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Abstract This paper proposes a coupled particle–

finite element method for fluid–membrane structure

interaction problems. The material point method

(MPM) is employed to model the fluid flow and the

membrane element is used to model the membrane

structure. The interaction between the fluid and the

membrane structure is handled by a contact method,

which is implemented on an Eulerian background grid.

Several numerical examples, including membrane

sphere interaction, water sphere impact and gas

expansion problems, are studied to validate the

proposed method. The numerical results show that

the proposed method offers advantages of both MPM

and finite element method, and it can be used to

simulate fluid–membrane interaction problems.

Keywords Material point method �Membrane

element � Fluid–structure interaction �
Contact method

1 Introduction

The fluid–membrane structure interaction has diverse

engineering applications, such as vehicle airbags,

printing presses, parachutes, blood vessels, bladder

tanks, and so on. Due to large deformation of the

membrane structure, the interaction between the

membrane structure and the fluids is very strong,

where a loose or weak coupling may be not adequate

(Walhorn et al. 2005). Therefore, the development of

robust and efficient numerical methods for strong

fluid–membrane structure interaction problems still

requires further research.

There are many methods for the fluid–structure

interaction (FSI) problems, such as the coupling

method between finite element method (FEM) and

Eulerian methods, the arbitrary-Lagrangian Eulerian

(ALE) method (Hughes et al. 1981; Souli et al. 2000)

and the immersed boundary method (Luo et al. 2008).

During recent years, significant efforts have been

devoted to the development of particle methods, such

as the smoothed particle hydrodynamics (SPH)

method (Antoci et al. 2007; Rafiee and Thiagarajan

2009; Liu and Liu 2010), the natural neighbor

Galerkin method (Daneshmand and Niroomandi

2007; Gonzalez et al. 2007), the material point method

(MPM) (Sulsky et al. 1994; York II et al. 2000; Gan

et al. 2011) and the particle finite element method

(PFEM) (Idelsohn et al. 2004; Idelsohn et al. 2008).

The particle methods describe the fluid and structure

motion in the Lagrangian frame, so they are more

convenient to track the fluid–solid interface and model

the strong FSI problems than those methods based on

the Eulerian frame. Furthermore, the particle methods

have been coupled with FEM for FSI problems (Lee
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et al. 2007; Lian et al. 2011) to fully take their

advantages.

The MPM (Sulsky et al. 1994) is a finite element

method based particle method, which discretizes a

material domain by a set of Lagrangian material points

(particles). In MPM, the particles carry all state

variables in order to model history-dependent materi-

als; an Eulerian background grid is used to integrate the

momentum equation and calculate space derivative. In

each time step, the particles are rigidly attached to the

Eulerian background grid and move with it. The

kinematic variables are first mapped from particles to

grid nodes to establish grid nodal momentum equa-

tions. Afterward, the solutions of the grid nodal

momentum equation are mapped from the grid nodes

back to the particles to update their positions and

velocities. At the end of each time step, the deformed

background grid is discarded and a new regular

background grid is defined for the next time step.

Hence, the difficulties associated with mesh distortion

and element entanglement in FEM are fully eliminated,

while numerical dissipation normally associated in

Eulerian methods is reduced. York et al. (2000)

employed MPM to simulate the 2D fluid–membrane

structure interaction problem, where both the mem-

brane and fluid are discretized by particles. In 2D

problems, the membrane reduces to a curve line so that

the normal vector can be obtained by the neighbor

particles connection approximately. But in 3D prob-

lems, a special normal vector calculation scheme

should be established. Gan et al. (2011) proposed an

alternative method for the normal calculation, in which

the membrane was discretized by a set of triangulares

with the particles located at their vertices. The normal

vector of each particle was determined by averaging

the normal vector of all triangulares connected to the

particle. By using this method, Gan et al. studied the

zonal failure response in piezo-assisted intracytoplas-

mic sperm injection. Lian et al. (2011) proposed a

coupled MPM–FEM method for FSI problems, in

which the solid structure was modeled by hexahedral

finite elements and the fluid by MPM particles.

The motivation of this work is to extend the

capacity of MPM and membrane finite element to

simulate the fluid–membrane interaction problems.

