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A B S T R A C T

Fluid–structure-interaction (FSI) phenomena with multi-phase flow dynamics and structural
damage commonly exist in engineering practice, which however bring great challenges to
nowadays numerical FSI algorithms. A novel localized subdomain smoothing MMALE particle
method (ls-ALEPM) is proposed in this paper for efficient and accurate simulations of large
scale FSI problems. The MMALE method and the MPM are strongly coupled by immersing the
MPM particles into the MMALE grid. In order to avoid the spurious strain induced by the mixed
FSI velocity field, a decoupled stress updating scheme is proposed to update the stress of solid
particles by introducing a virtual velocity field in the vicinity of FSI interface. And specifically,
the highly accurate polyhedron intersection based method is employed for its remapping phase,
which however is time-consuming. Thus, the localized subdomain smoothing method (LSSM)
is put forward to accelerate the remapping phase which only involves the distorted regions
of computational grid. The LSSM is composed of a distorted subdomain determination step
and a combinated mesh smoothing step. Each iteration of the combinated mesh smoothing
step consists of the modified GETMe and the weighted average method, and the transfinite
interpolation method is adopted if the quality criteria is still not satisfied after prescribed
maximum number of iterations. The validity and efficiency of ls-ALEPM is verified by several
benchmark numerical examples and practical engineering simulations.

1. Introduction

Fluid–structure-interaction (FSI) phenomena with multi-phase flow dynamics commonly exist in porous media [1–4], structural
damage due to blast loading [5–7], nuclear [8,9] and water entry of structures [10–13]. It is of great significance to figure out
the corresponding mechanism for physical applications. However in extreme events, these complicated FSI problems always involve
multi-phase flow dynamics, shock discontinuity and even structural topology change with dynamic failure, and bring great challenges
to both theoretical and experimental research. Therefore, it is worth developing efficient and accurate numerical algorithms to
simulate these phenomena.

Plenty of numerical methods aiming at accurate simulations of the multi-phase fluid flow have been put forward in these
decades. According to the kinematic description, traditional methods can be classified into two categories as Eulerian methods
and Lagrangian methods. In Eulerian methods, the computational grid is fixed in space and can handle multi-phase flow dynamics
with large distortion easily. However the detection of complicated multi-phase interface motion is still a challenge. In Lagrangian
methods, the computational grid is embedded and deformed with the material which is natural for the sharp multi-phase interface to
be captured and maintained [14]. Traditional Lagrangian methods will encounter numerical difficulty of heavily distorted mesh in
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simulating fluid problems with large deformation. Arbitrary Lagrangian-Eulerian (ALE) methods [15–17] are raised by combining the
advantages of both Eulerian method and Lagrangian method. Indirect ALE methods [6,18,19] with operator splitting are widely used
and consist of Lagrangian phase, rezoning phase and remapping phase. By solving governing equations in the Lagrangian form, ALE
methods maintain the precise material interface description in the Lagrangian phase. Then a new grid with better quality is obtained
in the rezoning phase to deal with mesh distortion. In traditional ALE methods, every single cell possess only one kind of materials,
so that the rezoned grid should snap to the multi-phase interface for accuracy [20]. The Multi-Material Arbitrary Lagrangian-Eulerian
(MMALE) presented by Peery et al. [21] allows multiple materials to exist in a single cell and still deals with the complex material
interface very well with the help of MOF method[22,23]. MOF method stores both the material centroid and volume fraction in each
cell and is proved to be the most accurate multi-phase interface construction method[24,25]. Qing et al. [24,26] presented a robust
MoF method for severely deformed polygonal mesh and developed a discontinuous Galerkin CCALE-MOF method in axisymmetric
geometry. Finally, the physical variables are transferred from the old grid to the newly created one in the remapping phase. Several
kinds of remapping methods have been presented before. Flux based methods and swept-region based methods [27–30] suffer
from the restricted displacement between the new grid and old one. Moreover, flux based methods use fluxes through surfaces of
neighboring cells and thus require the same connectivity of the grids. The intersection based methods [31,32] conduct accurate
multi-phase remapping process through exact subdivisions and intersections, which has no restriction in connectivity and proximity
of grids. However intersection based methods are time-consuming which even account for more than 90% of the total simulation
time in large-scale engineering problems.

Many attempts have been made to enhance the efficiency of remapping phase in MMALE. Chen et al. [33] improved the 3D
olyhedron intersection based method [34] with ‘‘clipping and projecting’’ algorithm, which enhances the efficiency and robustness
f remapping phase. Bernadt et al. [35] presented a hybrid remapping method in which subdomains occupied by single material
re remapped by computationally cheap swept-region remapping while multi-material cells are remapped by intersection-based
emapping. Yang et al. [36] developed a new flux-based hybrid subcell-remapping method which realized direct remapping of the
ubcell masses. Although the swept-region remapping requires the rezoned grid to be close to the old grid, hybrid remapping is
fficient and innovative as it narrows the region of intersection-based remapping while retaining the accuracy. In fact, narrowing
he intersection area can also be realized by changing the rezoning phase. Since mesh distortion mainly occurs in the vicinity of
SI interface [37] or other localized regions in most of FSI problems, global remapping with re-division of the whole computational
rid is time-consuming and unnecessary while localized rezoning combined with mesh improving methods is more appropriate to
ealize efficient remapping treatment.

Mesh improving methods have been well documented in the past years [21,38,39]. Among them, methods with topology altering
re very effective in dealing with unstructured meshes [40] but suffer from complex operations and freshly generated cells of low
uality. Mesh smoothing methods which improve the mesh only by relocation of nodes without changing topological relationship
re robust and more appropriate for structured grids. These methods can be classified as optimization based methods [41,42],
hysical analogy methods [38,43,44], Laplacian method and its variants [45,46], geometric element transformation methods [47–
0]. Optimization based methods determine the objective function according to quality of grid and improve the grid through
ptimization algorithms, which have good versatility but suffer from high computational complexity and cost. Physical analogy
ethods are considered to be the most effective mesh improving methods and adopt a fictitious elastic problem [38,51] solved on

he mesh domain. However it also suffers from the high computational cost which is caused by assembly and solution of large-scale
atrix. Meduri [51] presented a faster algorithm by smoothing only a single layer of neighbor tetrahedral elements of distorted

nes, which is a good innovation for introducing local mesh regions but the smoothing region is limited quite small. The Laplacian
ethod [52,53] which moves nodes to the arithmetic average of their adjacent nodes is the most commonly used method but it
ay cause illegal or even invalid cells [54]. Kim et al. [55] developed a two-step Laplacian mesh smoothing technique to improve

he quality of trimmed hexahedral cells while preserving the sharp features. Di et al. [45] and Aymone et al. [56] adopted the
eighted average method which is similar to Laplacian method and achieved computationally cheap and effective mesh smoothing.
he geometric element transformation methods which transform single elements and determine new node positions by averaging
odes have attracted wide attention. Vartziotis et al. [50] presented a dual element based GETMe for all-hexahedral mesh smoothing
hose results are comparable to global optimization-based approach while being faster. Meduri et al. [51] developed a smoothing
ethod which combined an elastic analogy method with GETMe to overcome few critical situations where elastic analogy method

s less effective, showing that combining different methods into a whole can take full advantages of different methods and obtain
ore effective methods by complementarity.

Recent literature has proposed or promoted several methods to simulate the interaction of multi-phase fluids and structures with
arge deformations. Zhang et al. [57,58] established a novel theory for the bubble dynamics which unifies different classical bubble
quations successfully and proposed a multi-phase SPH method to simulate the flooding of a damaged cabin. Ni et al. [59] proposed a
ovel immersed boundary method based on Lagrangian multiplier and successfully applied it to the analysis of structures under blast
oad. Zheng et al. [60] coupled the phase-field lattice Boltzmann and material point method for FSI problems involving large density
nd viscosity contrasts. Xiao et al. [61] developed a non-intrusive reduced order model for FSI problems based on proper orthogonal
ecomposition and radial basis function interpolation method. Chen et al. [62] coupled the Weakly Compressive SPH with FEM for
ydroelastic problems and Xue et al. [63] proposed a coupled Riemann SPH–RKPM to simulate weakly compressible fluid–structure
nteraction problems. Mostafaiyan et al. [64] adopted MLS-FEM to predict pressure discontinuities of multi-phase flow fields. Kan
nd Zhang coupled staggered MMALE and MPM based on the concept of the immersed boundary method [65,66] and presented an
MALE particle method [67]. The MMALE particle method immerses the MPM particles into MMALE cells and tracks the interfaces
2

etween the fluid and structure implicitly. By assembling the nodal force and the nodal momentum from both the solid particles
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and fluid cells, the interface interactions are implicitly implemented and a no-slip boundary condition is maintained naturally. The
MMALE particle method benefits from both the advantages of the material point method (MPM) widely used in extreme events and
MMALE with significant advantages mentioned before, and is proved to be an effective method. However it suffers from spurious
strain in structures because of the mixed velocity field adopted at the FSI interface. As the solid structures and fluids have significant
differences in compressibility, updating the strain and stress of solid particles near the FSI interface with the mixed nodal velocities
is unreasonable and thus a new updating scheme of the MMALE particle method is required.

In the present work, a novel localized subdomain smoothing MMALE particle method (ls-ALEPM) is proposed for efficient and
ccurate simulations of large scale FSI problems. The MMALE method and the MPM are strongly coupled by immersing the MPM
articles into the MMALE grid. In order to avoid the spurious strain induced by the mixed FSI velocity field, a decoupled stress
pdating scheme is proposed to update the stress of solid particles by introducing a virtual velocity field in the vicinity of FSI
nterface. And specifically, the highly accurate polyhedron intersection method is employed for the remapping phase, which however
s time-consuming. Thus, a localized subdomain smoothing method (LSSM) is put forward to accelerate the remapping phase which
nly involves the distorted regions of computational grid. The LSSM is composed of a distorted subdomain determination step
nd a combinated mesh smoothing step. The combinated mesh smoothing step adopts the GETMe for rapidly preconditioned mesh
moothing and the weighted average method for further delicate process in each iteration step. And the transfinite interpolation
ethod is adopted if the quality criteria is still not satisfied after prescribed maximum number of iterations. Several numerical

xamples, including smoothing benchmark of 3D distorted grid, Sedov point explosion problem, moving projectiles in fluid,
ragmentation of a cylinder shell induced by blast and structural damage of open-frame building under explosion, are studied to
erify and validate the proposed ls-ALEPM, and numerical results are in good agreement with experiments and show its efficiency
nd robustness.

The paper is structured as follows. Governing equations of the MMALE particle method are briefly introduced in Section 2. Then a
ecoupled stress updating scheme is presented for the Lagrangian phase in Section 4, and a localized subdomain smoothing method
or Euler phase is presented in Section 5. Flowchart of the localized subdomain smoothing MMALE particle method is described in
ection 6. Validations and benchmark simulations are presented in Section 7. Finally, conclusions are drawn in Section 8.

. Governing equations

The governing equations of continuum mechanics in the updated Lagrangian frame are

�̇� = −𝜌�̇�𝑖,𝑖
𝜌�̈�𝑖 = 𝜎𝑗𝑖,𝑗 + 𝜌𝑏𝑖
𝜌�̇� = �̇�𝑖𝑗𝜎𝑖𝑗

(1)

where the overdot denotes derivative with respect to time, 𝜌 is the current density, 𝑒 is the specific internal energy, the subscripts 𝑖
nd 𝑗 indicate the components of the spatial variables following the Einstein convention, 𝑢𝑖 is the displacement, 𝑏𝑖 is the body force

per unit mass, 𝜎𝑖𝑗 is the Cauchy stress, 𝜀𝑖𝑗 is the Cauchy strain. Note that the comma in the subscript denotes the derivative.
With the concept of the immersed boundary method [66], the solid structures are immersed in the fluid domain and the FSI

interface is implicitly tracked by the location of solid as shown in Fig. 1.

