Thus, Eq. (7) and Eq. (8) can be reduced to

∂xm (θ,ϕ)

∂θ
= lim

�θ→0

´
�1

xdV − ´
�2

xdV

V ref�θ
(12)

∂xm (θ,ϕ)

∂ϕ
= lim

�ϕ→0

´
�1

xdV − ´
�2

xdV

V ref�ϕ
(13)

The polyhedrons �1 and �2 are arbitrary polyhedrons, so the volume integrals on them are complicated to calculate. 
To simplify the volume integration on these two polyhedrons, we construct two columns �′

1 and �′
2 to approximate the 

polyhedrons �1 and �2 respectively because the volume integration on a column is much more easier to be calculated as 
shown in Appendix A. The constructed approximate columns must fulfill the requirement⎛

⎜⎝ˆ

�1

xdV −
ˆ

�2

xdV

⎞
⎟⎠ −

⎛
⎜⎝ˆ

�′
1

xdV −
ˆ

�′
2

xdV

⎞
⎟⎠ = O

(
�α2

)
(14)

We will prove that as long as Eq. (14) is satisfied, the RHS of Eq. (12) and Eq. (13) integrating on the original regions �1
and �2 are equivalent to those integrating on the approximate regions �′

1 and �′
2.

The infinitesimal increments in θ and ϕ , namely �θ and �ϕ , will lead to infinitesimal dihedral angles �αθ and �αϕ

but they may not be equal. Nevertheless, the conclusion in Section 5.1 shows that they are in the same order. Therefore, if 
Eq. (14) is fulfilled, the RHS of Eq. (12) can be rewritten as´

�1
xdV − ´

�2
xdV

V ref�θ
=

´
�′

1
xdV − ´

�′
2

xdV + O
(
�α2

θ

)
V ref�θ

=
´
�′

1
xdV − ´

�′
2

xdV

V ref�θ
+ O (�θ) (15)

where the second line results from the fact that �αθ is in the same order as �θ . Substituting Eq. (15) into Eq. (12) gives

∂xm (θ,ϕ)

∂θ
= lim

�θ→0

´
�′

1
xdV − ´

�′
2

xdV

V ref�θ
(16)

Similarly,

∂xm (θ,ϕ)

∂ϕ
= lim

�ϕ→0

´
�′

1
xdV − ´

�′
2

xdV

V ref�ϕ
(17)

In summary, the first order partial derivatives calculated on the original polyhedrons are identical to those calculated on 
the alternative columns.

In order to simplify the derivation, we employ a local coordinate system for the polyhedron Pp1 p2q1q2 O 1 O 2, as shown 
in Fig. 3. The origin of the local coordinate system lies on the rotation line O 1 O 2, axis i is along 

−−−→
O 2 O 1, axis k is along the 
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Fig. 4. The error polyhedron Pp1 p2h1h2q1q2, and the auxiliary polyhedron Pq1q2h1h2s1s2. Eq. (18) guarantees the integral on the error polyhedron is 
O  (�α2

)
.

normal of the base surface p1 p2 O 1 O 2 and axis j = k × i. The integrals will be calculated in this local coordinate system. To 
construct an alternative column for the polyhedron �1, two auxiliary lines are created passing through the vertexes p1 and 
p2 and perpendicular to the base surface p1 p2 O 1 O 2. They will intersect with the derived surface q1q2 O 1 O 2 at h1 and h2
and we will show that the alternative column Pp1 p2 O 1 O 2h1h2 fulfills Eq. (14).

As shown in Fig. 3, the LHS of Eq. (14) involves the integrals on three error polyhedrons, namely, Pp1 p2h1h2q1q2, 
Pp1h1q1 O 1 and Pp2h2q2 O 2. As h1, h2, q1, q2, O 1 and O 2 are all located on the derived surface, the integral on 
Ph1h2q1q2 O 1 O 2 equals to zero. Generally speaking, the number of error polyhedrons is always finite. Therefore, Eq. (14) is 
fulfilled as long as the integral error on every error polyhedron is O  

(
�α2

)
. Take the polyhedron Pp1 p2h1h2q1q2 in Fig. 3 as 

an example, which has been amplified in Fig. 4 for the sake of clarity. Create two points s1 and s2 such that q1s1 and q2s2
are perpendicular to the base surface, so the polyhedron Pp1 p2s1s2q1q2h1h2 is a column. The following inequality ensures 
the integral error is O  

(
�α2

)
where f = 1, g = 1 for volume calculation, f = x, y, z, g = x, y, 0.5z for centroid calculation.∣∣∣∣∣∣∣