Although MPM can be more accurate, more efficient

and more robust than FEM for problems involving

severe distortions, the accuracy of particle quadrature

used in MPM is lower than that of Gauss quadrature

used in FEM. Except that, MPM without further

modification is not suitable to model the membrane

structure directly (York II et al. 2000; Gan et al. 2011)

for fluid–membrane interaction problems. So in this

article, a method is presented for such problems, in

which the membrane element (Hallquist 1998) is

employed to model the membrane structure, while the

MPM is employed to model the fluid. To take account

of the strong interaction between fluid and membrane

structures, a contact method (Bardenhagen et al. 2000;

Huang et al. 2011; Hu and Chen 2003; Ma et al. 2010)

is implemented, which is also used to couple two

methods. The performance of the presented method is

demonstrated by several numerical examples includ-

ing membrane sphere interaction, water sphere impact

and gas expansion problems.

The remaining part of this article is organized as

follows. The governing equations for both fluid and

membrane structure are given in Sect. 2, followed by

MPM solution and membrane element in Sects. 3 and

4, respectively. The contact method for coupling

MPM with membrane element is presented in detail in

Sect. 5. The numerical implementation of the pro-

posed method is summarized in Sect. 6, and afore-

mentioned numerical examples are presented in Sect. 7.

Finally, conclusions are given in Sect. 8.

2 Governing equation

In a material domain X; the governing equations in

updated Lagrangian formulation are composed of

mass conservation

qðX; tÞJðX; tÞ ¼ q0ðXÞ; ð1Þ

momentum conservation

rji;j þ qfi ¼ q€ui; ð2Þ

energy equation

q _wint ¼ Dijrij; ð3Þ

boundary conditions

ðnjrijÞ
�
�
Ct
¼ �ti

uijCv
¼ �ui

�

; ð4Þ

and initial conditions
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_uðX; 0Þ ¼ _u0ðXÞ
uðX; 0Þ ¼ u0ðXÞ

�

; ð5Þ

where q is the current density, J is the Jacobian

determinant, X is the Lagrangian coordinate of a

material point. Subscripts i and j denote the compo-

nent of the space with Einstein summation convention,

subscript 0 signifies the initial value, the comma

denotes covariant differentiation, and the superim-

posed dot indicates the time derivatives. rij is the

Cauchy stress, fi is the body force per unit mass, ui is

the displacement, Dij is the rate-of-deformation, w is

the internal energy per unit mass, and nj is the unit

outward normal to the boundary. Ct and Cu signify the

prescribed traction boundary and displacement bound-

ary of X; respectively.

Taking the virtual displacement dui as test function,

the weak form of the momentum equation is obtained

as
Z

X

q€uiduidXþ
Z

X

rijdui;jdX�
Z

X

qfiduidX

�
Z

Ct

tiduidC

¼ 0; ð6Þ

where the displacement boundary conditions are

assumed to be satisfied as a priori.

3 MPM for fluid

3.1 MPM formulation

As shown in Fig. 1, MPM uses a set of particles to

discretize the material domain. Due to mass lumped at

each particle, density is approximated by Dirac delta

function d as

qðxÞ ¼
Xnp

p¼1

mpdðx� xpÞ; ð7Þ

where subscript p indicates the variable carried by

particle p, np is the total number of particles, mp and xp

are the mass and coordinate of particle p.

In MPM, particles are rigidly attached to the

background grid in each time step as shown in

Fig. 1. The kinematic information can be mapped

between particles and grid nodes through the shape

functions NI. For 3D problem, the 8-point hexahedral

cell is employed so that tri-linear shape functions are

applied as follow

NI ¼
1

8
ð1þ nnIÞð1þ ggIÞð1þ ffIÞ I ¼ 1; 2; . . .; 8;

ð8Þ

where n 2 ½�1; 1�; g 2 ½�1; 1� and f 2 ½�1; 1� are the

nature coordinates, nI, gI and fI take on their nodal

value of (±1, ±1, ±1). The grid nodal momentum can

be obtained by mapping particles momenta to the grid

node, namely,

piI ¼
Xnp

p¼1

NIpmpvip; ð9Þ

where the subscripts p and I denote variables associ-

ated with particle p and grid node I, respectively.

NIp ¼ NIðxpÞ is the value of shape function of grid

node I evaluated at the site of particle p.