Fig. 1. FSI with the immersed boundary method.

Thus, the density, stress and internal energy can be expressed as

𝜌 = 𝜌f + 𝜇(𝜌s − 𝜌f )

𝜎𝑖𝑗 = 𝜎f𝑖𝑗 + 𝜇(𝜎s𝑖𝑗 − 𝜎f𝑖𝑗 )

𝑒 = 𝑒f + 𝜇(𝑒s − 𝑒f )

(2)

where the superscripts f and s denote the variables associated with fluid and solid, respectively,

𝜇(𝒙) =

{

0 𝒙 ∈ 𝛺f

1 𝒙 ∈ 𝛺s (3)

f s
3

with 𝛺 denoting the fluid region, 𝛺 for the solid region and 𝒙 for the spatial coordinate in the current configuration.
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The kinematic condition and boundary/initial conditions are given by

�̇�𝑖𝑗 =
1
2
(�̇�𝑖,𝑗 + �̇�𝑗,𝑖) (4)

𝑛𝑗𝜎𝑗𝑖 = 𝑡𝑖, 𝒙 ∈ 𝛤𝑡 (5)

𝑢𝑖 = �̄�𝑖, 𝒙 ∈ 𝛤𝑢 (6)

𝑢𝑖(𝑿, 0) = 𝑢𝑖0(𝑿) �̇�𝑖(𝑿, 0) = �̇�𝑖0(𝑿), (7)

where 𝛤𝑢 and 𝛤𝑡 denote the displacement boundary and traction boundary of the material domain 𝛺, respectively, 𝑛𝑗 is the unit
normal of the boundary 𝛤𝑡, 𝑿 is the material coordinate, �̄�𝑖 and 𝑡𝑖 are the prescribed displacement and traction, respectively, 𝑢𝑖0
and �̇�𝑖0 are the initial displacement and initial velocity, respectively.

The stress-rate of solid is related to the strain-rate by a constitutive equation as

𝜎∇𝑖𝑗 = 𝜎∇𝑖𝑗 (�̇�𝑖𝑗 , 𝜎𝑖𝑗 , etc.) (8)

where

𝜎∇𝑖𝑗 = �̇�𝑖𝑗 − 𝜎𝑖𝑘𝛺𝑗𝑘 − 𝜎𝑗𝑘𝛺𝑖𝑘 (9)

is the Jaumann rate of the Cauchy stress tensor,

𝛺𝑖𝑗 = (�̇�𝑖,𝑗 − �̇�𝑗,𝑖)∕2 (10)

is the spin tensor.
The Mie-Grüneisen type equation of state (EOS)

𝜌𝑒 = 𝑓 (𝜌)𝑝 + 𝑔(𝜌) (11)

is used for fluid to close the governing equations, where 𝜌 is the fluid density, 𝑒 is the total energy per unit mass of the fluid, 𝑝 is
the fluid pressure, 𝑓 (𝜌) and 𝑔(𝜌) are functions of fluid density. For example, for the ideal gas

𝑓 (𝜌) = 1
𝛾 − 1

, 𝑔(𝜌) = 0.0 (12)

hile for the products of high explosive

𝑓 (𝜌) = 1
𝜔
, 𝑔(𝜌) = −𝐴

𝜔

(

1 −
𝜔𝜌
𝑅1𝜌0

)

exp
(

−
𝑅1𝜌0
𝜌

)

− 𝐵
𝜔

(

1 −
𝜔𝜌
𝑅2𝜌0

)

exp
(

−
𝑅2𝜌0
𝜌

)

(13)

where 𝐴,𝐵,𝑅1, 𝑅2 and 𝜔 are the parameters of JWL EOS, 𝜌0 is the initial density.

3. The MMALE particle method

Kan and Zhang [67] proposed a robust MMALE particle method for FSI problems. By immersing the MPM particles into the
MMALE grid, the MPM and the MMALE method are strongly coupled as illustrated in Fig. 2.

Fig. 2. The spatial discretization of the MMALE particle method.

The computational process of the MMALE particle method consists of a Lagrangian phase, a rezoning phase and a remapping
hase. In the Lagrangian phase, the momentum equation is solved on the Lagrangian grid and the physical variables of fluid and
olid are updated. The weak form equivalent to the momentum equation and traction boundary condition is given as

𝜌�̈�𝑖𝛿𝑢𝑖d𝛺 + 𝜌𝜎𝑠𝑖𝑗𝛿𝑢𝑖,𝑗d𝛺 − 𝜌𝑏𝑖𝛿𝑢𝑖d𝛺 − 𝜌𝑡𝑠𝑖 𝛿𝑢𝑖d𝛤 = 0 (14)
4

∫𝛺 ∫𝛺 ∫𝛺 ∫𝛤𝑡
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where 𝜎𝑠𝑖𝑗 = 𝜎𝑖𝑗∕𝜌 is the specific stress, 𝑡𝑠𝑖 = 𝑡𝑖∕𝜌 is the specific traction, 𝛿𝑢𝑖 ∈ ℛ0(ℛ0 = {𝛿𝑢𝑖|𝛿𝑢𝑖 ∈ 𝐶0, 𝛿𝑢𝑖|𝛤𝑢 = 0}) is the virtual
isplacement. Substituting Eq. (2) into the weak form Eq. (14) and discretizing the problem domain with MMALE cells and MPM
articles gives

𝑚𝐼 �̇�𝑖𝐼 = 𝑓𝑖𝐼 + 𝑓 ′
𝑖𝐼 , ∀𝐼 ∉ 𝛤𝑢 (15)

here 𝑓 ′
𝑖𝐼 is the external force of node 𝐼 ,

𝑚𝐼 =
∑

𝑐
𝜌f𝑐𝑉𝑐𝐼 +

∑

𝑝

(

𝜌s𝑝 − 𝜌f𝑝
)

𝑉𝑝𝑁𝐼𝑝 (16)

s the mass of node 𝐼 , 𝑣𝑖𝐼 is the velocity of node 𝐼 ,

𝐟𝑖𝐼 =
∑

𝑐
𝑓𝑐𝑖𝐼 −

∑

𝑝
𝑉𝑝𝑁𝐼𝑝,𝑗 (𝜎s𝑖𝑗𝑝 + 𝑃 f

𝑝 𝛿𝑖𝑗 ) (17)

s the internal force of node 𝐼 , the subscripts 𝑐 and 𝑝 denote the variables associated with the cell and particle respectively. In
qs. (16) and (17), 𝑉𝑝 is the volume of particle 𝑝, 𝑉𝑐𝐼 is the subcell [33] volume of cell 𝑐 related to node 𝐼 , 𝑁𝐼𝑝 is the shape

function of node 𝐼 at particle 𝑝, 𝑃 f
𝑝 is the pressure of the virtual fluid located in the support domain of particle 𝑝, 𝑓𝑐𝑖𝐼 is the fluid

(including virtual fluid) part of the corner force applying on node 𝐼 which is calculated with the pressure 𝑃 f
𝑐 stored at cell center

s

𝑓𝑐𝑖𝐼 = −𝑃 f
𝑐 ∫𝛤 𝐼

𝑡

𝑛𝑖𝑑𝛤 (18)

or the multi-material cells, the pressure 𝑃 f
𝑐 is obtained with the Tipton pressure relaxation model [68].

After solving Eq. (15), the velocities and positions of the grid nodes are obtained. Then the state variables on the cell centers
nd particles are updated with respective ways of MMALE and MPM. The compatible discrete scheme [69,70] of the momentum
nd energy equation can preserve the total energy conservation and is adopted here by updating the cell energy as

𝑚𝑐
d𝑒𝑐
d𝑡

= −
∑

𝐼
𝑓𝑐𝑖𝐼𝑣𝑖𝐼 (19)

where 𝑚𝑐 and 𝑒𝑐 are the mass and internal energy of the cell 𝑐 respectively.
The predictor–corrector scheme [68] is used for the time integration where the variables are updated to the half time step to

estimate the pressure and then the variables in the next time step will be updated. The velocity 𝑣𝑛+1𝑖𝐼 , 𝑣𝑛+1∕2𝑖𝐼 and displacement 𝑥𝑛+1𝑖𝐼
f the grid nodes are finally updated as

𝑣𝑛+1𝑖𝐼 = 𝑣𝑛𝑖𝐼 + �̇�𝑛+1∕2𝑖𝐼 𝛥𝑡 (20)

𝑣𝑛+1∕2𝑖𝐼 = 1
2
(

𝑣𝑛𝑖𝐼 + 𝑣𝑛+1𝑖𝐼
)

(21)

𝑥𝑛+1𝑖𝐼 = 𝑥𝑛𝑖𝐼 + 𝑣𝑛+1∕2𝑖𝐼 𝛥𝑡 (22)

With the idea of the constant parametric coordinate method [25], the velocity 𝑣𝑛+1𝑖𝑝 , 𝑣𝑛+1∕2𝑖𝑝 and displacement 𝑥𝑛+1𝑖𝑝 of solid particles
are updated by interpolating the MMALE grid nodal velocities and displacements as

𝑣𝑛+1𝑖𝑝 = 𝑣𝑛𝑖𝑝 + 𝛥𝑡
8
∑

𝐼=1
�̇�𝑛+1∕2𝑖𝐼 𝑁𝐼𝑝 (23)

𝑣𝑛+1∕2𝑖𝑝 = 𝑣𝑛𝑖𝑝 +
1
2
𝛥𝑡

8
∑

𝐼=1
�̇�𝑛+1∕2𝑖𝐼 𝑁𝐼𝑝 (24)

𝑥𝑛+1𝑖𝑝 = 𝑥𝑛𝑖𝑝 + 𝛥𝑡
8
∑

𝐼=1
𝑣𝑛+1∕2𝑖𝐼 𝑁𝐼𝑝 (25)

By this means, the fluid and solid are in the same velocity field and the no-slip interaction is realized naturally. Thus the MMALE
particle method updates the strain and stress of the solid particles with the updated nodal velocity as

𝛥𝜺𝑛+1∕2𝑖𝑗𝑝 =
8
∑

𝐼=1

1
2

(

𝑁𝐼𝑝,𝑗𝑣
𝑛+1∕2
𝑖𝐼 +𝑁𝐼𝑝,𝑖𝑣

𝑛+1∕2
𝑗𝐼

)

𝛥𝑡 (26)

𝛥𝛺𝑛+1∕2
𝑖𝑗𝑝 =

8
∑

𝐼=1

1
2

(

𝑁𝐼𝑝,𝑗𝑣
𝑛+1∕2
𝑖𝐼 −𝑁𝐼𝑝,𝑖𝑣

𝑛+1∕2
𝑗𝐼

)

𝛥𝑡 (27)

𝜎𝑛+1𝑖𝑗𝑝 = 𝜎𝑖𝑗
(

𝜎𝑛𝑖𝑗𝑝, 𝛥𝜀
𝑛+1∕2
𝑖𝑗𝑝 , 𝛥𝛺𝑛+1∕2

𝑖𝑗𝑝

)

(28)

However, as fluid and solid have great difference in compressibility, the velocities of nodes in the mixed cells may also differ
greatly. When updated with the mixed FSI velocity field, spurious strain and stress of solid particles are induced and inaccurate
5
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stress is caused in this way. Therefore, a decoupled stress updating scheme is presented in Section 4 to realize accurate calculation
in the vicinity of FSI interface.

