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Peridynamic modeling of elastic-plastic ductile fracture 
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H I G H L I G H T S  

• A peridynamics-based framework is established for elastic-plastic ductile fracture problems. 
• Energy dissipation rate-based bond failure criterion is proposed for ductile crack growth modeling. 
• The peridynamic models successfully capture the characteristics of elastic-plastic deformation and ductile fracture.  
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A B S T R A C T   

A peridynamics-based framework is established for the elastic-plastic ductile fracture analysis. In 
this frame, a new state-based peridynamic elastic-plastic model is presented using the novel bond 
extension state forms of yield function and plastic flow rule. The nonlinear energy release rate is 
computed by the extended peridynamic finite crack extension (PFCE) method, and an energy 
dissipation rate-based bond failure criterion is proposed for ductile crack growth modeling. Nu
merical methods for plastic states update and yield function solution are also given. Then, ex
amples of plates with a center hole or a center crack, and compact tension (CT) tests are analyzed 
by the proposed models, and compared to those from theoretical and FEM solutions. The results 
demonstrate that the proposed peridynamic models can well capture the characteristics of elastic- 
plastic deformation and ductile fracture, including the plastic shape and size, energy distribu
tions, nonlinear energy release rate, load-displacement and resistance curves, etc.   

1. Introduction 

Crack growth in ductile materials commonly experiences material plastic deformations, which leads to elastic-plastic fracture. The 
better understanding and prediction of elastic-plastic ductile fracture are important for the facture resistance quantification of ductile 
materials and structures. 

In elastic-plastic fracture mechanics, the most widely accepted parameter, J-integral [1,2] has been proposed to measure the stress 
and strain fields of crack-tip and characterize the crack initiation. The J-integral was later extended for crack growth problems with the 
so-called J-resistance curve [3]. However, the J-integral is only applicable for small-scale yielding problems with limited crack 
extension length. A physical more meaningful parameter of energy dissipation rate R [4,5], defined as the summation of the unre
coverable plastic energy rate and the crack surface separation energy rate, was utilized to analyze ductile crack growth problems. 
Meanwhile, the numerical Finite Element Method (FEM) model has great advantage on plastic deformation analysis, with which the 
J-integral value of stationary cracks can be computed. The FEM model has also been used for ductile crack growth analysis with 
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incorporating the cohesive zone model (CZM) [6], continuum damage model [7], virtual crack extension method [8], and phase-field 
models [9,10]. However, it is still great challenge to fully model the elastic-plastic ductile fracture problem because of the interaction 
between material plasticity and crack growth. 

Peridynamic (PD) [11] was proposed as a reformulation of classical mechanics to solve fracture problems. In peridynamics, the 
classical partial differential equations are replaced with integral differential equations, and the inadequacies of continuous mechanics 
on fracture problems can be removed. Thus, peridynamics can naturally model fracture problems of crack initiation and propagation. 
The original version of peridynamic theory is bond-based peridynamic (BB-PD) model, where the bond force interacted with neigh
boring points depends only on their own deformations. This leads to restrictions of Poisson’s ratio for BB-PD model [12]. To handle 
such restrictions, a more general frame of the state-based peridynamic (SB-PD) model [13] was proposed, in which the bond force 
density between neighboring points depends on the deformation of their whole family. The SB-PD can be further divided into ordinary 
and non-ordinary models. In ordinary state-based peridynamics (OSB-PD) [13], the bond force density is parallel to the bond deformed 
vector; while in non-ordinary state-based peridynamics (NOSB-PD) [14,15], the bond force is not limited to be parallel to the bond 
deformed vector. Based on these peridynamic models, different materials in conventional solid mechanics were reformulated [16–22]. 

To reproduce the plastic deformations, peridynamics-based plastic models were successively proposed. The concept of peridynamic 
elastic-plastic model was first presented in [13] with the frame of OSB-PD. It was later extended as a three-dimensional (3D) peri
dynamic perfect elastic-plastic model with the non-local yield criterion [23]. The OSB-PD constitutive plastic model based on von 
Mises yield criteria with isotropic hardening was proposed in [24], for both 1D, 2D and 3D cases. This model was extensively studied 
with isotropic, kinematic and mixed hardenings under cyclic loading [25]. To model the geomaterials and concrete, the nonlocal 
peridynamic plastic models were derived based on the Drucker-Prager criterion and the pressure-dependent non-associated flow rule 
[26–30]. For typical 2D elastoplastic case, a new 2D OSB-PD model consistent with J2 plasticity was proposed using a novel 
decomposition for force and extension states [31]. Additionally, the NOSB-PD based plastic models [32–34] were also formulated for 
plastic deformation analysis. But, the zero-energy mode exists in the NOSB-PD model [35,36], which may cause the unstable solutions. 
Overall, most above researches are only related to plastic deformations analysis. Though the equivalent Mises stress and equivalent 
plastic strain around stationary cracks were presented in some studies [27,37,38], the elastic-plastic ductile crack growth is rarely 
modeled. 