Substituting Eqs. (7) and (9) into Eq. (6) and

invoking the arbitrariness of duiI lead to

_piI ¼ fiI I ¼ 1; 2; . . .; ng ð10Þ

where

piI ¼ mIviI ð11Þ

is the nodal momentum of grid node I,

fiI ¼ f ext
iI þ f int

iI ð12Þ

is the nodal force of grid node I,

f int
iI ¼ �

Xnp

p¼1

NIp;jrijp

mp

qp

ð13Þ

is the internal force,

particle 

cell 

Ω

grid node

Fig. 1 MPM discretization
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f ext
iI ¼

Xnp

p¼1

NIp�tiph�1 mp

qp

þ
Xnp

p¼1

mpNIpfip ð14Þ

is the external force, rijp ¼ rijðxpÞ; fip ¼ fiðxpÞ; �tip ¼
�tiðxpÞ; and h denotes the thickness of the layer of the

boundary.

In Eq. (11), the lumped mass matrix is used, namely

mI ¼
Xnp

p¼1

mpNIp ð15Þ

3.2 Time integration

The central difference time integration algorithm is

used to integrate the momentum equation (12). Let

tnþ1 ¼ tn þ Dtnþ1=2; tnþ1=2 ¼ tn þ Dtnþ1=2=2 ¼ tn�1=2

þDtn and Dtn ¼ ðDtn�1=2 þ Dtnþ1=2Þ=2; as shown in

Fig. 2.

The momentum of grid node I at time tn?1/2 is

updated by

p
nþ1=2
iI ¼ p

n�1=2
iI þ f n

iIDtn; ð16Þ

where fiI
n is the nodal force of grid node I, sum of nodal

internal force and external force calculated by

f
int;n
iI ¼ �

Xnp

p¼1

Nn
Ip;jrijp

mp

qp

ð17Þ

f
ext;n
iI ¼

Xnp

p¼1

Nn
Ip

�tn
iph�1 mp

qp

þ
Xnp

p¼1

mpNn
Ipf n

ip ð18Þ

The position and velocity of particle p can be

updated by the velocity and acceleration of grid node

I at time tn?1/2 and tn, namely

xnþ1
ip ¼ xn

ip þ Dtnþ1=2
Xng

I¼1

p
nþ1=2
iI Nn

Ip=mn
I ð19Þ

v
nþ1=2
ip ¼ v

n�1=2
ip þ Dtn

Xng

I¼1

f n
iI N

n
Ip=mn

I ð20Þ

The critical time step size is determined by

Dt ¼ minðLe=cÞ; ð21Þ

where Le is the characteristic length of cell e, and c is

the material local sound speed. The characteristic

length Le is constant in MPM because an Eulerian

background grid with uniform cell is usually used in

all time steps.

3.3 Stress update

In MPM, particle stresses are updated based on the

Jaumann (co-rotational) stress rate rijp
r . Therefore, the

material time derivative of the particle stress _rpij is

determined by

_rijp ¼ rrijp þ rilpXljp þ rjlpXlip; ð22Þ

where the Jaumann stress rate rijp
r is determined from

the strain rate _eijp by a constitutive model, and Xijp is

the spin tensor. Both the strain rate and spin tensor are

calculated by

_eijp ¼
1

2

Xng

I¼1

ðNIp;jviI þ NIp;ivjIÞ ð23Þ

Xijp ¼
1

2

Xng

I¼1

ðNIp;jviI � NIp;ivjIÞ ð24Þ

The particle stress at time tn?1 is updated by

rnþ1
ij ¼ rn

ij þ _rnþ1=2
ij Dtnþ1=2 ð25Þ

For hydrocodes, rij
n?1 is decomposed into deviatoric

stress and pressure, which are updated with corre-

sponding constitutive law and equation of state (EOS),

respectively. As opposed to a solid point, the stress

tensor for a compressible fluid point is given as

rij ¼ 2l _eij �
2

3
l _ekkdij � pdij; ð26Þ

where l is shear viscosity, and p is pressure which is

usually determined from an EOS.

t = 0 t n-1 t n t n+1

t n+1/2

t n-1/2

t n-1/2

t n+1/2

t nΔ

Δ Δ

t 

Fig. 2 Time integration
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4 Membrane element