In the rezoning phase, the quality of seriously distorted grid is improved. Rezoning the grid to the initial one is adopted for
he MMALE particle method which takes little CPU time and the natural coordinates of MPM particles in each cell can be easily
etermined. However, this treatment requires high computational cost in the remapping phase which transfers the physical variables
o the new grid. The accurate polyhedron intersection based method [33,67] is adopted for its accuracy in multi-phase remapping
hich includes four steps: the reconstruction of multi-phase interface, linear reconstruction of physical field, polyhedron subdivision
nd intersection, and physical variables correction with solid particles. However with the global mesh rezoning, all cells in the new
rid are intersected with the old one which is quite time-consuming. Therefore, a localized subdomain smoothing method is proposed
n Section 5 to enhance the computational efficiency of the Euler phase (rezoning and remapping phase).

. Decoupled stress updating scheme

Here a decoupled stress updating scheme for the Lagrangian phase of the MMALE particle method is presented based on a virtual
rid of solid to realize accurate calculation in the vicinity of FSI interface. The solid grid is virtual as it is only adopted for updating
he strain and stress of solid particles while the nodal mass and momentum of the real computational grid remain unchanged.

.1. Process of the decoupled stress updating scheme

Fig. 3. Computational process of the decoupled stress updating scheme of the MMALE particle method: (a) nodal mass and force are obtained from both fluid
nd solid; (b) momentum equation is solved on the grid; (c) positions and velocities of nodes and particles are updated; (d) mass and momentum of the virtual
rid are remapped from solid; (e) strain, vorticity and stress of solid are updated with the virtual grid; (f) virtual grid is abandoned and real grid is adopted for
pdating the fluid variables.

The computational process of the decoupled stress updating scheme is illustrated in natural coordinates so the positions of the
article and nodes remain unchanged in Fig. 3, which contains six steps as follows.

1. Calculate the nodal mass and nodal force from both solid and fluid with Eqs. (16) and (17) (Fig. 3(a)).
2. Update the momentum equation with the nodal force and mass by Eq. (15) (Fig. 3(b)).
3. Update the positions and velocities of the grid nodes and particles with Eq. (20)–(25) (Fig. 3(c)).
4. Remap the mass and momentum of each solid particle to the virtual grid nodes located in the same positions as the real grid

nodes and apply the kinematic boundary conditions (Fig. 3(d)).

𝑚𝐼𝑠 =
∑

𝑝
𝑚𝑝𝑁𝐼𝑝 (29)

𝑚𝐼𝑠𝑣
𝑛+1∕2
𝑖𝐼𝑠 =

∑

𝑝
𝑚𝑝𝑣

𝑛+1∕2
𝑖𝑝 𝑁𝐼𝑝 (30)

where 𝒗𝑛+1∕2𝑖𝐼𝑠 is the nodal velocity of the virtual grid at 𝑛 + 1∕2 time step.
5. Calculate the increments of strain and vorticity of each particle according to the newly calculated velocity of the virtual grid

nodes as

𝛥𝜀𝑛+1∕2𝑖𝑗𝑝 =
8
∑

𝐼=1

1
2

(

𝑁𝐼𝑝,𝑗𝑣
𝑛+1∕2
𝑖𝐼𝑠 +𝑁𝐼𝑝,𝑖𝑣

𝑛+1∕2
𝑗𝐼𝑠

)

𝛥𝑡 (31)

𝛥𝛺𝑛+1∕2
𝑖𝑗𝑝 =

8
∑

𝐼=1

1
2

(

𝑁𝐼𝑝,𝑗𝑣
𝑛+1∕2
𝑖𝐼𝑠 −𝑁𝐼𝑝,𝑖𝑣

𝑛+1∕2
𝑗𝐼𝑠

)

𝛥𝑡 (32)

and update the stress of each particle with Eq. (28) (Fig. 3(e)).
6
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6. Abandon the virtual solid grid and adopt the real grid after the solid variables are updated. The physical variables of the
fluid are updated with the real grid as it represents the real velocity field of fluid with no-slip interaction of solid. (Fig. 3(f)).

𝑉 𝑛+1
𝑐 = 𝑉

(

𝑥𝐼,𝑛+1𝑖

)

(33)

𝜌𝑛+1𝑐 = 𝑚𝑐∕𝑉 𝑛+1
𝑐 (34)

𝑃 𝑛+1
𝑐 = 𝑃

(

𝜌𝑛+1𝑐 , 𝑒𝑛+1𝑐
)

(35)

In step 4, a velocity field of solid is obtained, which is more accurate to update the strain and vorticity of particles as it removes
the influence of fluid velocity. When Step 4 is omitted and the nodal velocity in real grid is adopted for updating the strain and
vorticity in Step 5, the decoupled stress updating scheme degenerates to the original stress updating scheme.

Remark 1. Although the weak coupling of FSI in which the fluid offers the forces to the solid and the solid provides the displacement
boundary for the fluid can be employed for the MMALE particle method, it loses the advantage of calculating the momentum
equations of fluid and solid in the same grid and time step. The momentum equations of fluid and solid are solved alternately and
force and displacement boundaries cannot be guaranteed in a whole time step.

4.2. Theoretical analysis

A special situation is considered here. When the node 𝐼 is influenced by only one particle 𝑝 as shown in Fig. 3(a), the nodal
mass and nodal force can be expressed as

𝑚𝐼 = 𝑚𝑝𝑁𝐼𝑝 − 𝑚′
𝑝𝑁𝐼𝑝 + 𝑚𝐼𝐶 (36)

𝑓 𝑛+1∕2
𝑖𝐼 = 𝑓 𝑛+1∕2

𝑖𝐼𝐶 −𝑁𝐼𝑝,𝑗

(

𝜎𝑛+1∕2𝑖𝑗𝑝 + 𝑃 ′𝑛+1∕2
𝑝 𝛿𝑖𝑗

)

𝑉𝑝 (37)

where 𝑚𝑝 is the mass of particle 𝑝, 𝑚𝐼𝐶 is the mass of real and virtual fluid in the control volume of node 𝐼 , 𝑚′
𝑃 and 𝑃 ′𝑛+1∕2

𝑝 are the
mass and pressure of the virtual fluid occupied by particle 𝑝 respectively.

Substituting Eqs. (36) and (37) into

𝑣𝑛+1∕2𝑖𝐼 =
𝑝𝑛+1∕2𝑖𝐼
𝑚𝐼

=
𝑝𝑛𝑖𝐼 +

1
2𝑓

𝑛+1∕2
𝑖𝐼 𝛥𝑡

𝑚𝐼
(38)

gives

𝑣𝑛+1∕2𝑖𝐼 =
𝑝𝑛𝑖𝐼
𝑚𝐼

+ 1
2
𝛥𝑡

𝑓 𝑛+1∕2
𝑖𝐼

𝑚𝑝𝑁𝐼𝑝 − 𝑚′
𝑝𝑁𝐼𝑝 + 𝑚𝐼𝐶

= 𝑣𝑛𝑖𝐼 +
1
2
𝛥𝑡

𝑓 𝑛+1∕2
𝑖𝐼𝐶 −𝑁𝐼𝑝,𝑗

(

𝜎𝑛+1∕2𝑖𝑗𝑝 + 𝑃 ′𝑛+1∕2
𝑝 𝛿𝑖𝑗

)

𝑉𝑝

𝑚𝑝

(

𝑁𝐼𝑝 +
𝑚𝐼𝐶−𝑚′

𝑝𝑁𝐼𝑝
𝑚𝑝

)

(39)

When the particle is approaching the cell boundary away from the node 𝐼 , 𝑁𝐼𝑝 → 0,

𝑚𝐼 = 𝑚𝑝

(

𝑁𝐼𝑝 +
𝑚𝐼𝐶 − 𝑚′

𝑝𝑁𝐼𝑝

𝑚𝑝

)

→ 𝑚𝐼𝐶 (40)

but 𝑁𝐼𝑝,𝑗 ≠ 0. Thus the velocity 𝑣𝑛+1∕2𝑖𝐼 used to update the strain and vorticity of the solid particle is actually calculated with the
coupled nodal force, the nodal mass of fluid and the nodal velocity 𝑣𝑛𝑖𝐼 which is an average of solid and fluid velocity, as

𝑣𝑛+1∕2𝑖𝐼 → 𝑣𝑛𝑖𝐼 +
1
2
𝑓 𝑛+1∕2
𝑖𝐼
𝑚𝐼𝐶

𝛥𝑡 (41)

The density and compressibility of the fluid and solid are of great difference and the velocity 𝑣𝑛+1∕2𝑖𝐼 may be quite different from
the actual velocity of solid. When an overestimated velocity 𝑣𝑛+1∕2𝑖𝐼 is used to determine the strain and vorticity of solid particles
by Eqs. (26) and (27), the strain, vorticity and stress are also overestimated compared to the real ones. If the solid particle moves
across the cell boundary and into the solid cell in the next timestep, the new nodal mass 𝑚𝐽 is composed of both solid and fluid
and thus the nodal velocity for updating the strain and vorticity of particles is actually an weighted average of the solid and fluid
velocity. The strain and stress of the same particle differ greatly in the consecutive time steps and stress oscillation may occur.

With the use of the decoupled updating scheme, a virtual grid with solid mass and velocity field is acquired. The mass of the
node 𝐼 in the virtual grid is only related to mass of particle 𝑝 and Eq. (29) is now expressed as

𝑚 = 𝑚 𝑁 (42)
7

𝐼𝑠 𝑝 𝐼𝑝
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The nodal velocity 𝑣𝑛+1∕2𝑖𝐼𝑠 of the virtual grid is updated as

𝑣𝑛+1∕2𝑖𝐼𝑠 =
𝑝𝑛+1∕2𝑖𝐼𝑠
𝑚𝐼𝑠

=
𝑚𝑝𝑁𝐼𝑝𝑣

𝑛+1∕2
𝑖𝑝

𝑚𝑝𝑁𝐼𝑝
= 𝑣𝑛+1∕2𝑖𝑝 (43)

The velocity of the particle 𝑣𝑛+1∕2𝑖𝑝 is calculated with Eq. (24) in Step 3 and Eq. (43) can be expressed as

𝑣𝑛+1∕2𝑖𝐼𝑠 = 𝑣𝑛𝑖𝑝 +
1
2
𝛥𝑡

8
∑

𝐽=1
�̇�𝑛+1𝑖𝐽 𝑁𝐽𝑝

= 𝑣𝑛𝑖𝑝 +
1
2
𝛥𝑡

8
∑

𝐽=1

𝑓 𝑛+1∕2
𝑖𝐽 𝑁𝐽𝑝

𝑚𝐽

(44)

Substituting Eq. (36) into Eq. (44), we obtain

𝑣𝑛+1∕2𝑖𝐼𝑠 = 𝑣𝑛𝑖𝑝 +
1
2
𝛥𝑡

8
∑

𝐽=1

𝑓 𝑛+1∕2
𝑖𝐽 𝑁𝐽𝑝

𝑚𝑝𝑁𝐽𝑝 − 𝑚′
𝑝𝑁𝐽𝑝 + 𝑚𝐽𝐶

(45)

The numerator and denominator of the second term in Eq. (45) are both related to the shape function 𝑁𝐽𝑝. When a particle is

near the boundary of a cell, 𝑁𝐽𝑝 → 0 and 𝑓𝑛+1∕2
𝑖𝐽 𝑁𝐽𝑝

𝑚𝑝𝑁𝐽𝑝−𝑚′
𝑝𝑁𝐽𝑝+𝑚𝐽𝐶

→ 0 which means the nodes far from the particles and near the fluid

have little influence on the velocity 𝑣𝑛+1∕2𝑖𝑝 and 𝑣𝑛+1∕2𝑖𝐼𝑠 . As strong FSI coupling is realized in ALEPM by immersing the particles in the
MMALE cells, fluid and solid are in the same velocity field with the no-slip interaction. The velocity of the particle represents the
actual velocity of solid in the computational grid and therefore the nodal velocity 𝑣𝑛+1∕2𝑖𝐼𝑠 determined by Eq. (43) reflects the actual
velocity field of solid. The influence of the fluid velocity in the mixed velocity field 𝑣𝑛+1∕2𝑖𝐼 calculated by Eq. (38) is eliminated in
this way and thus the strain, vorticity and stress calculated by Eq. (31), Eq. (32) and Eq. (28) are actual strain, vorticity and stress
of the solid, which is more accurate than the original stress updating scheme. In the next timestep, the nodal forces calculated by
Eq. (17) are updated with correct solid stress 𝜎s𝑖𝑗𝑝 and therefore accurate FSI coupling is applied on the fluid.