Bond failure criterion is important in peridynamic theory for fracture analysis. The most common two are critical stretch (CS) and 
critical energy density (CED) criteria. The CS bond failure criterion was first proposed in the BB-PD model [12], and extended in the 
OSB-PD model [39]. But the CS-based bond failure criterion can only be used for elastic brittle fracture. For the plastic ductile fracture, 
since the relationship between the bond force and bond deformation is nonlinear and history dependent, the CS criterion cannot be 
utilized. The CED criterion related to deformation states was first proposed by Foster et al. [40]. It was extended for crack elastic-plastic 
growth modeling in [24], where the critical CED in [24,40] is still computed from critical energy release rate. However, in ductile 
fracture problem, the critical energy release rate involves not only surface fracture energy but also global plastic energy, the plastic 
energy dissipation effect has not been clearly considered in [24,40]. Additionally, there is few studies on quantitative analysis of 
elastic-plastic ductile fracture behaviors, i.e. the plastic shape and size, energy distributions, nonlinear energy release rate, 
load-displacement and resistance curves, etc. 

In the present study, the peridynamics-based framework is established for the elastic-plastic ductile fracture analysis. First, the 
ordinary state-based peridynamic elastic-plastic model is presented for elastic-plastic deformations analysis, in which the yield 
function and plastic flow rule are defined only with the bond extension states. Then, the nonlinear energy release rate of crack is 
computed by extended peridynamic finite crack extension (PFCE) method, and an energy dissipation rate-based bond energy density 
criterion is proposed for ductile crack growth modeling. Numerical methods of plastic deformation states update and yield function 
solution are given. Examples of plates with a center hole or a center crack, and compact tension (CT) tests, are analyzed for the model 
verification and application, and δ-convergence and m-convergence studies are performed. The elastic-plastic deformation and fracture 
behaviors of these tests are predicted with the proposed models, and compared to those from analytical and FEM results. 

Fig. 1. Ordinary state-based peridynamic model.  
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2. Elastic-plastic model in ordinary state-based peridynamics 

In nonlocal peridynamic theory, the motion equation of the peridynamic point x can be expressed as [3]: 

ρ(x)ü(x, t) =
∫

Hx

{
T[x, t]〈x′ − x〉 − T[x′, t]〈x − x′〉

}
dVx′ + b(x, t) (1)  

where ρ is the density of point x, u is the displacement vector at time t, Hx is the neighborhood of point x with the nonlocal horizon size 
of δ, x′ is its neighbor point in Hx, and b(x, t) is the body force density. As shown in Fig. 1, ξ = x′ − x is the bond vector, X〈ξ〉 and Y〈ξ〉 are 
the reference and deformed vectors of bond ξ, T[x, t] and T[x′, t] are the force vector states of points x and x′, respectively. 

In the ordinary state-based peridynamic (OSB-PD) model, the bond force is parallel to the bond deformed vector, and it can be 
written with the force scalar state t as: 

T[x, t]〈ξ〉 = t〈ξ〉 Y〈ξ〉
⃒
⃒
⃒Y〈ξ〉

⃒
⃒
⃒

(2)  

2.1. Peridynamic model for elastic deformation 

In the peridynamic elastic-plastic model, the bond deformation can be decomposed as: 

e = ei + ede + edp (3)  

where e is the extension scalar state defined as e= |Y| − |X|, ei, ede and edp are the volume, elastic and plastic deviatoric parts of 
extension scalar state, respectively. Thus, the elastic deviatoric extension ede can be computed with the nonlocal volume dilatation θ for 
the three-dimensional (3D) and two-dimensional (2D) cases as: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ = 3
ωx · e

q
, ede = e −

θ
3

x − edp; 3D

θ = 2
ωx · e

q
, ede = e −

θ
2

x − edp; 2D
(4) 