In FEM, the displacement ui of a material point X

within an element is approximated by

uiðX; tÞ ¼
Xng

K¼1

NKðnðXÞÞuiKðtÞ; ð27Þ

where the subscript K denotes the FE nodes, ng is the

total number of nodes in the element, NK is the shape

function of node K. Taking quadrilateral elements as

an example, the bilinear shape functions is

NK ¼
1

4
ð1þ nnKÞð1þ ggKÞ ð28Þ

The integration over material domain in Eq. (6) can

be calculated as the summation of the integration over

all elements. Substituting Eq. (27) into Eq. (6) yields

_piK ¼ f int
iK þ f ext

iK ð29Þ

where

piK ¼ mKviK

is nodal momentum of FE node,

f int
iK ¼ �

X

e

Z

Ve

NK;jrjidV

is the internal force of FE node,

f ext
iK ¼

X

e

Z

Ve

qNKfidV þ
Z

Cte

NK�tidC

0

B
@

1

C
A

is the external force of FE node K.

For the sake of computational efficiency, one-point

Gauss quadrature is used. Hence, the internal force and

external force can be calculated by

f int
iK ¼ �

X

e

NKe;jrjieVe ð30Þ

f ext
iK ¼

X

e

meNKefie þ
Z

Cte

NK�tidC

0

B
@

1

C
A; ð31Þ

where subscript e denotes the value at the center of

element e, and me = qeVe.

A membrane is a thin-walled structure that has

stiffness only in the plane tangent to the structure and

ideally no stiffness in bending. The stress components

and traction through the thickness of a membrane are

constant. The Belytschko membrane element (Hall-

quist 1998) is used to model the membrane structure.

In the membrane element, the stresses are updated

based on the combined co-rotational coordinates,

which is embedded in and deform with the element.

4.1 Co-rotational coordinates

The co-rotational coordinates are built based on the

mid-surface of the quadrilateral element in terms of

their nodal coordinates as shown in Fig. 3. The co-

rotational coordinate system is embedded in and

deforms with the element.

The procedure for constructing the coordinate

system refers to DYNA3D code and begins by

defining two tangent vectors v and w as

v ¼ r21 þ r34 ð32Þ
w ¼ r31 þ r42 ð33Þ

and then a unit vector normal to the two tangent

vectors is determined by

ê3 ¼
v� w

jjv� wjj ; ð34Þ

where the superscript caret is used to indicate the local

(element) coordinate system. To define the unit

vectors ê1 and ê2; two auxiliary vectors, a and b; are

defined as

a ¼ vþ w

jjvþ wjj ð35Þ

b ¼ ê3 � a

jjê3 � ajj ð36Þ

Finally, the unit vectors in the local x̂� ŷ coordi-

nate system are obtained by

1

2

3

4

21

31

42

r34

41

e2

e1
x

y

r

r

r

r

Fig. 3 Construction of element coordinate system
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ê1 ¼
1
ffiffiffi

2
p ða� bÞ ð37Þ

ê2 ¼
1
ffiffiffi

2
p ðaþ bÞ ð38Þ

The transformation matrix q½ � between the global

and local element coordinate systems is defined by the

global components of the local coordinate system (ê1;

ê2; ê3) as

q½ � ¼
e1x e2x e3x

e1y e2y e3y

e1z e2z e3z

2

4

3

5; ð39Þ

where eix, eiy, eiz are the global components of the

element coordinate unit vectors. Using the matrix

q½ �; one can transform a vector from the local

coordinate system to the global coordinate system,

while using the matrix transpose q½ �T for the inverse

transformation.

4.2 Strain rate

With one-point quadrature, the velocity–strain rela-

tions are evaluated only at the center of the mid-

surface of the membrane by the standard bilinear

shape function based on the co-rotational coordinates.

The strain rate in the local x̂� ŷ plane at the element

center (i.e. n = 0, g = 0) can be calculated as

D̂ab ¼
1

2

X4

I¼1

ðNK;bv̂aK þ NK;av̂bKÞ; a; b ¼ 1; 2

ð40Þ

where

v̂K ¼ q½ �TvK ð41Þ

is the nodal velocity of node K in the x̂� ŷ plane. Note

that the strain rate components along ê3 are zero.