ˆ

p1 p2q1q2h1h2

f dV

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
ˆ

p1 p2q1q2h1h2s1s2

f dV

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣nz

˛

q1q2h1h2

zgdS

∣∣∣∣∣∣∣
≤ ∣∣nz zmax gmax Sq1q2h1h2

∣∣ =
∣∣∣∣nzzmax gmax

S p1 p2s1s2

|nz|
∣∣∣∣

= ∣∣zmax gmax S p1 p2s1s2

∣∣ = O
(
�α2

)
(18)

where nz is the third component of the unit normal of the derived surface in the local coordinate system O xyz and S p1 p2s1s2

is the area of the bottom-surface of the column.
The first inequality in Eq. (18) is due to Pp1 p2q1q2h1h2 ⊆ Pp1 p2q1q2h1h2s1s2 and the subsequent equality is a conse-

quence of Eq. (A.4) to Eq. (A.7) in Appendix A. Finally, it can be proven that zmax = O  (�α) and S p1 p2h1h2 = O  (�α) and 
gmax is finite on face q1q2h1h2 thus the last equality is fulfilled.

In summary, the volume integral domains �1 and �2 in Eq. (12) and Eq. (13) can be replaced by their approximate 
alternative columns for calculating the first order partial derivatives. The approximate alternative columns make the integrals 
much easier to be calculated so they will be used in next sections.

4.2. Centroid rotation rule

According to the volume integral approximation, the left side of Eq. (11) can be rewritten as

ˆ

�1

dV ≈
ˆ

�′
1

dV =
ˆ

Pp1 p2 O 1 O 2h1h2

dV (19)

The polyhedron Pp1 p2 O 1 O 2h1h2 is a column, so according to Eq. (A.4), the above volume integral can be further sim-
plified as

ˆ

�′
dV = nz

˛

O 1 O 2h1h2

zdS (20)
1



162 X. Chen, X. Zhang / Journal of Computational Physics 326 (2016) 156–170
Fig. 5. Rotation direction for partial derivatives.

In order to find the right hand side of Eq. (20), the equation of the derived surface, O 1 O 2h1h2, in the local coordinate 
system O xyz in Fig. 3 is y sin (�α) + z cos (�α) = 0, namely z = −y sin (�α)/ cos (�α). Substituting this relation into 
Eq. (A.4) leads to

ˆ

�′
1

dV = sign(nz)
sin (�α)

cos (�α)

˛

p1 p2 O 1 O 2

ydxdy = − sin (�α)

cos (�α)

˛

p1 p2 O 1 O 2

ydxdy (21)

Similarly, the right side of Eq. (11) can be approximated as

ˆ

�2

dV ≈
ˆ

�′
2

dV = sign(nz)
sin (�α)

cos (�α)

˛

p3 O 1 O 2

ydxdy = sin (�α)

cos (�α)

˛

p3 O 1 O 2

ydxdy (22)

The sign of Eq. (21) and Eq. (22) is opposite because the outward normal nz of the derived surface is opposite. Substi-
tuting Eq. (21) and Eq. (22) into Eq. (11), the local volume enforcement requirement gives

˛

p3 O 1 O 2

ydxdy +
˛

p1 p2 O 1 O 2

ydxdy =
˛

p1 p2 p3

ydxdy = 0 (23)

Eq. (23) indicates that the centroid of the base surface p1 p2 p3 must lie on the rotation axis O 1 O 2. Moreover, because 
the direction of rotation is arbitrary, the base surface must rotate around its centroid to fulfill the local volume enforcement.

It should be mentioned again that the centroid rotation rule is not only valid for MoF method, but also a general 
requirement for any VoF methods whenever the normal of approximate surface is changed.

5. First order analytical partial derivatives

5.1. The rotation axes for partial derivatives

The centroid rotation rule is valid for any rotation axis, however, for calculating the partial derivatives, the rotation is 
performed about two specific axes. As shown in Fig. 5, p1 p2 p3 p4 p5 is a base surface, O is its centroid, x0, y0, z0 are the 
global coordinate system axes, n is the normal of the base surface and lθ , lϕ are the unit vectors of the rotation axis for θ
and ϕ . It is obvious that lθ must be perpendicular to n (θ,ϕ) and n (θ + �θ,ϕ) and lϕ must be perpendicular to n (θ,ϕ)

and n (θ,ϕ + �ϕ), namely

lθ = lim
�θ→0

n (θ + �θ,ϕ) × n (θ,ϕ)

‖n (θ + �θ,ϕ) × n (θ,ϕ)‖ = (sinϕ,− cosϕ,0) (24)

The relation between the infinitesimal dihedral angle �αθ and the infinitesimal increment of θ can be obtained by the 
following equation:

lim
�θ→0

�αθ

�θ
= lim

�θ→0

sin (�αθ )

sin (�θ)
= lim

�θ→0

‖n (θ + �θ,ϕ) × n (θ,ϕ)‖
sin (�θ)