For isotropic materials, the elastic strain energy density of point x in the OSB-PD model can be expressed as: 

We =
kθ2

2
+

α
2

(

ωede
)

· ede (5)  

where k and α are the peridynamic constants, which can be expressed as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k = k′, α =
15μ

q
; 3D

k = k′,α =
8μ
q
; 2D

(6)  

Thus, the scalar force state t takes the form of [39]: 

t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3k′θ
ωx
q

+
15μ

q
ωede 3D

2k′θ
ωx
q

+
8μ
q

ωede 2D
(7)  

where x is the scalar state of bond ξ that is equal to the bond length |ξ|, ω is the influence function, q is the weighted volume that is 
defined as ωx · x, the symbol (·) is dot product in [3], μ is the shear modulus, and k′ is the modulus that can be expressed with the 
Young’s modulus E and Poisson’s ratio v in 3D and 2D cases as: 

k’ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
3(1 − 2v)

3D

E
2(1 − v)

Plane stress

E
2(1 + v)(1 − 2v)

Plane strain

(8)  
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2.2. Strain energy density decomposition 

The elastic strain energy density in Eq. (5) can be decomposed into volumetric and distortional strain energy density as: 

We = Wv + Wd (9)  

where the volumetric part of elastic energy density in classical mechanics is 

Wv =
1
2

K
(

dV
V

)2

(10)  

where K is the bulk modulus for the 3D case, dV/V is the volumetric strain that can be computed with the nonlocal volume dilatation θ 
as: 

dV
V

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ 3D
1 − 2v
1 − v

θ Plane stress

θ Plane strain

(11)  

Substitute Eq. (11) into Eq. (10), and consider 3D bulk modulus K = E / (3-6v), the volumetric strain energy density in peridynamics 
can be expressed as: 

Wv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
6(1 − 2v)

θ2 3D

E(1 − 2v)
6(1 − v)2 θ2 Plane stress

E
6(1 − 2v)

θ2 Plane strain

(12) 

Combine Eqs. (5), (9) and (12), the distortional strain energy density in peridynamics can be obtained as: 

Wd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

15μ
2q

(

ωede
)

⋅ ede 3D

E(1 + v)
12(1 − v)2θ2 +

4μ
q

(

ωede
)

⋅ ede Plane stress

E
12(1 + v)

θ2 +
4μ
q

(

ωede
)

⋅ ede Plane strain

(13)  

Thus, the forms of volumetric and distortional strain energy density in peridynamics are, respectively given in Eqs (12) and (13), which 
are strictly equivalent to the volumetric and distortional strain energy density in classical mechanics for both 2D and 3D cases. As 
shown in Eq (13), in the 3D case, Wd is only a function of the elastic deviatoric extension ede. While in the 2D case, Wd is the function of 
both ede and the volume dilatation θ, which is different to the deviatoric strain energy density definition in [3]. 

2.3. Yield function and plastic flow rule 

According to the classical J2 plasticity theory, the distortional strain energy density-based yield function can be presented as: 

f
(
Wd) = Wd − ψ (14)  

where Wd is the distortional strain energy density given in Eq. (13), ψ is a positive hardening variable that is related to deformation 
history. For the linear isotropic strain hardening model, ψ can be expressed as: 

ψ =

(
σY + Hεp

)2

6μ (15)  

where σY is the yield stress, εp is the equivalent plastic strain, μ is the shear modulus, and H is the hardening modulus. When H = 0 is 
considered, ψ is a constant, the yield function is responding to the perfectly elastic-plastic materials. 

When the yield condition is reached, the plastic flow rule is needed to update the plastic part of bond extension. The plastic flow 
rule is considered as [23]: 

Δedp = λ∇d ( Wd) (16)  

where Δedp is the increment plastic deviatoric extension scalar state, λ is the positive undetermined scalar parameter, and ∇d is Frechet 
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derivative of Wd with respect to ede. Substitute Eq. (13) into Eq. (16), the plastic flow rule can be rewritten as: 

Δedp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ
15μ

q
ωede 3D

λ
8μ
q

ωede 2D
(17)  

where ∇d(θ) = 0 is used. Using this form of flow rule, the increment plastic extension Δedp can be directly computed by the elastic 
deviatoric extension ede with the undetermined scalar parameter λ. 