5. Localized subdomain smoothing method

Localized smoothing is appropriate to realize efficient remapping and enhance the overall computational efficiency. A localized
subdomain smoothing method (LSSM) is presented in the principle of the following requirements: (a) great performance in the
mesh quality; (b) low computational cost itself; and (c) localized enough for less intersection calculation, and consists of a distorted
subdomain determination step and a combinated mesh smoothing step.

5.1. Mesh quality inspection

Mesh quality inspection is conducted after a Lagrangian phase to determine whether the grid needs rezoning. The maximum ratio
of side lengths and largest inclined angle related to the cell shape [71], as well as the average nodal displacement between two
Lagrangian steps [34], can be used to judge whether the grid is distorted. The rezoning and remapping phases are not conducted
until the grid is determined distorted after several Lagrangian steps. Then a universal criteria [45,72] defined by the geometry
quantities (such as cell volume, surface area and sum of side lengths) is introduced for the unity to judge the quality 𝑄𝑙 of each cell
𝑐𝑙 as

𝑄𝑙 =

⎧

⎪

⎨

⎪

⎩

1728𝑉𝑙
𝐿3
𝑙

, for 3D cells
16𝑆𝑙
𝐿2
𝑙
, for 2D cells

(46)

where 𝑙 is the cell index, 𝑉𝑙 is the volume of the 3D cell, 𝑆𝑙 is the area of the 2D cell, 𝐿𝑙 is the sum of side lengths. The quality
𝑄𝑙 definited by Eq. (46) varies with the changes of both cell angle and side length which are related to the critical time step size.
When cell 𝑐𝑙 is a regular hexahedron or quadrilateral, 𝑄𝑙 equals to 1.

5.2. Distorted subdomain determination step

Inspired by the idea of adaptive mesh refinement (AMR), a distorted subdomain determination step is proposed to automatically
8

identify the distorted areas of the grid as shown in Fig. 4. Each subdomain is enlarged from a single distorted cell and finally covers
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Fig. 4. Computational process of the distorted subdomain determination step: (a) the first subdomain is obtained with surrounding cells of the first distorted
ell; (b) the subdomain is enlarged if a subsequent distorted cell is within the maximum range of an existing subdomain; (c) a new subdomain is established
hen a subsequent distorted cell is not within the maximum range of any subdomain; (d) all subdomains are obtained and may be overlapped with each other;

e) the overlapped subdomains make up of a step-like subdomain; (f) regular cells occupied by the particles are marked as fixed boundary of the grid.

he area of [𝑙𝑥min, 𝑙𝑥max]×[𝑙𝑦min, 𝑙𝑦max] × [𝑙𝑧min, 𝑙𝑧max] where 𝑙𝑥, 𝑙𝑦 and 𝑙𝑧 are respectively the index of cell 𝑐𝑙 in 𝑥−, 𝑦− and 𝑧−direction
of the structured grid. Note that Fig. 4 is illustrated in 2D grids for clarity and the step is actually applicable for 3D grids with the
following computational process.

(Cell loop)

1. Compute the quality 𝑄𝑙 of cell 𝑐𝑙 with Eq. (46) and mark the cell as distorted if the quality criterion 𝑄𝑙 < 𝑞 is satisfied, where
𝑞 is the prescribed quality parameter of distorted cells.

2. Insert each distorted cell into a subdomain according to different situations

(a) For the first distorted cell,

i. Set the first subdomain 𝐵1 to be the surrounding cells (9 cells for 2D grids and 27 cells for 3D grids) of the
distorted cell at first as shown in Fig. 4(a).

ii. Set the center of the first subdomain to be (𝑙𝑥, 𝑙𝑦, 𝑙𝑧) and set the maximum range of subdomain 𝐵1 with the
center (𝑙𝑥, 𝑙𝑦, 𝑙𝑧) and the maximum side length 𝑑max.

(b) For subsequent distorted cells,

i. (Subdomain loop) Expand the existing subdomain 𝐵𝑘 (𝑘 is the index of subdomain) to cover the surrounding
cells of 𝑐𝑙 if cell 𝑐𝑙 is within the maximum range of 𝐵𝑘 as illustrated in Fig. 4(a)(b)(c). The center of subdomain
𝐵𝑘 remains unchanged.

ii. Set a new subdomain 𝐵𝑘 to be the surrounding cells of cell 𝑐𝑙 if 𝑐𝑙 is not within the maximum range of any
existing subdomain. Set the subdomain center to be (𝑙𝑥, 𝑙𝑦, 𝑙𝑧) and the maximum range of subdomain 𝐵𝑘 as
shown in Fig. 4(c).

3. Expand all subdomains in each direction to get a smoother boundary without distorted cells.

The maximum side length 𝑑max of the subdomain is determined according to the scale and type of the problem. As illustrated in
Fig. 5, too large subdomains may include too many cells without distortion while too small subdomains are probably all overlapped
and thus distorted cells are smoothed for many times in one iteration, which will both reduce the smoothing efficiency. In this
article, the 𝑑max is taken as 1/10 of the minimum side length in the 2D/3D grid.

After the cell loop, all distorted cells are placed into the subdomains which are probably overlapped with each other and an
irregular smoothing area is formed as shown in Fig. 4(d). However the overlapped subdomains need no special treatment as they
compose a step-like subdomain whose boundary cells are in good quality, as illustrated in Fig. 4(e).

Remark 2. In the MMALE particle method, rezoning of the subdomains with solid particles requires determination of the new cells
in which particles are located and the corresponding new natural coordinates, which is time-consuming and may cause imprecision.
Therefore, a pre-positioning method is realized in which the physical coordinates of the particles are used to determine which cells
of the standard orthogonal grid the particles should be in. Once the regular cells are determined, the natural coordinates of particles
9
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Fig. 5. Inappropriate sizes of subdomains which affects the smoothing efficiency and results.

re obtained. During the subsequent mesh smoothing process, the cells occupied by the particles remain unchanged and are seen
s the fixed inner boundary of the grid, as illustrated in Fig. 4(f).

.3. Combinated mesh smoothing step

As mentioned before, each smoothing method has its own drawbacks and no method can be feasible for all situations. Therefore
combinated mesh smoothing step is proposed with the modified GETMe, the weighted average method [56] and the transfinite

nterpolation method [73].

.3.1. The modified GETMe
Firstly the GETMe is modified to achieve higher efficiency and better untangling capabilities in structured orthogonal grid. The

ETMe firstly transforms each cell of the grid to a more regular one [50] with the cell centroid unchanged. The centroid 𝑥𝑐𝑙 of each
cell 𝑐𝑙 is obtained as

𝑥𝑐𝑙 =
1
𝑚

𝑚
∑

𝑘=1
𝑥𝑙𝑘 (47)

where 𝑥𝑙𝑘 is the position of the 𝑘th node in cell 𝑐𝑙, 𝑚 equals to 4 for 2D cells and 8 for 3D cells. The estimated positions of the nodes
in cell 𝑐𝑙 are calculated according to the octahedron which is determined by connecting the centroids of the eight cell surfaces, as
shown in Fig. 6

𝑥′𝑙𝑘 = 𝑥𝑜𝑙𝑘 +
𝑏

√

|

|

𝑛𝑙𝑘||
𝑛𝑙𝑘, 𝑘 ∈ {1,… , 8} (48)

where 𝑥′𝑙𝑘 is the new nodal positions of the transformed hexahedron, 𝑥𝑜𝑙𝑘 is the position of the centroid 𝑜𝑙𝑘 on the 𝑘th dual octahedron
surface, 𝑛𝑙𝑘 is the associated normal of the 𝑘th dual octahedron surface, 𝑏 ∈ R+ is a arbitrary scaling factor for regularizing
transformation of the cell.

Fig. 6. Single cell transformation with an octahedron in GETMe [50].

The new cell is then thrunk to preserve its initial volume or sum of side lengths as

𝑥′′𝑙𝑘 = 𝑥𝑐𝑙 +
3
√

𝑉𝑙
3
√

𝑉 ′
𝑙

(𝑥′𝑙𝑘 − 𝑥𝑐𝑙 ), or 𝑥′′𝑙𝑘 = 𝑥𝑐𝑙 +
𝐿𝑙

𝐿′
𝑙
(𝑥′𝑙𝑘 − 𝑥𝑐𝑙 )

where 𝑉 ′
𝑙 is the current volume of the cell 𝑐𝑙 and 𝐿′

𝑙 is the current sum of side lengths. As each node is related to its surrounding
cells, the nodal position is finally determined as the average of all joint cells. The GETMe transformation is proved invariant with
respect to translation, rotation and scaling and can preserve the centroid of the initial hexahedron. For unstructured meshes, this
10

invariance will help maintain the overall mesh topology. However, as the structured orthogonal grid with hexahedral cells is mainly



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116676Z. Sun et al.

a
w

c
a

w

t
o

Fig. 7. Division of a hexahedral cell with nodes, side centers, surface centers and cell center [33].

dopted in the MMALE particle method, a modified GETMe is presented with determination of the cell centroid in a more accurate
ay and changing the geometric deformation process to eliminate the effect of rotation.

In ls-ALEPM, each hexahedral cell splits into 24 tetrahedrons for intersection by connecting the cell nodes, side centers, surface
enters and volume center as illustrated in Fig. 7. Thus more accurate cell centroid is obtained by adding the moment of volume of
ll these tetrahedrons divided by cell volume as

𝑥𝑐𝑙 =
1
𝑉𝑙

24
∑

𝑘=1
𝑥𝑡𝑙𝑘𝑉𝑡𝑙𝑘 (49)

here 𝑥𝑐𝑙𝑘 and 𝑉𝑡𝑙𝑘 are the centroid and volume of the tetrahedron 𝑡𝑙𝑘 respectively.
For the cell geometric deformation process, a rotation step is added as the sides of an optimal cell are parallel or perpendicular

o the three axes of Cartesian coordinate system. Transforming the cells into cubes of standard grid whose side length is the average
f cell side lengths as �̄� = 1

12
∑12

𝑖=1 𝑎𝑖, the new position of each grid node is obtained by

𝑥𝑘 = 𝑥𝑐𝑙 +
1
2
�̄�
⎛

⎜

⎜

⎝

𝐴1𝑘
𝐴2𝑘
𝐴3𝑘

⎞

⎟

⎟

⎠

,where [𝐴𝑖𝑗 ] =
⎡

⎢

⎢

⎣

−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

⎤

⎥

⎥

⎦

(50)

As illustrated in Fig. 8, the cell obtained by GETMe can be transformed into cubes without inclined angle while the cell obtained
by GETMe is still inclined after the cell geometric deformation. Then the final node position is determined by calculating the average
position of nodes in the adjacent cells.