= 1 (25)

where the subscript θ means the dihedral angle �α is caused by the increment of θ with ϕ fixed. Namely, �αθ and �θ

are in the same order and �αθ is equivalent with �θ . Similarly we have
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lϕ = lim
�ϕ→0

n (θ,ϕ + �ϕ) × n (θ,ϕ)

‖n (θ,ϕ + �ϕ) × n (θ,ϕ)‖ = (cos θ cosϕ, cos θ sinϕ,− sin θ) (26)

lim
�ϕ→0

�αϕ

�ϕ
= lim

�ϕ→0

sin
(
�αϕ

)
sin (�ϕ)

= lim
�ϕ→0

‖n (θ,ϕ + �ϕ) × n (θ,ϕ)‖
sin (�ϕ)

= sin θ (27)

which indicates that �αϕ and �ϕ are in the same order and �αϕ is equivalent with sin θ�ϕ .
Once lθ or lϕ is obtained, the local coordinate system in Fig. 3 can be determined: O is the centroid of the base 

surface, k = n, i = lθ or i = lϕ and j = k × i. Therefore, the unit vectors of the two local coordinate systems are 
iθ = (sinϕ,− cosϕ,0), jθ = (cos θ cosϕ, cos θ sinϕ,− sin θ) and iϕ = (cos θ cosϕ, cos θ sinϕ,− sin θ), jϕ = (− sinϕ, cosϕ,0), 
respectively. Comparing the parameters we have iθ = − jϕ and jθ = iϕ , so the coordinates in these two local system fulfill

xϕ = yθ (28)

yϕ = −xθ (29)

5.2. The analytical derivatives

The partial derivatives are the dot product of two vectors according to Eq. (5) and Eq. (6), which are independent of the 
choice of coordinate system, so they will be calculated in the local coordinate system defined in Section 5.1. As illustrated 
in Section 4, the equation of the derived surface in the new coordinate system is z = −y sin (�α)/ cos (�α). Substitute this 
relation into Eqs. (A.5) to (A.7), the integrals in Eq. (12) are calculated asˆ

�′
1

xdV = − sin (�α)

cos (�α)

˛

p1 p2 O 1 O 2

xydxdy (30)

ˆ

�′
1

ydV = − sin (�α)

cos (�α)

˛

p1 p2 O 1 O 2

y2dxdy (31)

ˆ

�′
1

zdV = −1

2

sin2 (�α)

cos2 (�α)

˛

p1 p2 O 1 O 2

y2dxdy (32)

and ˆ

�′
2

xdV = sin (�α)

cos (�α)

˛

p3 O 1 O 2

xydxdy (33)

ˆ

�′
2

ydV = sin (�α)

cos (�α)

˛

p3 O 1 O 2

y2dxdy (34)

ˆ

�′
2

zdV = 1

2

sin2 (�α)

cos2 (�α)

˛

p3 O 1 O 2

y2dxdy (35)

Therefore, Eq. (12) can be written as

∂xm (θ,ϕ)

∂θ
= lim

�θ→0

− sin (�αθ )

V ref�θ cos (�αθ )

(
Ixy, I yy,

1

2

sin (�αθ )

cos (�αθ )
I yy

)
(36)

∂xm (θ,ϕ)

∂ϕ
= lim

�ϕ→0

− sin
(
�αϕ

)
V ref�ϕ cos

(
�αϕ

)
(

Ixy, I yy,
1

2

sin
(
�αϕ

)
cos

(
�αϕ

) I yy

)
(37)

where

Ixy =
˛

p1 p2 p3

xydxdy, Ixx =
˛

p1 p2 p3

x2dxdy, I yy =
˛

p1 p2 p3

y2dxdy (38)

Substitute Eq. (25) and Eq. (27) into Eq. (36) and Eq. (37) and then make limit, the analytical partial derivatives are 
obtained as

∂xm (θ,ϕ)

∂θ
= − 1

V ref

(
Ixθ yθ , I yθ yθ ,0

)
(39)

∂xm (θ,ϕ) = − 1
ref

sin θ
(

Ixϕ yϕ , I yϕ yϕ ,0
)

(40)

∂ϕ V
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Fig. 6. Single cell test. The solid dots represent the vertexes, whereas the hollow dots represent the face centers.

It should be mentioned that the coordinate systems used in Eq. (39) and Eq. (40) are different, but according to Eq. (28)
and Eq. (29), the partial derivative with respect to ϕ can be rewritten as

∂xm (θ,ϕ)

∂ϕ
= − 1

V ref
sin θ

(−Ixθ yθ , Ixθ xθ ,0
)

(41)

The integrand in Eq. (39) and Eq. (41) are quadratic functions, so in order to calculate the integral exactly on the polygon, 
one of the simplest method is to decompose this polygon into triangles and use 3-point Gauss quadrature rule to obtain the 
integral in each triangle. Subsequently, substitute Eq. (39) and Eq. (41) into Eq. (5) and Eq. (6), the partial derivatives of the 
function f (θ, ϕ) can be calculated. The expression of partial derivatives in Eq. (39) and (41) are analytical and the integral 
Ixθ yθ , I yθ yθ , Ixθ xθ can be calculated exactly by Gauss quadrature scheme, so the derivatives are accurate.