4.3 Nodal forces

After updating the stresses r̂ab from the aforemen-

tioned strain rate by a suitable constitutive law, the

local nodal internal forces can be obtained as

f̂xK ¼ V B1K r̂R
xx þ B2K r̂R

xy

� �

ð42Þ

f̂yK ¼ V B2K r̂R
yy þ B1K r̂R

xy

� �

; ð43Þ

where V is the volume of the element, B1K ¼ oNK

ox̂
;

B2K ¼ oNK

oŷ
: The global nodal internal force can be

obtained by transforming the local internal nodal

forces as

fxK

fyK

fzK

2

4

3

5 ¼ q½ �
f̂xK

f̂yK

0

2

4

3

5 ð44Þ

Therefore, the nodal internal forces Eq. (30) can be

rewritten as

f int
iK ¼ �

X

e

qijef̂jKe; ð45Þ

where the subscript e denotes the element.

Furthermore, the hourglass-resisting nodal force f C
iK is

calculated to control the hourglass modes induced by

the one-point integration. Here, the Flanagan–Bely-

tschko hourglass control scheme (Hallquist 1998;

Flanagan and Belytschko 1981) is implemented.

4.4 Time integration

The central difference time integration algorithm is

used to integrate the momentum equation. The nodal

velocities at time tn?1/2 are updated from Eq. (29) as

v
nþ1=2
iK ¼ v

n�1=2
iK þ f n

iKDtn=mK ð46Þ

and the nodal positions at time tn?1 are updated by

xnþ1
iK ¼ xn

iK þ v
nþ1=2
iK Dtnþ1=2 ð47Þ

The critical time step size is determined by

Dt ¼ minðLe=cÞ; ð48Þ

where Le is the characteristic length of element e, and

c is the material local sound speed. In order to keep all

operations synchronic in the same loop, the minimum

critical time step size of the FEM and MPM domains is

used as the time step size.

5 Coupling scheme

The interaction between the fluid and the membrane

structure is handled by a contact method implemented

on a background grid. As shown in Fig. 4, the
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membrane body r, denoted by XF; is modeled by FEM,

while the fluid body s, denoted by XM; is modeled by

MPM. In each time step, the momentum equations of

the MPM body and the FEM body are first updated

independently to obtain trial solutions, as if they were

not in contact. Then map the mass and momentum of

FEM body to the background grid of MPM. If the

momenta of the MPM body and the FEM body are

projected to a same grid node, two bodies contact at

the grid node, where a contact force is imposed on

them to prevent penetration.

5.1 Contact detection

Let �p
r;nþ1=2
iK and �p

s;nþ1=2
iI denote the trial momentum of

the FEM body r and the MPM body s, respectively.

The trial velocity of grid node I contributed by bodies

b can be obtained by

�v
b;nþ1=2
iI ¼ �p

b;nþ1=2
iI

m
b;n
I

; b ¼ r; s ð49Þ

where

m
b;n
I ¼

X

p

mb;n
p NIp; b ¼ r; s

is the grid nodal mass contributed by body b. If

ð�vr;nþ1=2
iI � �v

s;nþ1=2
iI Þnr;n

iI [ 0 ð50Þ

two bodies may penetrate each other in the vicinity of

grid node I. In Eq. (24), niI
r,n is the unit outward normal

of body r at point I. In the FEM domain XF; niI
r,n equals

to the summation of normal vectors of the element mid

surface, while in the MPM domain XM; niI
s,n can be

obtained by the gradient of the particles mass

(Bardenhagen et al. 2000) as

n
s;n
iI ¼

X

p

Nn
Ip;imp ð51Þ

In order to avoid numerical singularity, Eq. (50) can

be rewritten in the momentum form by multiplying

mI
r,nmI

s,n as

ðms;n
I �p

r;nþ1=2
iI � m

r;k
I �p

s;kþ1=2
iI Þnr;n

iI [ 0 ð52Þ
Contact detection based on Eq. (52) may cause false

contact, hence the improved contact detection method

proposed by Ma and Zhang et al. (2010) is used, in

which the real distance between two bodies is

calculated to assist the contact detection.