Fig. 8. Comparison of single cell transformation in modified GETMe and GETMe.

As the cells in standard orthogonal grids should be regular hexahedra with the same size, the presented modified GETMe
accelerates the smoothing of structured orthogonal grids as the cells (even illegal cells) can be regularized into a cube in only
one iterative step. However, cells in the GETMe cannot be transformed into cubes even after many iterations. The modified GETMe
is also applicable for 2D cells by calculating cell centers with Eq. (47) and updating the new positions as

𝑥𝑘 = 𝑥𝑐𝑙 +
1
2
�̄�
⎛

⎜

⎜

⎝

𝐴1𝑘
𝐴2𝑘
0

⎞

⎟

⎟

⎠

,where [𝐴𝑖𝑗 ] =
[

−1 1 1 −1
−1 −1 1 1

]

(51)

5.3.2. The combinated mesh smoothing
A combinated mesh smoothing step is developed to rezone the subdomains and consists of two processes. Firstly the modified

GETMe and the weighted average method are used together to smooth the subdomains in each iteration step. The maximum number
of iterations 𝑁max is artificially preset and the iteration process is terminated when the quality criterion is satisfied. The transfinite
interpolation method is introduced as a supplementary process to guarantee the grid quality if the quality criterion is still not
11

satisfied after prescribed maximum number of iterations. The whole process is illustrated in Fig. 9 and is summarized as follows.
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Fig. 9. Process of the combinated mesh smoothing step.

1. Conduct the iteration process composed of the GETMe smoothing and weighted average method smoothing in the localized
subdomains (Fig. 9(b)).

(a) Conduct one iteration of the GETMe smoothing.
(b) Conduct one iteration of the weighted average method smoothing.
(c) Judge if the objective grid quality criterion 𝑄min ⩾ 𝑞 is satisfied after each iteration where 𝑄min is the worst cell quality

of the grid. If 𝑄min ⩾ 𝑞, the whole process is finished and the supplementary process is not conducted.
(d) Judge if the iteration number 𝑁 reaches the prescribed maximum number of iterations 𝑁max. If 𝑁 > 𝑁max, the iteration

process is finished and the supplementary process is conducted.

2. Conduct the supplementary process with the transfinite interpolation method (Fig. 9(c)).

(a) Merge the overlapped subdomains into larger cuboid subdomains.
(b) Conduct the transfinite interpolation method smoothing in non-overlapping subdomains.

During the iteration process shown in Fig. 9(b), the nodes located at the boundary surfaces of the 3D grids are smoothed as
the way in 1D/2D grids in the iteration process. When located at the inner part of boundary surface, the nodes are updated with
Eqs. (51) and (52). And when located at the edge of boundary surface, the nodes are updated as the arithmetic average while corner
nodes are located at the initial position.

The modified GETMe transforms each cell into a cube and thus quickly improve the quality of severely distorted cells in early
iteration steps. However 𝑄𝑙 defined by Eq. (46) grows slowly with the iteration when the grid is nearly regular. Therefore the
weighted average method is adopted for its simplicity and effectiveness to deal with the grid in good quality. The cell center is
given as Eq. (47) and the new position of an inner node 𝐼 can be calculated as

𝑥𝐼 =
∑

𝑘 𝑆𝑘𝑥𝑐𝑘
∑

𝑘 𝑆𝑘
(52)

where 𝑆𝑘 represents the area of the cell for 2D or volume of the cell for 3D problems, 𝑥𝑐𝑘 is the center of the surrounding cell 𝑐𝑘.
Combination of the two methods can make use of their advantages and thus enhance the capacity of smoothing method.

In the supplementary process shown in Fig. 9(c), the transfinite interpolation method recovers the quality of grid for the next
Lagrangian phase. The overlapped subdomains are merged and expanded into cuboid subdomains whose boundaries are ensured to
be relatively regular. The new nodal positions are calculated according to the boundary nodes of the subdomains as

𝑥𝐼 =
∑

𝐽
𝐾𝐼𝐽𝑥𝐽 (53)

where 𝑥𝐽 is the position of the boundary node 𝐽 , 𝐾𝐼𝐽 is the scaling factor related to the distance from node 𝐼 to related boundary
node 𝐽 . Obviously, this method is computationally efficient, but it is only applicable to grids with regular distribution of boundary
nodes as cells of low quality may be generated with irregular boundary, as shown in Fig. 10. Through the transfinite interpolation
method, the quality of the newly generated grid is guaranteed and the robustness of the combinated mesh smoothing step is
enhanced. The Euler phase with the transfinite interpolation method adopted is still more efficient than the original global rezoning
MMALE particle method as only localized regions are involved in the smoothing.

So far the combinated mesh smoothing step has been realized, which is not only applicable to the MMALE/MMALE particle
method but also to any other Lagrangian methods with structured grids.
12
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Fig. 10. Comparison of smoothing effects with regular and irregular boundary for transfinite interpolation method.

5.4. Remapping with the LSSM

Unlike the global remapping in which all cells in the new grid are intersected with the old grid, cells in ls-ALEPM are classified
as subdomain cells and unchanged cells with the adoption of LSSM in which only subdomain cells are remapped. As the staggered
ALE [14,33,67] is adopted in which the state variables like the mass, volume and internal energy of the cell are stored in the cell
center while the kinematics and kinetics variables like the momentum and velocity are stored on the grid nodes. The control volume
𝐶𝑙 of the new cell 𝑐𝑙 is composed of 𝛺𝐼1

𝑐𝑙 , 𝛺𝐼2
𝑐𝑙 , 𝛺𝐼3

𝑐𝑙 and 𝛺𝐼4
𝑐𝑙 while the control volume 𝐷𝑗 of node 𝐼𝑗 is composed of 𝛺𝐼𝑗

𝑐1 , 𝛺𝐼𝑗
𝑐2 , 𝛺𝐼𝑗

𝑐3
and 𝛺

𝐼𝑗
𝑐4 as illustrated in Fig. 11.

Fig. 11. Different control volume of cells and nodes in staggered MMALE [67].

The remapping with the LSSM also adopts the polyhedron intersection based method [33,67] to accurately deal with the
multiphase FSI problems. For state variables stored in the cell centers, unchanged cells copy the old variables while cells in
the newly generated grid intersect with the subdomain cells and their new variables are obtained by summing the related
intersection fragments. The MoF method is used to reconstruct the material surface in MMALE cells of the old grid with the
volume fraction and centroid of different materials, which is proved robust and correct in multiphase flow situations such as bubbles
and detonation [22,67,74–76]. Then the cells are subdivided into single-material polyhedrons with the planar material surface as
illustrated in Fig. 12.

Fig. 12. Diagram of polyhedron subdivision and intersection.

Meanwhile each new cell in rezoned localized areas is divided into 24 tetrahedrons with the cell center, nodes and centers of
the cell faces and is represented by 24 triangle pieces decomposed from the six cell surfaces as shown in Fig. 7. With the modified
“clipping and capping” algorithm [33], the tetrahedrons are intersected with the single-material polyhedrons and the intersection
fragments inside the new control volume can be acquired precisely with no matter convex subdivision, non-convex subdivision and
multiple subdivision. For example, the volume of the 𝑘th material in the new cell is obtained by summing the intersection fragments
in the control volume 𝐶𝑙 as

𝑉𝑘
(

𝑐𝑙
)

=
∑

𝑛
𝑉
(

𝐶𝑙 ∩𝑄𝑛
𝑘
)

, 𝑛 ∈
{

𝑛 ∣ 𝐶𝑙 ∩𝑄𝑛
𝑘 ≠ ∅

}

(54)

where 𝑄𝑛
𝑘 denotes the 𝑘th material polyhedron in 𝑛th cell of the old grid. Then the total volume of the cell 𝑐𝑙 is obtained as

𝑉
(

𝑐𝑙
)

=
∑

𝑉𝑘
(

𝑐𝑙
)

(55)
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Fig. 13. Remapping of the kinematics and kinetics variables stored on the nodes which are related to all surrounding cells.

However, remapping of the kinematics and kinetics variables need special handling as grid nodes located at the interface of the
ubdomains may be related to both subdomain cells and unchanged cells. As shown in Fig. 13, the cell 𝑐0 is marked to be distorted

and thus the node 𝐼3 of 𝑐0 is relocated, making the control volume 𝐷2 and nodal momentum of node 𝐼2 changed. As the cells related
to 𝐷2 may be multi-phase, interpolating the nodal momentum from the adjacent nodes is inaccurate and incompatible.

Here the accurate remapping is realized by expanding each localized subdomain by only one layer of cells in the remapping
phase, and therefore the outermost nodes of the subdomains and their control bodies remain unchanged in the previous rezoning
phase. When cells in the expanded subdomains are intersected with the old grid, the nodal variables stored on the outermost nodes
such as 𝐼1 can copy their original nodal momentum. This treatment is accurate and still efficient as subdomains are usually small
ompared with the whole grid.

The momentum of the 𝑘th material stored on the node 𝐼𝑗 is calculated by summing the intersection fragments in the nodal
ontrol volume 𝐷𝑗 as

𝑀𝑘
(

𝐼𝑗
)

=
∑

𝑛
𝑀

(

𝐷𝑗 ∩𝑄𝑛
𝑘
)

, 𝑛 ∈
{

𝑛 ∣ 𝐷𝑗 ∩𝑄𝑛
𝑘 ≠ ∅

}

(56)

Then the total momentum stored on the node 𝐼𝑗 is obtained as

𝑀
(

𝐼𝑗
)

=
∑

𝑘
𝑀𝑘

(

𝐼𝑗
)

(57)

6. Flowchart of the ls-ALEPM

So far we have presented a decoupled stress updating scheme to improve the accuracy of Lagrangian phase and a localized
subdomain smoothing method to increase the efficiency of the Euler phase in the MMALE particle method. The flowchart of the
localized subdomain smoothing MMALE particle method (ls-ALEPM) is illustrated in Fig. 14.

7. Numerical results

7.1. Smoothing benchmark of 3D distorted grid

A cuboid grid composed of 50 × 50 × 50 distorted cells is considered here and shown in Fig. 15. The grid is used to verify the
ability of the LSSM in dealing with severely distorted grids and is generated by moving a random distance from the position in the
orthogonal standard grid. The distance between adjacent nodes in the standard orthogonal grid is 1 and the range of the random
displacement in each direction is within [−0.399, 0.399]. In this way, the grid is in poor quality with the worst cell quality of 0.3010
determined by Eq. (46) but without illegal cells.

The GETMe, weighted average method, modified GETMe and combinated smoothing method are used to smooth all cells of
the grid and the objective grid quality criterion is set to be 𝑄min > 0.9999. The combinated smoothing method is composed of the
modified GETMe and the weighted average method as in Section 5.3 while the transfinite interpolation method is not adopted. The
worst cell quality 𝑄min of the grid versus the CPU time 𝑡 is illustrated in Fig. 16 as well as the cell shape according to the quality
parameters. All the CPU time is measured on a computer with an Intel(R) Core™ i9-11900K CPU (3.50 GHz) and 64 bit Windows
operating system. The modified GETMe performs much better than the GETMe and converges to 0.9999 after 52 iteration steps.
The GETMe does not converge at 0.9999 after 100 iteration steps and fluctuates at 0.95. The weighted average method and the
14

combined method both reaches the final convergence value of 0.9999 and the combinated smoothing method shows its superiority.
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Fig. 14. Flowchart of the novel ls-ALEPM method.