The coordinates of points p1, p2 and p3, which have been obtained from Eq. (1), are sufficient to calculate the face 
integral in Eq. (39) and Eq. (41), so no extra information is needed to calculate these derivatives.

The final algorithm for accurately calculating the analytical derivative are shown below:

1. Solve the local volume enforcement Eq. (1) to determine the approximate surface and save the coordinates of the base 
surface’s vertexes pi .

2. Calculate the centroid of the base surface and establish the local coordinate system according to Eq. (24) and Eq. (26).
3. Transform the global coordinates of pi , x (θ,ϕ) and xref into the local coordinate system.
4. Calculate the integrals in Eq. (39) and Eq. (41) to obtain the partial derivatives of xm with respect to θ and ϕ .
5. Calculate the analytical partial derivatives by Eq. (5) and Eq. (6).

6. Numerical experiments

In this section, the analytical partial derivatives are firstly validated in Section 6.1 and then the accuracy, efficiency and 
robustness of the improved MoF method are investigated in Section 6.2.

6.1. Single cell test

The analytical derivatives are first validated on a single cell shown in Fig. 6 with vertexes A (0,0,0), B (1.1,0,0), 
C (1,1.2,0), D (0,1.3,0.2), P (0,0,1.2), Q (1,0,1.1), R (1,1.2,1.1) and S (0,1,1.3). The cell is a generalized hexahedron 
because its vertexes do not lie on the same plane in every face, therefore the face centers are also shown in the hexahedron 
and each face is decomposed into four triangles as in Jia et al. (2013) [12] and Ahn et al. (2007) [19].

6.1.1. Convergence test at a single sample point
Suppose the volume fraction of the cell is prescribed as f = 0.32, the reference centroid is xref = (0.2,0.2,0.2) and the 

sample point is θ = 0.37π, ϕ = 0.14π . The numerical partial derivatives are

[
f,θ

]
num = f (θ + �θ,ϕ) − f (θ,ϕ)

�θ
(42)

[
f,ϕ

]
num = f (θ,ϕ + �ϕ) − f (θ,ϕ)

�ϕ
(43)

which are first order accurate. The numerical derivatives depend on the increments �θ and �ϕ and they will be more 
accurate as the increments decrease. On the contrary, the analytical derivatives are independent of �θ and �ϕ so this test 
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Table 1
Discrepancy between the numerical and analytical partial derivatives.

�θ or �ϕ
∣∣[ f,θ

]
num − f,θ

∣∣ ∣∣[ f,ϕ
]

num − f,ϕ
∣∣

1 × 10−2 1.96 × 10−3 1.80 × 10−3

1 × 10−3 1.96 × 10−4 1.81 × 10−4

1 × 10−4 1.96 × 10−5 1.81 × 10−5

1 × 10−5 1.96 × 10−6 1.81 × 10−6

1 × 10−6 1.96 × 10−7 1.81 × 10−7

Fig. 7. Derivative comparison along a line with θ = 0.37π .

is to decrease �θ and �ϕ gradually to make the numerical derivatives more accurate and see their differences with the 
analytical partial derivatives.

Table 1 lists the discrepancy between the numerical partial derivatives and the analytical partial derivatives at the sample 
point. As expected, the numerical partial derivatives converge to the analytical partial derivatives at first order convergence 
rate, which means that the analytical partial derivatives given in this paper are the exact derivatives.

6.1.2. Test at sample points on a line
The convergence rate is merely tested at one sample point in Table 1. To test at sample points on a line, θ = 0.37π

is fixed and ϕ has values from 0 to 2π with an increment of δϕ = 0.01π . The analytical derivatives and the numerical 
derivatives with respect to θ and ϕ are calculated at each sample point and the results are compared in Fig. 7(a) and 
Fig. 7(b), in which the solid lines denote the numerical derivatives with the increment of θ and ϕ equal to 10−6 and the 
dots denote the analytical derivatives. It can be seen that the numerical derivatives and the analytical derivatives are almost 
exactly coincident at all sample points.