5.2 Contact force

If two bodies contact at grid node I, a contact force

fiI
b,c,k must be imposed at the grid node to prevent

penetration. Then the real momentum piI
b,n?1/2 of body

b at grid node I can be obtained by

p
b;nþ1=2
iI ¼ �p

b;nþ1=2
iI þ Dtnf

b;c;n
iI ð53Þ

For stick contact, the real momentum piI
b,n?1/2 must

satisfy the impenetrability condition

ðms;n
I p

r;nþ1=2
iI � m

r;n
I p

s;nþ1=2
iI Þnr;n

iI ¼ 0 ð54Þ

namely, (viI
r,n?1/2 - viI

s,n?1/2)niI
r,n = 0, which indicates

the continuity of velocity on the contact interface.

Substituting Eq. (53) into Eq. (26) gives the stick

contact force

f
r;c;n
iI ¼ �f

s;c;n
iI ¼ m

s;n
I �p

r;nþ1=2
iI � m

r;n
I �p

s;nþ1=2
iI

ðmr;n
I þ m

s;n
I ÞDt

ð55Þ

which indicates the continuity of normal acceleration

on the contact interface. The normal contact force fI
nor,k

and the tangential contact force fiI
b,tan,k are given by

f
nor;k
I ¼ f

b;c;n
jI n

b;n
j ð56Þ

f
b;tan;k
iI ¼ f

b;c;n
iI � f

nor;n
I n

b;n
i ð57Þ

For slip contact, the tangential contact force is

limited to lf
nor;n
I based on Coulomb friction model,

where l is the friction coefficient. Therefore the

contact force is rewritten as

I

element 

particle 

cell 

Ω
F MΩ

Body r Body sa

b

c

grid node

FE node

Fig. 4 2D illustration of coupling scheme
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f
b;c;n
iI ¼ f

nor;n
I n

b;n
i þ lf

nor;n
I j f

b;tan;n
iI

jf b;tan;n
iI j

ð58Þ

For the MPM body, the real nodal momentum is

obtained by Eq. (53). For the FEM body, the real nodal

velocity is obtained by the background grid nodal

acceleration as

v
nþ1=2
iK ¼ �v

nþ1=2
iK þ Dtn

Xng

I¼1

f
b;c;n
iI Nn

Ip=mn
I ð59Þ

The position of finite element nodes can be updated

based on the updated nodal velocity.

6 Numerical implementation

The detailed implementation of the method is pre-

sented as follows:

1. Initialize the background grid, and reset all grid

nodal variables to zero.

2. Calculate the trial solution of the MPM body on

the background grid

(a) Loop over all the particles in the MPM body s to

calculate their contributions to the masses and

the momenta of grid nodes by

m
s;n
I ¼

Xnp

p

ms
pNn

Ip ð60Þ

p
s;n�1=2
iI ¼

Xnp

p

ms
pv

s;n�1=2
ip Nn

Ip ð61Þ

(b) Apply the essential boundary conditions on the

background grid nodes. If the node I is fixed in

i direction, set piI
s,n-1/2 = 0.

(c) Loop over all particles to calculate their incre-

mental strains and spin tensors, respectively, by

Den�1=2
ijp ¼ 1

2
Dtn
X8

I¼1

Nn
Ip;jv

s;n�1=2
iI þ Nn

Ip;iv
s;n�1=2
jI

h i

ð62Þ

Xn�1=2
ijp ¼ 1

2

X8

I¼1

Nn
Ip;jv

s;n�1=2
iI � Nn

Ip;iv
s;n�1=2
jI

h i

ð63Þ

The stresses of particles can be updated by

corresponding constitutive law and EOS.

(d) Loop over all the particles to calculate the grid

nodal internal forces fiI
int,n and external forces

fiI
ext,n by using Eqs. (17) and (18), respectively.

(e) Loop over all the background grid nodes to

update their trial momenta by

�p
nþ1=2
iI ¼ p

n�1=2
iI þ Dtnf n

iI ð64Þ

and apply the essential boundary conditions. If

the node I fixed in i direction, set fiI
n = 0.

3. Calculate the trial solution of the FEM (membrane

element) body

(a) Loop over all the elements to calculate their co-

rotational coordinates and transformation matrix

by Eq. (39).

(b) Transform the nodal velocities viI
r,n-1/2 to the

local coordinate system by Eq. (41).

(c) Calculate the strain rate at element center

by Eq. (40), the nodal internal forces fiK
int,n by

Eq. (45), the nodal external forces fiI
ext,n by

Eq. (31) and the hourglass resisting forces.

(d) Apply the essential boundary condition. If the

node K is fixed in i direction, set fiK
n = 0.