Unlike the previous peridynamic elastic-plastic models in [23,24,31], the present yield function of Eq. (14) and plastic flow rule of 
Eq. (17) are defined only with the bond elastic deviatoric extension ede, no bond force state is involved. It would reduce the numerical 
solution difficulty of present peridynamic elastic-plastic model, especially for the 2D plane stress and strain cases, which would be 
shown in the numerical implementation section. 

2.4. Equivalent Mises stress and equivalent plastic strain 

Based on the classical J2 theory, the equivalent Mises stress of the peridynamic point is defined as: 

σM =
̅̅̅̅̅̅̅̅̅̅̅̅
6μWd

√
(18)  

where Wd is the distortional strain energy density, μ is the shear modulus. Using the forms of Wd in Eq. (13), the equivalent Mises stress 
can be obtained in both the 3D and 2D cases. 

Meanwhile, the equivalent plastic strain εp is related to point deformation history, the increment equivalent plastic strain can be 
computed by [37,41]: 

Δεp =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
q

(

ωΔedp
)

·Δedp

√

3D

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
q

(

ωΔedp
)

·Δedp

√

2D

(19)  

where q is the weighted volume, Δedp is the increment plastic deviatoric extension scalar state computed by Eq. (17). 

3. Elastic-plastic fracture in peridynamics 

In this section, the nonlinear energy release rate of elastic-plastic crack is computed by the extended peridynamic finite crack 
extension (PFCE) method. An energy dissipation rate-based bond energy density criterion is proposed for the elastic-plastic ductile 
crack growth modeling. 

Fig. 2. The bond force related to bond extension scalar in peridynamic elastic-plastic model.  
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3.1. Elastic-plastic bond energy density 

In the ordinary peridynamic elastic-plastic model, the curve of bond force scalar t〈ξ〉 + t′〈ξ〉 related to bond extension scalar e〈ξ〉 can 
be approximately plotted in Fig. 2. As shown, the bond force firstly linearly increases with the bond extension from point O to B, and 
then encounters nonlinear elastic behavior from B to D as the point yield function is satisfied. If the unloading occurs at the point D, the 
bond force would decrease elastically from point D to O′, and follow the same reloading curve when the load is applied again. 

As shown in Fig. 2, under the elastic-plastic deformation, the bond extension e〈ξ〉 can be divided into two parts: the elastic extension 
ee = ei + ede and the unrecoverable plastic extension edp. Thus, the bond energy density w〈ξ〉 can also be divided as the sum of the 
elastic energy density we and plastic energy density wp. The value of elastic bond energy we is equal to area of the triangle O′DD′, that 
can be computed by: 

we〈ξ〉 =
1
2

{

tD〈ξ〉+ t′D〈ξ〉
}

⋅ ee〈ξ〉 (20)  

The value of plastic bond energy density wp is equal to area of OBDO′, that can only be computed in the integral form: 

wp〈ξ〉 =
∫ edp〈ξ〉

0

{

t〈ξ〉 + t’〈ξ〉
}

⋅ dedp〈ξ〉 (21) 

Based on the definitions of these bond energy densities, the elastic and plastic strain energy density of the peridynamic point x can 
be computed by: 

We =

∫

Hξ

1
2
we〈ξ〉dVξ

Wp =

∫

Hξ

1
2
wp〈ξ〉dVξ

(22)  

3.2. Nonlinear energy release rate computation in peridynamics 

The nonlinear energy release rate (NERR) J is a significant parameter to characterize the crack in the elastic-plastic fracture 
problem, which is proved equal to path-independent contour J-integral in a nonlinear elastic body [42]. Here, the peridynamic finite 
crack extension (PFCE) method [43] is extended for the J computation. 

In elastic-plastic solid materials, for a crack difference of dA, the energy variations of the system must satisfy [44]: 

dWF = dUe + dUp + dUk + dWs (23)  

where WF is the total potential of the external force, Ue is the elastic strain energy, Up is the plastic strain energy, Uk is the kinetic 
energy, and Ws is the crack surface energy. For quasi-static problems, Uk can be neglected. The nonlinear energy release rate during 
elastic-plastic crack growth can be expressed as: 

J =
dWF −

(
dUe + dUp

)

dA
(24) 

Considering the fixed displacement boundary conditions, the Eq. (24) can be rewritten as: 

J =
−
(
dUe + dUp

)

dA
(25)  

Thus, the nonlinear energy release rate J of an elastic-plastic crack can be computed by the differential of the total strain energy to the 
crack area, which can be numerically calculated with the total strain energy difference by specimens with neighboring crack sizes. 