6.2. Surface reconstructions

In this section, we will study the efficiency and robustness improvement achieved by the analytical derivatives. The 
efficiency is improved in two ways. Firstly, the analytical derivatives are obtained by solving Eq. (1) only once while the nu-
merical derivatives need to solve Eq. (1) three times when evaluating the partial derivatives at each iterative point (θ,ϕ). As 
solving Eq. (1) will consume most of CPU time, this part will lead to about 3 times of efficiency improvement. Secondly, the 
numerical derivatives are only first order accurate, therefore, the number of iterative steps using the analytical derivatives 
will be less than that using the numerical derivatives. Meanwhile, the quasi-Newton iteration with the analytical derivatives 
will be more stable and robust than that with the numerical derivatives. It is hard to estimate the efficiency improvement 
of this part quantitatively because the smoothness and convexity of the objective functions vary significantly in different 
problems, but in general, the less smooth and convex a objective function is, the more improvement will be achieved using 
the analytical derivatives.

Planar surface reconstruction is performed in Section 6.2.1, in which the objective function is smooth and convex enough 
so the efficiency improvement is achieved mainly from the first part. Subsequently, a “C” shaped column reconstruction is 
performed in Section 6.2.2, which includes planar surfaces, smooth surfaces and discontinuous surfaces so the efficiency and 
robustness improvement is achieved from both parts. Finally, a more complex example containing three materials is pre-
sented in Section 6.2.3 which demonstrates the analytical partial derivatives are applicable on arbitrary convex polyhedron.

The �θ and �ϕ in numerical derivatives equal to 10−8 in Section 6.2.1 and 10−7 in Section 6.2.2 and Section 6.2.3.

6.2.1. Planar surfaces reconstruction test
A series of target planar surfaces are reconstructed in the single cell shown in Fig. 6 with the same volume fraction 

f = 0.32. The normal of these target surfaces are prescribed by θ varied from 0 to π and ϕ varied form 0 to 2π with 
an increment of δθ = δϕ = 0.01π . Based on each determined target surface normal ni , Eq. (1) is solved to obtain the 
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Table 2
Efficiency improvement in planar surface reconstruction.

Type of derivatives CUP time Average number of iterative steps

Numerical 8.61 s 9.30
Analytical 3.07 s 9.30

Fig. 8. The FEM model of the “C” shaped column whose surface is to be reconstructed.

constant d∗ . Then the polyhedron below the target surface is construct to calculate the reference centroid xm,i . Finally, 
f and xm,i are used in MoF method to reconstruct this target plane. While the MoF method reconstructs a plane ex-
actly, the resulted normal must equal to ni within a small tolerance. The BFGS quasi-Newton iteration [24] with Wolfe 
inaccurate one dimension searching [25] is used to solve the optimization and the convergence tolerance is chosen as 

‖∇ f ‖ =
√

(∂ f /∂θ)2 + (∂ f /∂ϕ)2 < 10−8 where f is the objective function in Eq. (2).
The CPU time and average number of iterative steps used by surface reconstruction with the numerical derivatives and 

the analytical derivatives are compared in Table 2. The average number of iterative steps is the same no matter whether 
using the numerical derivatives or the analytical derivatives. Thus, the convergence rate does not depend on the choice of 
derivatives in the planar surfaces reconstruction because its objective function is convex and smooth enough. Therefore, 
the efficiency improvement in this example is mainly achieved from the first part, namely about 2.80 times improvement 
which is little less than expected 3 times because there is minor extra effort in calculating the analytical derivatives. The 
differences between the target normal and the reconstructed normal are about 10−7 for both numerical derivatives and 
analytical derivatives, which will be decreased with the decrease of the convergence tolerance. Therefore, the MoF method 
can reconstruct a planar surface precisely.

6.2.2. “C” shaped column reconstruction
The “C” shaped column shown in Fig. 8 is reconstructed on both regular and distorted grids. This column is an FEM 

model discretized by hexahedron elements and its surface is going to be reconstructed. The regular grid is 50 × 50 × 50
orthogonal equidistant on (0,1) × (0,1) × (0,1) and the distorted grid is constructed by moving the nodes of the regular 
grid as in Garimella et al. (2007) [13], namely

x′ = x0 + 0.1 sin (2πx0) sin (2π y0) sin (2π z0)

y′ = y0 + 0.1 sin (2πx0) sin (2π y0) sin (2π z0)

z′ = z0 + 0.1 sin (2πx0) sin (2π y0) sin (2π z0)

where x′ , y′ and z′ are the coordinates of the distorted grid nodes and x0, y0 and z0 are the coordinates of the corresponding 
regular ones. The initial volume fraction and material centroid are obtained by intersecting the hexahedron elements in the 
FEM model with the cells in the computational grid and calculating the integrals on the intersected portion. It should be 
mentioned that the column is inclined and its edges are not coincident with the computational grid lines so unsmooth 
surface may appear in some cells near the edge. There are 4569 and 5416 mix cells in the regular and distorted grids, 
respectively.

The reconstructed “C” shaped columns on the regular and distorted grids are shown in Fig. 9 and Fig. 10, respectively. The 
smooth surfaces of the column can be reconstructed with high accuracy, whereas the nonsmooth surfaces near the edge can 
not be reconstructed accurately because the two different surfaces are located in one cell which can not be approximated 
by only one plane. These different regions are labeled in Fig. 9(a) and they are analogous in other figures.