(e) Loop over all the FE nodes to update their trial

velocities by Eq. (46).

4. Contact detection and treatment

(a) Map the nodal mass and momentum of the FEM

body to the background grid.

(b) Loop over all the grid nodes to detect the contact

grid nodes. If Eq. (52) is satisfied, the two bodies

contact at the grid node I.

(c) Calculate the contact force by Eq. (55) for stick

contact, by Eq. (58) for slip contact.

(d) Update the grid nodal momentum for the MPM

body by Eq. (53), and update the FE nodal velocity

by Eq. (59), FE nodal position by Eq. (47).

5. Loop over all the particles to update their

velocities by using
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v
nþ1=2
ip ¼ v

n�1=2
ip þ Dtn

Xng

I¼1

ðf n
iI þ f

c;n
iI ÞNn

Ip=mn
I ð65Þ

and positions by Eq. (19), respectively.

6. Discard the deformed background grid and define

a new regular background grid. Return to step 1 to

start a new time step.

7 Numerical examples

7.1 Membrane sphere interaction

Two examples are given here. In the first example, a

50 9 50 mm2 elastic membrane falls down at a speed

of 50 m/s to a solid elastic sphere with bottom fixed.

The thickness of the membrane is 0.1 mm while the

radius of the sphere is 15 mm. For the membrane, the

Young’s modulus is E = 10 9 103 MPa, Poisson’s

ratio m = 0.3, and density q = 0.75 9 10-3 g/mm3.

For the sphere, the Young’s modulus is

E = 70 9 103 MPa, Poisson’s ratio m = 0.3, and

density q = 2.75 9 10-3 g/mm3.

The discretization of the two bodies is shown in

Fig. 5, in which the membrane is modeled by mem-

brane element, while the sphere by MPM particles.

The side length of both membrane element and grid

cell is 1 mm, and the particle space is 0.5 mm. The

coordinates of sphere center are (0, 0, 15), while the

membrane are (0, 0, 31). For comparison, this problem

is also simulated by FEM using LS-DYNA software.

The time history of the z position of the center (0, 0,

31) and one corner (-25, -25, 31) of the membrane is

given in Fig. 6. The results obtained by the presented

method and FEM are in good agreement. Furthermore,

The snapshots of the falling process obtained by the

proposed method at three typical time steps are

compare with those obtained by FEM in Fig. 7. It

shows that the shapes of the membrane at different

time steps obtained by the proposed method are in

good agreement with those by FEM.

The second example is that a solid sphere falls

down at a speed of 10 m/s to a 50 9 50 mm2 elastic

membrane with four sides fixed. The thickness of the

membrane is 0.1 mm while the radius of the sphere is

4.5 mm. Both the membrane and sphere apply the

same material constants with the Young’s modulus of

E = 70 9 103 MPa, Poisson’s ratio of m = 0.3, and

density of q = 0.75 9 10-3 g/mm3.

The discretization of the two bodies is shown in

Fig. 8, in which the discretization parameters are set as

those in the first example. The coordinates of the

sphere center are (0, 0, 5.5), while the membrane

center are (0, 0, 0). For comparison, this problem is

also simulated by FEM.

The time history of the z position of the center (0, 0,

0) of the membrane and top point (0, 0, 10) of theFig. 5 The discretization of the membrane and sphere
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Fig. 6 Time history curve of two points of the membrane
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sphere is given in Fig. 9. Besides, the snapshots of the

falling process with pressure color obtained by the

proposed method at three typical time steps are

compare with those obtained by FEM in Fig. 10. Both

the pressure contour results and the time history curves

obtained by the presented method and FEM are in

good agreement.

In order to investigate the effect of the cell size on

computational results, a convergence analysis is con-

ducted using three models with different cell sizes

represented by Dcell. The time history of the z position of

the center (0, 0, 0) of the membrane is taken, as shown in

Fig.11. The time history curves are more and more close

to each other with the decreasing of the cell size.

7.2 Water sphere impact

As shown in Fig. 8, a water sphere of radius r = 4.5

mm with initial velocity of 10 m/s moves to a

50 9 50 mm2 membrane with four sides fixed. The

thickness of the membrane is 0.1 mm. The gap

between the water drop and the membrane is

L = 0.5 mm. The air is neglected, and surface tension

model is not applied to this example, which is only

used to validate the presented method.