In the peridynamic elastic-plastic model, after calculating the total strain energy of specimens with neighboring crack sizes, nu
merical differentiation is utilized to obtain the value of J, where the elastic and plastic strain energy of peridynamic points can be 
computed by Eq. (22). Additionally, unlike the original PFCE method for elastic materials [43], which can be solved by one specimen 
with series artificial crack extensions; for the elastic-plastic materials, since previous plastic energy would remain when crack ex
tensions are artificially applied, the extended PFCE can only be implemented by couple specimens with neighboring crack sizes. 

3.3. Energy dissipation rate-based bond energy density criterion 

For the elastic-plastic materials, as shown in Eq. (23), crack growth involves energy dissipation through the creation of new crack 
surfaces and additional global plastic energy. To overall capture ductile crack growth, the ‘‘energy dissipation rate’’ R was defined as 
[3,5]: 
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R =
dWs

dA
+

dUp

dA
(26)  

where dWs/dA represents the crack surface separation energy dissipation rate, which is equal to surface fracture energy Γs. While dUp 
/dA is called as the unrecoverable plastic energy rate, which means the non-recoverable mechanical energy during crack growth due to 
material plasticity. Most of plastic energy will be converted into heat related to the Taylor-Quinney coefficient [45]. 

In peridynamic ductile fracture modeling, cracks are formulated with directional broken bonds across crack surface. As the crack 
grows, the external potential energy is dissipated by the broken bonds for new crack surface, or transformed as plastic energy in global 
peridynamic points. Thus, the released energy of broken bonds is only related to the surface fracture energy Γs. Similar to the energy 
equivalence in [40], the total broken bond released energy at unit area of crack is equal to the surface fracture energy Γs, the critical 
bond energy density for the elastic-plastic fracture is obtained: 

wc =

⎧
⎪⎪⎨

⎪⎪⎩

4Γs

πδ4 3D

3Γs

2δ3B
2D

(27)  

where B is the thickness of the 2D model. 
Then, the energy dissipation rate-based bond failure criterion can be expressed as: 

d〈ξ〉 =
{

1 if we〈ξ〉 + wp〈ξ〉 < wc for all t’ ≤ t,
0 otherwise (28)  

where d = 0 means that the bond is irreversibly broken. The bond energy density is computed by the sum of elastic and plastic bond 
energy density in Eqs. (20) and (21). 

The modified critical bond energy density for the elastic-plastic fracture is given in Eq. (28). Unlike the previous bond energy 
density criterion in [40], the surface fracture energy Γs, rather than critical energy release rate Gc, is used for the critical bond energy 
density computation. By using this energy dissipation rate-based bond failure criterion, the dissipation energy during crack growth can 
be quantitatively modeled as two decomposed parts: the broken bonds released energy from emerging crack surfaces and the plastic 
energy of global peridynamic points. Meanwhile, for the elastic brittle materials, the energy dissipation rate R is equal to energy release 
rate G, the critical energy release rate Gc is equal to surface fracture energy Γs, and the present bond failure criterion in Eq. (28) can be 
reduced into the origin version [40]. 

4. Numerical implementation 

In peridynamic numerical model, the whole body is discretized into finite nodes, and the motion equation of the peridynamic point 
xi in Eq. (1) can be rewritten as: 

ρiüi(xi, t) =
∑

j∈Hi

{
T[xi, t]

〈
xj − xi

〉
− T

[
xj, t

]〈
xi − xj

〉}
Vj + bi(xi, t) (29)  

where i and j are the node numbers, and Vj is the volume of node j. The neighbor nodes j of the node i, satisfying |xj − xi| ≤ δ are 
summed, where δ is the horizon size. With the uniform discrete grid size Δx, the horizon size can be expressed as δ = mΔx. For the time 
iteration analysis, the explicit time integration scheme is utilized to obtain the final numerical solution. And the artificial damping 
would be added for the quasi-static problem analysis. 

4.1. Elastic and plastic deformation states updating 

In the time iterative process, the bond extension states for the next step need to be solved with the bond information of current step, 
based on the yield function and plastic flow rule. 