Although there is no obvious difference observed between the columns reconstructed with the analytical derivatives and 
the numerical derivatives, the efficiency and robustness improvement can be achieved from both parts because the objective 
functions in this example are not as smooth and convex as those in the planar surfaces reconstruction.

Table 3 compares the efficiency of the “C” shaped column reconstruction on the regular grid, which shows that about 
3.58 times efficiency improvement is achieved by using the analytical derivatives, which is higher than that in planar surface 
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Fig. 9. “C” shaped column reconstructed on the regular grid with (a) numerical derivatives and (b) analytical derivatives. The regions I and II in (a) are the 
smooth surfaces which can be reconstructed with high accuracy, whereas the region III is near the edge of the column which is nonsmooth so they can 
not be reconstructed accurately. For a clear interpretation of this figure, the electronic version of this paper is recommended.

Fig. 10. “C” shaped column reconstructed on the distorted grid (a) with numerical derivatives and (b) with analytical derivatives. For a clear interpretation 
of this figure, the electronic version of this paper is recommended.

Table 3
Efficiency comparison on the regular grid.

Type of derivatives CPU time Average number of iterative steps

BFGS 1D searching

Numerical 10.59 s 5.52 1.38
Analytical 2.96 s 5.36 1.20

reconstruction. The extra improvement is achieved due to the reduced number of iterative steps. The average number of 
iterative steps in both BFGS process and 1D searching process are reduced by using the analytical derivatives. Moreover, 
2 mix cells are not converged when using the numerical derivatives. The non-convergence may be attributed to several 
reasons such as the iterative error in solving Eq. (1), the numerical error in clipping and capping algorithm or the numerical 
error from the differential derivatives, etc. These errors will result in the oscillation of the iterative point near the optimal 
solution and could not be convergent within the given small tolerance (10−6 in this example). However, all mix cells are 
converged when using analytical derivatives because there is no error in derivatives, but if the tolerance comes to less than 
10−8, non-convergence will also occur due to other errors. Nevertheless, the robustness of the iteration is indeed improved 
significantly by using the analytical derivatives.

In the reconstruction on the distorting grid, more efficiency improvement is achieved from the second part. As shown 
in Table 4, 3.94 times efficiency improvement is achieved which is higher than that achieved on the regular grid because 
the distorting grid undermines the smoothness and convexity of the objective functions. Similarly, the average number of 
iterative steps in BFGS process and 1D searching process are reduced when using the analytical derivatives, especially in 
1D searching. In this example, 7 mix cells are not converged when using the numerical derivatives while all mix cells are 
converged when using the analytical derivatives, so the analytical derivatives improve the robustness significantly when the 
smoothness and convexity of the objective function are corrupted.
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Table 4
Efficiency comparison on the distorted grid.

Type of derivatives CPU time Average number of iterative steps

BFGS 1D searching

Numerical 21.85 s 9.44 1.69
Analytical 5.54 s 9.40 1.24

Fig. 11. Multi-material FEM model of two intersected spheres. Two intersected spheres S1 and S2 with radius r = 0.3 which centered at (0.4, 0.4, 0.4) and 
(0.6, 0.6, 0.6) define three materials: material 1 is defined by S1 (blue), material 2 is by S2–S1 (red) and material 3 is the background which is not shown 
in the figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. The reconstructed surfaces of two intersected spheres using numerical derivatives (a) and analytical derivatives (b).

6.2.3. Multi-material surface reconstruction
The surfaces of two intersected spheres will be reconstructed in this section, whose FEM model is shown in Fig. 11. 

The two spheres, denoted by S1 and S2, are centered at (0.4,0.4,0.4) and (0.6,0.6,0.6) with radius r = 0.3. They define 
three materials: material 1 is defined by S1 (blue), material 2 is by S2–S1 (red) and material 3 is the background which 
is not shown in the figure for visualization purposes. The computational grid is 40 × 40 × 40 orthogonal equidistant on 
(0,1) × (0,1) × (0,1) which is same as that in Ahn et al. [19]. The initial reference volume fraction and material centroid 
are obtained by the method described in Section 6.2.2.

In this example, three different materials will simultaneously attend in the cells near the intersection line of the spheres 
and these cells will be sub-divided into three portions. The optimal reconstruction order can be obtained automatically in 
MoF method [18,19] and in the second sub-division, the MoF method will be performed on an arbitrary irregular polyhe-
dron.