In the simulation, the membrane is modeled by

membrane element with density of q = 0.75 9

10-3 g/mm3, Young modulus of E = 60 9 10-3

MPa and the Poisson ratio of m = 0.3. The water

sphere is modeled by MPM with null material model

and Mie-Gr€uneisen EOS for pressure with material

constants listed in Table 1. And the EOS is imple-

mented as follow

p ¼
pHð1� cl

2
Þ þ c0E l > 0

0 l\0

�

ð66Þ

where pH ¼ q0c2
0
lð1þlÞ

½1�ðs�1Þl�2 ; the subscript H refers to

the Hugoniot curve, l = q/q0 = 1 indicates the

Fig. 8 The discretization of the membrane and sphere
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compression, and c = c0q0/q is the Gr€uneisen param-

eter. The particle space is 0.5 mm, and the side length

of both cell and element is 1 mm. For comparison, this

problem is also simulated completely by FEM.

The time history of the z position of the center (0, 0,

0) of the membrane and top point (0, 0, 10) of the

sphere is given in Fig. 12. Before time 0.6 ms, the

curves of both methods agree well with each other, but

after that the difference between each other is obvious.

Fig. 13 compares the impact process at different time

steps between the presented method and FEM.

Figure 13a shows that water sphere experiences

extreme deformation until to fragmentation, but the

water fragmentation phenomenon cannot be modeled

by FEM. Therefore, the difference between curves

shown in Fig. 13 is mainly because that FEM is unable

to model the water sphere fragmentation, as show in

Fig. 13.

7.3 Gas expansion

As shown in Fig. 14, a gas block with dimensionless

size of 0.9 9 1.9 expands within a membrane. The

initial shape of the membrane is a rectangular with

dimensionless width of 1, length of 2 and thickness of

0.1. Set the size of both membrane and gas along the

z axis as 0.1.

In the simulation, the membrane is modeled by

membrane element with density of q = 0.5, Young

modulus of E = 10 9 105 and the Poisson ratio of

m = 0.3. The gas body is modeled by MPM with null

material model and ideal gas EOS with initial pressure

10. Those material constants are listed in Table 2. By

the ideal gas EOS , the gas point pressure is given by

p ¼ ðc� 1Þ q
q0

E; ð67Þ

where c is the ratio of specific heats. In order to damp

the membrane oscillations due to the unbalanced

forces, the viscosity coefficient l of the gas is set as

0.1.

Due to the symmetry, one quarter of the model is

studied as shown in Fig. 15, with particle space of

0.025, grid cell and the element side length of 0.1.

The radius of the membrane at 0 and 90 degree are

shown in Fig. 16. The snapshots of the expansion

process are given in Fig. 17. From both Figs. 16 and

Table 1 Material constants of water

q (kg/m3) c0 (m/s) s c0

1,000 1,647 1.921 0.1
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Fig. 12 Time history curves of one point in the membrane and

one point on the sphere
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Fig. 13 Snapshots of the water sphere falling process
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17, one can find that the membrane oscillates at early

time and then is damped to a steady state condition.

And the equilibrium shape of the membrane is a

circular with the final radius of 0.96. Furthermore,

Fig. 18 shows the energy curve, which shows that

about 5 % of the energy was lost.

8 Conclusion

In this article, we propose a coupling method to

simulate fluid–membrane structure interaction prob-

lems. Material point method (MPM) is a Lagrangian

particle method, which is suitable for compressible

fluids with specific constitutive equation. Due to

particles carrying all information, there is no convec-

tion terms in momentum equations and easy to track

the interface of material. Finite element method

(FEM) is a traditional Lagrangian method with high

efficiency and accuracy for problems with mild

deformation. Therefore, in the proposed method, the

fluids are simulated by MPM and the membrane

structures by membrane element. The interaction

between them is carried out by a contact method

implemented on an Eulerian background grid.

Due to the Lagrangian nature of both FEM and

MPM, the proposed method has the advantage of

allowing an easy definition of the fluid–membrane.

The contact between the fluid and membrane structure

is also automatically established on background grid

when particles and element nodes are close to each

other. Numerical examples show that the proposed

method is a powerful tool for the fluid–membrane

structure interaction problems.
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