7.2. Two-material sod problem

A multiphase Sod problem described in [24,68,77] is studied here to compare the accuracy of the proposed ls-MMALE method
with MMALE and other methods. The computational domain is [0, 1] with the initial material interface at 𝑥 = 0.5. The initial
conditions for the left and right materials are (𝜌𝑙, 𝑃𝑙, 𝑼 𝑙, 𝛾𝑙) = (1, 2, 0, 2) and (𝜌𝑟, 𝑃𝑟, 𝑼 𝑟, 𝛾𝑟) = (0.125, 0.1, 0, 1.4) respectively with
different polytropic indices. The computational grid is made of 𝑁 = 100 cells and the final time is 𝑡final = 0.2. This results simulated

ith the HWENO DG scheme [78] and Lagrangian scheme cell-centered MMALE method with 100 cells in the 𝑥-direction [24] are
lso shown in Fig. 17, which serves as comparison methods with ls-MMALE. The Euler step is conducted per 0.04 and the quality
riterion for determining the distorted cells in ls-MMALE is set to be 𝑄𝑙 < 0.75. The numerical results including density and pressure
istributions at 𝑡 = 0.2 with different methods are illustrated in Fig. 17 as well as the analytical solution.
15
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Fig. 15. Diagram of the 3D grid with distorted cells.

Fig. 16. The worst cell quality versus the CPU time with the GETMe, modified GETMe, weighted average method and combinated smoothing method.

As shown in Fig. 17, the magnitudes and locations of oscillation in ls-MMALE are different from the HWENO DG scheme and
Lagrangian scheme cell centered MMALE method as the staggered ALE scheme is adopted which is accurate and robust while the
DG method is not used. By comparing with the analytical solution, the ls-MMALE achieves closer results in Fig. 17(a)(b).

The density and pressure curves at 𝑡final = 0.2 simulated by ls-MMALE and MMALE with 𝑁 = 1000 cells are illustrated
Fig. 17(c)(d). With mesh refinement, all the distribution curves are in good agreement with the analytical solution. However, more
spurious oscillations are observed with the MMALE method and the numerical results of the ls-MMALE are closer to the analytical
solution. As the rezoning and remapping phases are conducted only in localized areas of the computational grid in ls-MMALE, less
numerical remapping errors are introduced and the physical variables updated by the Lagrangian phase are maintained. Therefore,
accuracy gains can also be obtained with the localized subdomain smoothing method.

7.3. Sedov point explosion problem

Next the problem of Sedov point explosion is studied to test the computational efficiency and the accuracy of the ls-MMALE.
The Sedov point explosion simulates the shock wave propagation phenomenon caused by the point explosion of ideal gas and the
analytical solution of the problem is available.

The computation model is shown in Fig. 18 with the computational domain [0, 1.2] × [0, 1.2] × [0, 1.2] discretized into
40 × 40 × 40 hexahedral cells in the structured grid. All cells are filled by the ideal gas with the polytropic index 𝛾 = 1.4, the initial
density 𝜌0 = 1 and initial velocity 𝑈𝑖 = 0. The internal energy of the whole domain is initially concentrated at the origin cell whose
pressure 𝑃0 is given by

𝑃0 = (𝛾 − 1)𝜌0
𝐸0
𝑉0

(58)

where 𝐸0 is 0.244816[75], and 𝑉0 denotes the volume of the origin cell. The pressure of the other cells is 1×10−6. After the explosion,
high pressure gas at the origin cell push the ideal gas outward and shock discontinuity is captured. When physical time 𝑡 = 1, the
shock front is located at 𝑅 = 1 and the peak density 𝜌 = 6 in the analytical solution.
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Fig. 17. Density and pressure curves of two-material Sod problem at 𝑡final = 0.2.

Fig. 18. Initial state and shock wave at physical time 𝑡 of Sedov point explosion.

The problem is calculated with both MMALE and ls-MMALE for contrast. The Euler step is conducted when maximum ratio of
ide lengths reaches 4 or the largest inclined angle satisfies cos𝜃 ≤ 0.7. The quality criterion for determining the distorted cells
s set to be 𝑄𝑙 < 0.999 and the objective grid quality criterion is set to be 𝑄min > 0.999. The prescribed maximum number of
terations 𝑁max in each Euler step is 20. The density contour at different physical time is shown in Fig. 19 in which the propagation
f the shock wave can be seen clearly and the density discontinuity surface is well maintained during the whole process. The radial
ensity distribution at the final time of the ls-MMALE and the MMALE are compared with the analytical solution as illustrated in
ig. 20(a). As the distorted cells near the material interface are rezoned into nearly regular cells with the criterion 𝑄min > 0.999,
he numerical solutions obtained by the ls-MMALE and MMALE are completely consistent with each other and basically consistent
ith the analytical solution, which shows the correctness of the LSSM.
17
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Fig. 19. Density contour at different time (𝑡 = 0, 0.2, 0.5, 0.8, 1.0) obtained by ls-MMALE and MMALE.

Fig. 20. Comparison of the density distribution and CPU time of ls-MMALE and MMALE: (a) final radial density distribution curves of ls-MMALE, MMALE and
analytical; (b) comparison of CPU time with the amount of Euler steps in ls-MMALE and MMALE.

The CPU time versus the amount of Euler steps calculated with ls-MMALE and MMALE is shown in Fig. 20(b). The CPU time
of each Euler step increases with the shock wave propagation. At last the shock front propagates to nearly the boundary of the
computational domain but the CPU time for a Euler step with ls-MMALE is still much less than that with MMALE, as localized
subdomains are automatically determined around the shock front face in which distorted cells exist. The total CPU time in Euler
phase calculated with ls-MMALE is 0.169 times of that with MMALE, as shown in Table 1. In this and the subsequent problems, the
CPU time is measured on a computer with an Intel(R) Xeon(R) Gold 6248R CPU (3.00 GHz) and 64 bit Linux operating system.

Table 1
The CPU time in Euler phase and amount of Euler steps.

Simulation method CPU time/s Amount of
Euler steps

MMALE 9715.2 29
ls-MMALE 1641.9 29

7.4. Moving projectiles in fluid

In simulation of problems with structural fragmentation, small fragments may be generated and move in the fluid, making the
computational grid distorted and global remapping occur frequently. Therefore the problems of moving projectiles in the fluid
domain are considered here to show the great improvement of ls-ALEPM in computational efficiency.

Firstly a dimensionless analysis of one projectile rotating in the fluid domain [−𝐿
2 ,

𝐿
2 ] × [−3.5, 3.5] × [0, 0.025] is conducted as

illustrated in Fig. 21, where the length of the fluid 𝐿 is 𝑛(𝑛 = 4, 5, 6, 7, 8) times of the projectile length and is used for comparison
18
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Fig. 21. A rotating projectile in the fluid domain.

of computational efficiency with different domain sizes. The fluid has a density of 1 and an internal energy per cell volume of 2.5.
The projectile has a density of 1.0 × 106 with the Young’s modulus 1.0 × 106 and the Poisson’s ratio 0.3, which is initially located
at [−0.5, 0.5] × [−0.1, 0.1] × [0, 0.025] and rotates with an initial angular velocity of 2. The Euler step is conducted when maximum
ratio of side lengths reaches 2 or the largest inclined angle satisfies cos𝜃 ≤ 0.85. The quality criterion used to recognize the distorted
cells is set to be 𝑄𝑙 < 0.999 while the objective grid quality criterion is set to be 𝑄min > 0.9999. The prescribed maximum number
of iterations 𝑁max = 20 and the computation continues until 𝑡 reaches 0.5.

Fig. 22. Density, pressure, velocity in 𝑥− and 𝑦− direction in fluid domain influenced by the movement of two rotating projectiles.

The ls-ALEPM successfully identifies the distorted areas during the computation process and expanded the localized subdomains
with the movement of the projectile. During the whole Euler phase, the transfinite interpolation method is not triggered. The contours
of the density, speed and pressure at the same physical time calculated by the ls-ALEPM are compared with that calculated by the
ALEPM as shown in Fig. 22. The results are almost the same and shows the correctness of ls-ALEPM. The little difference is because
some areas are rezoned with transmission of physical quantities while others still remain unchanged.

Table 2
Comparison of CPU time in Euler phase.

Simulation method ALEPM ls-ALEPM

CPU time/s 3865.26 212.22

The comparison of the CPU time with different sizes of the computational domain is shown in Fig. 23. As the distorted areas are
not changed with the domain size in ls-ALEPM, the CPU time of Euler phase remain unchanged. The total CPU time of ls-ALEPM
grows slowly with the domain sizes as the Lagrangian phase is related to the amount of cells. However the CPU time of Euler step
grows rapidly with the domain size in the ALEPM as all cells are intersected with the old grid. When the length ratio 𝑛 = 8, the
CPU time for the Euler phase with ls-ALEPM is nearly 0.078 times of that with ALEPM as illustrated in Table 2, which shows great
improvement in computational efficiency.

Then the problem of nine projectiles moving in the fluid domain [0, 300]×[0, 100]×[0, 60] is studied to test the ability of ls-ALEPM
in dealing with multiple distorted areas. Three projectiles translate along the 𝑥, 𝑦, and 𝑧 axes respectively with the initial velocity
of 0.1 and three other projectiles rotates around the 𝑥, 𝑦, and 𝑧 axes respectively with the initial angular velocity of 3. The other
three projectiles move along and rotate around the 𝑥, 𝑦, and 𝑧 axis with the initial velocity of 0.1 and initial angular velocity 3
respectively. The location of the projectiles at physical time 0.5 is shown in Fig. 24 in which the result of ls-ALEPM is nearly the
same with that of ALEPM but with significantly higher computational efficiency as shown in Table 3.
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Fig. 23. The CPU time of Euler step and whole computation process with the increase of cell number in ls-ALEPM and ALEPM.

Fig. 24. Nine projectiles moving in the fluid.

Table 3
Comparison of CPU time in Euler phase with ALEPM and ls-ALEPM.

Simulation method ALEPM ls-ALEPM

CPU time/s 119 600 5846

7.5. The bending of a flexible plate induced by shock wave

Experimental and numerical studies of elastic bodies under hydrodynamic forces have been widely conducted [79–81]. The FSI
problem studied here is a bending flexible plate induced by shock wave which serves as a validation case to show the performance
of ALEPM in dealing with the large deformation problems. This problem is treated as a plain strain problem as illustrated in Fig. 25
and the dimensionless parameters of the solid and fluid are given as: Young’s modulus 𝐸 = 60 000, Poisson’s ratio 𝑣 = 0.45, density
of the solid 𝜌s = 1000, the height 𝑙 = 1 and length 𝑑 = 0.05 of the plate, the internal energy per unit volume for the fluid 𝐸0 = 0.25,
the velocity for the inflow 𝑈 = 1, the height for the fluid domain 𝐷 = 2, the fluid density 𝜌f = 1 for the first case and 𝜌f = 2 for
the second case. The computational domain is set to be [0, 15] × [0, 2] × [0, 0.01]. The symmetric boundaries at 𝑦 = 0 and 𝑦 = 2 are
set while the boundaries at 𝑥 = 0 and 𝑥 = 15 are inflow and outflow boundaries respectively. The 𝑥-direction displacement of the
gauge point in the upper-left corner of the plate is recorded to compare the history curves of the displacement in the 𝑥-direction
and marked as red triangles in Fig. 25.