The reconstructed surface by numerical and analytical partial derivatives are shown in Fig. 12. The surfaces can be 
effectively reconstructed by both approaches and the results are almost the same as that in Ahn et al. [19]. Although 
there is no obvious difference in the figures, the efficiency and robustness results listed in Table 5 show the significant 
advantage of the analytical derivatives. A 3.19 times efficiency improvement is achieved by using the analytical derivatives 
and all mixed cells converge with the given tolerance. Moreover, all the 19 non-convergent cells using numerical derivatives 
contain three materials simultaneously which indicates that the analytical derivatives improve the robustness remarkably 
on arbitrary irregular polyhedrons.
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Table 5
The efficiency and robustness result of multi-material reconstruction.

Type of derivatives CPU time Non-convergent cases

Numerical 11.11 19
Analytical 3.48 0

Fig. 13. Volume integral in a column.

7. Conclusion

In this paper, the analytical first order derivatives of the objective function in MoF surface reconstruction is deduced 
through a geometric analysis. The value of the objective function and its partial derivatives can be calculated simultaneously 
without extra objective function calculations which is required in the finite difference approximation. Moreover, a general 
centroid rotation rule is proposed to fulfill the local volume enforcement which is applicable in any kinds of VoF algo-
rithms. The numerical experiments show that the analytical derivatives are the limits of the finite differential derivatives 
as �ϕ and �θ approach to zero, which validates the analytical derivatives. Finally, the numerical experiments on planar 
surface, “C” shaped column and two intersected spheres indicate the iteration with the analytical derivatives is more robust 
and about 3 to 4 times faster than that using the numerical derivatives. In general, when the smoothness and convexity 
of the objective functions are corrupted by discontinuous surface or distorting grid, significant robustness and efficiency 
improvement will be achieved by using the analytical derivatives.
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Appendix A. Volume integral in a column

As shown in Fig. 13, the polyhedron ABC D P Q R S is a column, namely edge A P , B Q , C R and D S are all vertical to the 
bottom-surface. In order to calculate its volume V = ´

�
dV , the volume integral can be converted into surface integrals by 

using the Gauss theory as

ˆ

�

dV =
∑

i

˛

�i

ni · gdS (A.1)

where g = (0,0, z). Therefore, Eq. (A.1) can be rewritten as

ˆ

�

dV =
∑

i

˛

�i

niz zdS (A.2)

Because niz = 0 on all side-faces of the column and z = 0 on the bottom-face of the column, there is only one non-zero 
term in the right side of Eq. (A.2), thus

ˆ
dV = nz

˛
zdS (A.3)
� ABC D
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Therefore, the volume integral on a column can be converted into a surface integral on the top surface of the column, 
which is much easier to be calculated. Moreover, if the equation of the plane ABC D is z = ax + by + c, the surface integral 
on ABC D can be converted to a integral on the bottom-surface of the column asˆ

�

dV = nz

˛

ABC D

zdS = sign (nz)

˛

P Q R S

(ax + by + c)dxdy (A.4)

In order to calculate the centroid of the column, only g in Eq. (A.1) is different, namely
ˆ

�

xdV = nz

˛

ABC D

zxdS = sign (nz)

˛

P Q R S

(ax + by + c) xdxdy (A.5)

ˆ

�

ydV = nz

˛

ABC D

zydS = sign (nz)

˛

P Q R S

(ax + by + c) ydxdy (A.6)

ˆ

�

zdV = 1

2
nz

˛

ABC D

z2dS = 1

2
sign (nz)

˛

P Q R S

(ax + by + c)2 dxdy (A.7)

Eq. (A.4) to Eq. (A.7) are volume integrations in a column which were used to calculate the integral in the approximate 
columns in Section 4 and Section 5.

References

[1] A. Bockmann, M. Vartdal, A gradient augmented level set method for unstructured grids, J. Comput. Phys. 258 (2014) 47–72.
[2] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. 

Comput. Phys. 152 (1999) 457–492.
[3] R.P. Fedkiw, T. Aslam, S. Xu, The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys. 154 (1999) 393–427.
[4] D.J. Benson, Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev. 55 (2002) 151–165.
[5] J.E. Pilliod, E.G. Puckett, Second-order accurate volume-of-fluid algorithm for tracking material interface, J. Comput. Phys. 199 (2004) 465–502.
[6] E.G. Puckett, A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction, in: Proceedings of the 4th Interna-

tional Symposium on Computational Fluid Dynamics, 1991, pp. 933–938.
[7] X. Yang, A.J. James, Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids, J. Comput. Phys. 214 (2006) 

41–54.
[8] C.W. Hirt, B.D. Nichols, Volume of fluid method for the dynamics of free boundary, J. Comput. Phys. 39 (1981) 201–255.
[9] M. Tianbao, W. Cheng, N. Jianguo, Multi-material Eulerian formulations and hydrocode for the simulation of explosions, Comput. Model. Eng. Sci. 33 

(2008) 155–178.
[10] D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics, 

Academic Press, 1982, pp. 273–285.
[11] J. Lopez, J. Hernandez, Analytical and geometrical tools for 3D volume of fluid method in general grids, J. Comput. Phys. 227 (2008) 5939–5948.
[12] Z. Jia, J. Liu, S. Zhang, An effective integration of methods for second-order three-dimensional multi-material ALE method on unstructured hexahedral 

meshes using of MOF interface reconstruction, J. Comput. Phys. 236 (2013) 513–562.
[13] R. Garimella, M. Kucharik, M. Shashkov, An effective linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, 

Comput. Fluids 36 (2007) 224–237.
[14] H.T. Ahn, M. Shashkov, Geometric algorithms for 3D interface reconstruction, in: Proceedings of the 16th International Meshing Roundtable, Springer, 

Berlin, Heidelberg, 2008, pp. 405–422.
[15] B. Swartz, The second-order sharpening of blurred smooth borders, Math. Comput. 186 (1989) 675–714.
[16] S.J. Mosso, B.K. Swartz, D.B. Kothe, R.C. Ferrell, A parallel volume-tracking algorithm for unstructured meshes, in: P. Schiano, A. Ecer, J. Periaux, N. 

Satofuka (Eds.), Parallel Computational Fluid Dynamic Algorithms and Results Using Advanced Computers, Elsevier Science, 1997, pp. 368–375.
[17] H.R. Anbarlooei, K. Mazaheri, Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian algorithm, Comput. 

Methods Appl. Mech. Eng. 198 (2009) 3782–3794.
[18] V. Dyadechko, M. Shashkov, Reconstruction of multi-material interfaces from moment data, J. Comput. Phys. 227 (2008) 5361–5384.
[19] H.T. Ahn, M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, J. Comput. Phys. 226 (2007) 2096–2132.
[20] M. Kucharik, R.V. Garimella, S.P. Schofield, M.J. Shashkov, A comparative study of interface reconstruction methods for multi-material ALE simulation, 

J. Comput. Phys. 229 (2010) 2432–2452.
[21] V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Tech. rep. LA-UR-05-7571, Los Alamos National Laboratory, Los Alamos, October 

2005.
[22] A. Lemoine, S. Glockner, J. Breil, Moment-of-fluid analytic reconstruction on 2D Cartesian grids, http://notus-cfd.org/sites/default/files/

presentationUSALemoine_0.pdf, January 2016.
[23] M.B. Stephenson, H.N. Christiansen, A polyhedron clipping and capping algorithm and a display system for three dimensional finite element method, 

Comput. Graph. 9 (1975) 1–16.
[24] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (3) (1970) 317–322.
[25] R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Ltd., 2000.

http://refhub.elsevier.com/S0021-9991(16)30408-9/bib41726E6532303134s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib526F6E616C643139393961s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib526F6E616C643139393961s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib526F6E616C643139393962s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib446176696432303032s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib50696C6C696F6432303034s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib5075636B657474s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib5075636B657474s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib59616E6732303036s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib59616E6732303036s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4869727431393831s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D6132303038s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D6132303038s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib596F756E677331393832s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib596F756E677331393832s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4C6F70657A32303038s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4A696132303133s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4A696132303133s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib476172696D656C6C6132303037s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib476172696D656C6C6132303037s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib41686E32303038343035s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib41686E32303038343035s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib426C61697231393839s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D6F73736F31393937s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D6F73736F31393937s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib416E6261726C6F6F656932303039s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib416E6261726C6F6F656932303039s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib566164696D32303038s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4879756E6732303037s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4B7563686172696B32303039s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4B7563686172696B32303039s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib447961646563686B6F32303035s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib447961646563686B6F32303035s1
http://notus-cfd.org/sites/default/files/presentationUSALemoine_0.pdf
http://notus-cfd.org/sites/default/files/presentationUSALemoine_0.pdf
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D69636861656C31393735s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib4D69636861656C31393735s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib466C65746368657231393730s1
http://refhub.elsevier.com/S0021-9991(16)30408-9/bib466C65746368657232303030s1

	An improved 3D MoF method based on analytical partial derivatives
	1 Introduction
	2 Local volume enforcement requirement
	3 Normal estimation by MoF method
	4 Centroid rotation rule
	4.1 Approximate alternative columns
	4.2 Centroid rotation rule

	5 First order analytical partial derivatives
	5.1 The rotation axes for partial derivatives
	5.2 The analytical derivatives

	6 Numerical experiments
	6.1 Single cell test
	6.1.1 Convergence test at a single sample point
	6.1.2 Test at sample points on a line

	6.2 Surface reconstructions
	6.2.1 Planar surfaces reconstruction test
	6.2.2 "C" shaped column reconstruction
	6.2.3 Multi-material surface reconstruction


	7 Conclusion
	Acknowledgements
	Appendix A Volume integral in a column
	References