Fig. 25. Problem description for the flexible plate induced by shock wave.

The decoupled and original stress updating schemes of ALEPM are adopted for the computation and compared with the results
of the immersed boundary-material point method (IBMPM) [59] and ANSYS AUTODYN (V19.2). The IBMPM adopts the MPM
for the solid and the MUSCL interpolation FVM for the fluid, which handles shock-structure interaction well with the Lagrangian
20
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continuous-forcing immersed boundary method and is validated by benchmarks and experimental results [59]. In both ALEPM and
IBMPM, the fluid domain is discretized with the cell length 0.01 in all directions and the solid is discretized into particles with
spacing 0.005 for contrast. The Lagrange solver (FEM) is adopted for the solid and Euler-FCT (FVM) solver is adopted for the fluid
in ANSYS AUTODYN with the fully coupled Euler/Lagrange interaction. The fluid domain is discretized with the same cell length
0.01 and the solid is discretized by elements with spacing 0.0125. Then the fluid cell length of 0.004 and element length of 0.005
are adopted for the AUTODYN with mesh refinement (AUTODYN-r) to serve as a precise solution for contrast.

Fig. 26. Displacement of the gauge point in the 𝑥-direction obtained by different stress updating schemes in ls-ALEPM, IBMPM and AUTODYN.

Fig. 26 shows the displacement histories of the gauge point in the 𝑥-direction obtained with different methods and inflow
densities. The displacement curves obtained by AUTODYN and AUTODYN with mesh refinement are basically consistent, which
shows the size of discretization satisfies the accuracy requirement. The maximum magnitude of the displacement in the 𝑥-direction
and the corresponding physical time simulated by different methods are shown in Table 4. The maximum displacement and the
corresponding time simulated by the decoupled stress updating scheme of ALEPM are the closest to the results of AUTODYN in
both cases. With the increase of the fluid density, the plate experiences larger deformation and the ratio of deflection to thickness
reaches 9.02 from 5.28. Meanwhile the error of corresponding time with the original stress updating scheme and IBMPM reaches
29.13% and 16.55% when the fluid density 𝜌f = 2, which are larger compared with the results of the presented method.

Table 4
Comparison of maximum displacements in the x-direction and time for the maximums with different methods.

Simulation method Fluid density 𝜌f = 1 Fluid density 𝜌f = 2

Maximum displacement Corresponding time Maximum displacement Corresponding time

Decoupled stress updating scheme 0.246/6.82% 6.080/3.77% 0.447/0.89% 5.590/2.32%
Original stress updating scheme 0.233/11.74% 6.520/11.28% 0.500/10.86% 7.390/29.13%
IBMPM 0.240/9.09% 6.470/10.43% 0.443/1.77% 6.670/16.55%
AUTODYN 0.269/1.89% 5.949/1.54% 0.458/1.55% 5.821/1.71%
AUTODYN with mesh refinement 0.264 5.859 0.451 5.723

The pressure contours at physical time 𝑇 = 4 are shown in Fig. 27 in which the pressure distribution is roughly the same for
decoupled stress updating scheme of ALEPM, IBMPM and AUTODYN. With the Riemann solver for the fluid, the pressure contour
simulated by the IBMPM is closer to the results of AUTODYN-r compared with the presented ALEPM. The original stress updating
scheme updates the solid stress with mixed velocity field and thereby applies inaccurate FSI forces on the fluid. High pressure of the
fluid behind the plate is generated and the pressure contour is influenced by the nonphysical shock wave as shown in Fig. 27(b),
which shows the effects of different stress updating methods on the FSI coupling and fluid field.

Fig. 27. Pressure contours in fluid domain at time 𝑇 = 4 obtained by different stress updating schemes in ls-ALEPM, IBMPM and AUTODYN-r.
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7.6. Fragmentation of a cylinder shell induced by blast

This section simulates the dynamic fracture of a 1045 steel cylindrical shell under blast loads with the decoupled and original
tress updating scheme. Tang [82] carried out the explosion experiments and Yang et al. [83] simulated this problem with both the
xplosive and steel shell discretized by MPM particles.

Fig. 28. Simulation set-up of cylindrical shell fragmentation driven by detonation.

As shown in Fig. 28, this problem is treated as a plain strain problem and 1/4 of the cylindrical shell is simulated due to
ymmetry. The computational domain is set to be [0, 100 mm]×[0, 100 mm]×[0, 0.5 mm] with the cell length 0.5 mm in all directions.

Symmetric boundaries at 𝑥 = 0 and 𝑦 = 0 are set while the boundaries at 𝑥 = 100 mm and 𝑦 = 100 mm are applied with air
pressure. The ideal gas is adopted for the air whose density and internal energy per unit volume are 𝜌air = 1.2 × 10−6 g/mm3 and
𝐸0 = 0.266772 mJ/mm3 respectively. The explosive is RHT-901 with a density of 𝜌 = 1.684×10−3 g/mm3 and an internal energy per
cell volume of 𝐸0 = 6853.9 mJ/mm3. The inner radius of the explosive is 𝑟 = 20 mm and the outer radius is 𝑅 = 30 mm. A gauge
point g marked as triangles in Fig. 28 is set at 𝑟1 = 22 to record the pressure history of the fluid. The particle p initially located
at (0, 30, 0.125) is also recorded the pressure history of the stress. The JWL equation of state is adopted for the explosive with the
parameters taken from the article [84] as 𝐴 = 524.2 GPa, 𝐵 = 0.0321 GPa, 𝑅1 = 4.15, 𝑅2 = 0.95, 𝜔 = 0.3.

The cylindrical shell has an inner radius 𝑅 of 30 mm and the thickness ℎ is of 4 mm which is discretized by particles with
spacing 0.25 mm. The 1045 steel has a density of 7800 kg∕m3, Young’s modulus of 210 GPa and Poisson’s ratio of 0.3 according to
the literature [85]and is described by the simplified Johnson-Cook model as

𝜎𝑦 =
(

𝐴 + 𝐵�̄�𝑛𝑝
)(

1 + 𝐶 ln �̇�∗𝑝
)

(59)

where 𝐴 = 5.07 × 105 MPa, 𝐵 = 3.2 × 103 MPa, 𝑛 = 0.28, 𝐶 = 0.064 [85]. Gurson model [86] incorporated with a TEPLA-F failure
condition is employed to model the microscopic defects with randomly distributed initial void fraction. The fracture strain of the
shell is measured to be 𝜀𝑓𝑝 = 0.43 in Tang’s [82] experiment and the other parameters are shown in Table 5 where 𝑓0𝑒 denotes
the mean of the initial void fraction, 𝑓0𝑠 denotes the variance of the initial void fraction, 𝑞1, 𝑞2, 𝑓𝑓 , 𝑓𝑐 , 𝑓𝑁 , 𝜀𝑁 , and 𝑠𝑁 are other
parameters of Gurson model. The Mie-Gruneisen EOS is adopted to update the volumetric stress of steel shell with parameters 𝑐0 =
3570 mm/ms, 𝑠1 = 1.92 and 𝛾0 = 1.8.

Table 5
The constants of Gurson model for 1045 steel [87].
𝑞1 𝑞2 𝑓0𝑒 𝑓0𝑠 𝑓𝑓 𝑓𝑐 𝑓𝑁 𝜀𝑁 𝑠𝑁 𝜀𝑓𝑝

1.5 1 0.005 0.0003 0.0021 0.2109 0.001 0.04 0.01 0.43

The pressure contours of the fluid and failure contours of the cylindrical shell obtained by the decoupled and original stress
pdating scheme from 10 μs to 60 μs are shown in Figs. 29 and 30. The particles after failure are colored in red while those before
ailure are in blue. At the beginning of the simulation 𝑡 = 0, the explosive is detonated and the generated shock wave will drive
he cylindrical shell to expand. The shear instability and dynamic failure occurs at the inner side of the shell where the material is
ompressed by the explosive. Then the outer side of the shell are in tension along the circumferential direction and tensile fracture
s generated. The mixed tensile-shear fracture grows up and forms the complete red cracks along the thickness. After a period of
ime, a shock wave which reflects from the symmetry boundary catches up with and drives the shell fragments to accelerate. Both
he decoupled and original stress updating scheme reproduce the whole process with the stationary flow, shock wave and reflection
ave captured clearly.

The pressure history curves at spatial point g of 𝑟1 = 22 and particle p at (0, 30, 0.125) are plotted in Fig. 31 which shows
the difference between the two schemes. With the influence of fluid velocity, the pressure and stress calculated by the original
22
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Fig. 29. Pressure contours in fluid domain from 0 μs to 60 μs obtained by different stress updating schemes.

Fig. 30. Cylindrical shell failure contour from 0 μs to 60 μs obtain by different stress updating schemes.

stress updating scheme experiences severe oscillation and are overestimated compared with that by the decoupled stress updating
scheme. The first peak pressure of the two methods are nearly the same while the second peak pressure of reflection calculated by
the decoupled stress updating scheme is smaller than that by the original stress updating scheme as it calculates the solid stress
accurately by eliminating the influence of the fluid.

Moreover, the results of the two schemes on solid fragmentation are not the same. Particles at the inner side of the shell fail at
the very beginning and form smaller fragments after severe fracture with the original stress updating scheme. The physical time for
the first crack calculated by the decoupled stress updating scheme is 8.3 μs and is closer to 8.8 μs of the experiment [82] compared
with 8.0 μs by the original stress updating scheme

The complete fragments of the cylinder is illustrated in Fig. 32 in which the decoupled stress updating scheme shows more
reasonable and symmetrical failure in the circumferential direction. The midline width and thickness of main fragments calculated
with the schemes are summarized in the Table 6 together with the results of the experiment from Tang [82]. It can be observed that
the original stress updating scheme generates much smaller fragments compared with the experiment while the decoupled stress
updating scheme obtains more accurate solid strain and stress as well as the sizes of fragments.

7.7. Structural damage of open-frame building under explosion

Next, the damage of an open-frame building under explosion is studied with the decoupled and original stress updating scheme
of ls-ALEPM. The explosion experiments as shown in Fig. 33(a) was conducted by Woodson and Baylot [88]. Baylot and Bevins [7]
23
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Fig. 31. Pressure histories of gauge g and particle p obtained by different stress updating schemes.

Fig. 32. Structural fragments at 𝑡 = 60 μs obtained by different stress updating schemes.

Table 6
Statistics of fragments’ midline width and thickness at the end of simulation (Unit: mm).

Simulation method Midline width/Thickness of main fragments Average width/thickness

The original stress updating scheme
Width 3.302 6.990 2.346 7.315 5.593 4.497

5.872/3.137
25.3%/4.94%

7.858 5.738 6.063 11.300 3.587

Thickness 2.840 4.059 1.850 4.502 2.926 2.440

2.363 2.799 3.568 4.754 2.407

The decoupled stress updating scheme
Width 5.876 12.064 9.339 4.046 3.353 10.925

7.799/3.264
0.78%/1.09%

4.862 8.612 12.246 6.665

Thickness 3.268 3.364 3.753 2.376 2.376 3.678

2.760 3.683 3.161 3.333

Experiment [82] / 7.86/3.3

studied this problem numerically using CTH code for blast loads and DYNA3D for structural damage. Due to symmetry, a 1/2 model
is simulated here.

The size of the entire computational domain is 𝐿 = 3.1 m, 𝐷 = 1.7 m and 𝐻 = 2.2 m. The hemispherical C4 explosive placed
at ℎ = 0.305 m from the ground has a mass of 7.1 kg whose equivalent TNT based on the same impulse [7] is of 8.449 kg. Due to
symmetry, a 1/8 spherical TNT explosive with the mass of 2.11225 kg is used here which has a density of 1. 63 × 10−3 g/mm3 and
is described by JWL EOS with parameters as 𝐴 = 371.2 GPa, 𝐵 = 3.23 GPa, 𝑅1 = 4.15, 𝑅2 = 0.95, 𝑤 = 0.3. The horizontal distance
from the open-frame building to the explosive is 1.07 m. The open-frame building is a reinforced concrete structure and made up
of two floors and four columns whose mechanical behavior of concrete is described by HJC model [7] as shown in Table 7. The
parameters are the same as the experimental setting.

The mechanical behavior of the rebars is described by the linear strengthening plastic model with relative parameters density
𝜌 = 7.5 × 10−3 g∕mm3, Young’s modulus 𝐸 = 200 GPa and Poisson’s ratio 𝑣 = 0.3. Three kinds of rebars are adopted for different
parts of the building in the experiment whose yield strength, ultimate strength, the geometry size and the distribution are all from
the experiment as shown in Table 8.
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Fig. 33. Experiment set-up [88] and computational model of open-frame building under explosion.

Table 7
The parameters of HJC material model.
𝐴 𝐵 𝑛 𝐶 𝑓 ′

𝑐∕MPa 𝑆max 𝑇 /MPa 𝐷1 𝐷2 𝜀f min

0.79 1.60 0.61 0.007 42 7.0 4.1 0.04 1.0 0.001

𝑝crush∕MPa 𝜇crush 𝑝lock∕GPa 𝜇lock 𝐾1∕GPa 𝐾2∕GPa 𝐾3∕GPa

12 0.001 0.8 0.10 85 −171 208

Table 8
Geometry size and properties of reinforcement.[7]

Reinforcement Area (mm2) Yield stress(MPa) Ultimate
Strength

W0.5 3.22 441 513
D1 6.45 399 610
D5 32.2 449 513

Typical contours of fluid pressure and building damage at different time are shown in Fig. 34 in which the explosive explosion
generates a spherical shock wave and interacts with the lower center column to generate a high-pressure reflection wave. When
impacted by the explosion wave at around 𝑡 = 0.6 ms, the front of the center column is under overpressure, and then the back of the
center column is under tensile waves due to the reflection of stress waves. The volume fraction contour of the fluid on the surface
of 𝑧 = 0.4 m and the pressure contour of the building are shown in Fig. 34 in which the explosive expands outward driven by the
high-pressure waves and flows around the center column.

Throughout the load, the center column experiences large deformation and then rebounds with multiple vibrations. In this
section, the computation continues until the first vibration process is finished to record the maximum displacement of the center
column. Compared with the 9.8 mm (error percentage 16.92%) calculated by the original stress updating scheme, the maximum
displacement 8.8 mm (error percentage 4.75%) calculated by the decoupled stress updating scheme is closer to the result 8.382 mm
in literature [88].

As shown in Figs. 35(c) and 35(d), the decoupled stress updating scheme finally forms a damage crack along the center of the
concrete, which is consistent with the experiment shown in Figs. 35(a) and 35(b). The original stress updating scheme gives larger
stress due to the influence of the fluid velocity and thus crack appears and propagates at the height where blast wave first interacts
with the column as illustrated in Fig. 35(e). Both the two methods successfully simulates the severe damage at the top and bottom
of the lower center column, which is observed in the experiment and caused by strong shear. The concrete with damg = 1 in
Figs. 35(c), 35(d), 35(e) and 35(f) is totally damaged while the rebars are not fractured, reproducing the experimental phenomena
that the center column experienced severe destruction but without collapse. The non-physical failure of a thin layer of particles on
the back of the center column appears when calculated with the original stress updating scheme, as illustrated in Fig. 35(f). Located
at the FSI interface cells, the particles are damaged by the overestimated stress. By comparing Figs. 35(c), 35(d) and Figs. 35(e),
35(f), the decoupled stress updating scheme is in better agreement with the experiment and the stress overestimation is eliminated.

The problem is simulated by both ls-ALEPM and ALEPM to compare the CPU time and amount of Euler steps as shown in Table 9.
The Euler step is conducted when maximum ratio of side lengths reaches 2 or the largest inclined angle satisfies cos𝜃 ≤ 0.8. The
quality criterion used to recognize the distorted cells is set to be 𝑄𝑙 < 0.99 and the objective grid quality criterion is set to be
𝑄min > 0.997 with 𝑁max = 20. Although ls-ALEPM triggers more Euler steps, the CPU time of each Euler step is greatly reduced
and the total CPU time is about 0.1485 times of the ALEPM. During the computation, the shock wave propagation and reflection
as well as the interaction with the columns and floors make the remeshing frequently performed. Although almost all grid cells are
influenced by the fluid flow at the end of the simulation, ls-ALEPM still achieves a good acceleration effect and has not failed.
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Fig. 34. Damage, pressure and material fraction contour at different time (𝑡 = 0.6 ms, 1.2 ms, 1.8 ms, 2.4 ms) of open-frame building and fluid domain.

Fig. 35. Comparison of damage in experiment and numerical simulations with the decoupled stress updating scheme and the original stress updating scheme
in ls-ALEPM.

Table 9
CPU time in Euler phase and amount of Euler steps.

Simulation method CPU time/s Amount of
Euler steps

ALEPM 332 614.89 101
ls-ALEPM 49 400.19 104
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7.8. Implosion of a below-grade concrete garage

The implosion of a 3-story building is studied with both ls-ALEPM and ALEPM. Tegeler et al. [89] developed a finite element
model for a below-grade concrete garage and studied it with the ABAQUS/Explicit code. The size of the garage is 𝐿 = 40 m, 𝐷 = 40
m, and 𝐻 = 10.8 m as illustrated in Fig. 36. The nine supporting square pillars of the garage all have the cross section of 0.8 m×0.8 m
with spacing 10 m and the thickness of the floor slabs are all 0.42 m. The passages to other floors of the garage are also considered
in the end-wall of each floor with the size of 6 m× 2.5 m× 0.42 m. The 45.4 kg TNT with a vertical standoff of 1 m from the second
floor slab is adopted for the implosion and the material perimeters are the same as Section 7.7. The concrete garage has a density of
2.643 × 10−3 g/mm3, the Young’s modulus of 31.027 GPa and the Poisson’s ratio of 0.2 with the compressive initial yield stress 13.0
MPa, the compressive ultimate stress 24.1 MPa and the tensile fracture stress 2.9 MPa, which are all taken from the literature [89].
The Euler step is conducted when maximum ratio of side lengths reaches 4 or the largest inclined angle satisfies cos𝜃 ≤ 0.7. The
quality criterion used to recognize the distorted cells is set to be 𝑄𝑙 < 0.99 and the objective grid quality criterion is set to be
𝑄min > 0.997 with 𝑁max = 20. The results obtained by ls-ALEPM and ALEPM are shown in Fig. 37 in which both shock waves reach
the back of the two nearest columns at physical time 4 ms and are consistent with the simulation of ABAQUS ConWep. The shape
and size of the failure area simulated by ls-ALEPM and ALEPM are also the same and similar with the finite element model.

Fig. 36. Pseudo-experiment simulation model of garage implosion [89].

Fig. 37. Comparison of structural failure and loads of ABAQUS, ls-ALEPM and ALEPM: (a) the propagation of the incident wave pressure loads(CONWEP) and
structural failure(removed) on surface at 4ms [89]; (b) the von Mises stress and structural failure (in red) on surface at 4 ms with ls-ALEPM; (c) the von Mises
stress and structural failure(in red) on surface at 4 ms with ALEPM;.

The CPU time calculated with ls-ALEPM and ALEPM are shown in Table 10. As the size of the whole computational domain is
very huge and the structural damage is only concentrated in a localized area, the improvement of efficiency is very significant and
the ratio of CPU time is 1: 15.575.

Table 10
Comparison of CPU time in Euler phase in ALEPM and ls-ALEPM.

Simulation method ALEPM ls-ALEPM

CPU time/s 1.1298 × 105 2.408 × 103

8. Conclusions

A localized subdomain smoothing MMALE particle method (ls-ALEPM) is proposed in this paper for efficient and accurate
simulations of large scale FSI problems. In order to avoid the spurious strain induced by the mixed FSI velocity field, a decoupled
stress updating scheme is proposed to update the stress of solid particles by introducing a virtual velocity field in the vicinity of FSI
interface. The strains of solid particles located at the interface cells are updated with the solid velocity field and separated from fluid
velocity. Therefore the accurate solid stress is obtained and stress oscillation caused by the mixed FSI velocity field is eliminated.
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Theoretical analysis is conducted with the nodal velocities of mixed cells as well as the solid strain and stress and the reasons for
pressure oscillation of fluid and overestimated stress of solid are also derived.

The novel ls-ALEPM is also combined with the localized subdomain smoothing method (LSSM) for the Euler step, which is
ime-consuming with the intersection based remapping. The localized subdomain smoothing method (LSSM) is put forward to
ccelerate the remapping phase and only involves the distorted regions of computational grid. LSSM is composed of the distorted
ubdomain determination step and the combinated mesh smoothing step. Each iteration step of the combinated mesh smoothing
tep is composed of the modified GETMe and weighted average method while the transfinite interpolation method is adopted as a
upplementary process. The ls-ALEPM takes the advantages of different methods and realize accurate and consistent rezoning and
emapping.

Several benchmark numerical examples and practical engineering problems are simulated to verify the correctness and superiority
f the ls-ALEPM. Comparing the effects of different methods, the smoothing benchmark of 3D distorted grid examines the
ffectiveness and correctness of LSSM. The Sedov point explosion problem tests the computational efficiency of ls-MMALE to deal
ith problems with shock wave propagation and large distorted areas. The moving projectiles in fluid examines the improvement of
fficiency with ls-ALEPM and the fragmentation of a cylinder shell induced by blast examines the effectiveness and correctness of the
ecoupled stress updating scheme when simulating problems with the structure fragmentation. The structural damage of open-frame
uilding under explosion shows the capability of ls-ALEPM in simulating problems with structural damage. The pseudo-experiment
imulation of garage implosion shows high efficiency of ls-ALEPM in large-scale engineering problems. The results all fit well with
he theoretical solution, the experimental data, indicating that ls-ALEPM is effective and efficient for solving multi-phase flow and
SI problems.

For future directions, as the piecewise linear shape function whose gradient is discontinuous on the cell boundary is employed
n the standard MPM, cell crossing noise is generated and the accuracy of the solid stress is limited in the MMALE particle method.
mproved MPM methods with high-order accuracy can be adopted in the MMALE particle method and enhance the accuracy of solid
egion and fluid–structure-interaction. Meanwhile the localized subdomain rezoning method accompanied with topology changes
an also be considered in ls-ALEPM which can realize high efficiency with adaptive local mesh refinement. Further consideration
hould also be given to the water-entry and structural damage problems involving the cavitation with the proposed decoupled stress
pdating scheme, which are widely concerned and challenging FSI problems. Different cavitation models and algorithms as well as
ore precise and robust methods to reconstruct the multi-phase interface should be investigated, which can be introduced into the
roposed method.
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