At n step of time tn, giving known bond extension states 
{

en,e
dp
n

}

, and the equivalent plastic strain εp
n of each peridynamic point. For 

n + 1 step of time tn + Δt, with the known en+1, the unknown edp
n+1 and εp

n+1 need to be computed using the yield function and plastic 
flow rule with the following steps:  

1 First, give the trial elastic deviatoric extension state with zero plastic increment: 

ede
trial = en+1 − ei

n+1 − edp
n ,Δedp

n+1 = 0,Δεp
n+1 = 0 (30)    

2 Input the trial state into the yield function of Eq. (14): 
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ftrial = Wd
(

ede
trial

)

− ψ
(
εp

n

)
(31)   

where distortional strain energy density Wd is calculated with ede
trial in Eq. (13), and hardening variable ψ is computed with εp

n.  

3 For each peridynamic point, check whether the trial state is correct:  
a) if ftrial ≤ 0, the trial state is correct, and no new plastic increment occurs: 

ede
n+1 = ede

trial, edp
n+1 = edp

n , εp
n+1 = εp

n (32)    

b) if ftrial > 0, the trial state is not correct, and new plastic increment occurs. Based on the plastic flow rule in Eq. (17), the bond 
extension states should obey: 

Fig. 3. The whole progress of elastic-plastic fracture analysis in peridynamics.  
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Δedp
n+1 = λαωede

n+1, ede
n+1 = ede

trial − Δedp
n+1 (33)   

Considering the known ede
trial = en+1 − ei

n+1 − edp
n , Eq. (33) can be rewritten as: 

Δedp
n+1 =

λαωede
trial

1 + λαω, ede
n+1 =

ede
trial

1 + λαω (34)  

where α is the peridynamic constant in Eq. (6), the undetermined parameter λ can be resolved by the yield function of f
(

ede
n+1,ε

p
n+1

)

=

0, which will be specifically given in the following section. Submit Δedp
n+1 into Eq. (19), increment equivalent plastic strain Δεp

n+1 can be 
obtained, and εp

n+1 = εp
n + Δεp

n+1. 

4.2. Solution of yield function for the parameter λ 

In this section, the undetermined parameter λ in the plastic flow rule is resolved based on the yield function of f
(

ede
n+1,ε

p
n+1

)

= 0, 

for the 3D and 2D cases. 
First, considering the bond extension states at n + 1 step, the distortional strain energy density in Eq. (13) can be rewritten into: 

Wd
n+1 =

1
2

kd(θn+1)
2
+

α
2

(

ωede
n+1

)

· ede
n+1 (35)  

where the volume dilatation θn+1 is computed in Eq. (4) with the known en+1, and the peridynamic constants kd and α are: 

Fig. 4. The elastic-plastic plate with a central hole under displacement loading.  

Table 1 
Material parameters for the elastic-plastic plate.   

Elastic modulus 
E (GPa) 

Poisson’s ratio 
v 

Density 
ρ (kg/m3) 

Yield stress 
σY(GPa)

Hardening modulus 
H (GPa) 

Material 100 0.342 4428 1.0 20  
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⎧
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kd = 0,α =
15μ

q
3D

kd =
E(1 + v)
6(1 − v)2,α =

8μ
q

Plane stress

kd =
E

6(1 + v)
,α =

8μ
q

Plane strain

(36) 

Substitute the bond extension states of Eq. (34) into Eq. (35), the Eq. (35) can then be expressed as: 

Wd
n+1 =

1
2

kd(θn+1)
2
+

α
2(1 + λα)2

(

ede
trial

)

· ede
trial (37)  

where the constant influence function ω = 1 is considered for equation simplification. 
For the linear isotropic strain hardening materials, the hardening variable at n + 1 step is 

ψn+1 =
(σY + Hεp

n+1)
2

6μ (38)  

where εp
n+1 = εp

n + Δεp
n+1, Input Δedp

n+1 in Eq. (34) into Eq. (19), the increment equivalent plastic strain Δεp
n+1 is obtained: 

Δεp
n+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λα
1 + λα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
q

(

ede
trial

)

· ede
trial

√

3D

λα
1 + λα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
q

(

ede
trial

)

· ede
trial

√

2D

(39) 

Fig. 5. Comparisons of equivalent Mises stress: (a) FEM and (b) Peridynamics, and equivalent plastic strain: (c) FEM and (d) peridynamics with 
displacement load of u = 0.2 mm in the plane stress case. 
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Substitute the Eqs. (37) and (38) into Wd
n+1 − ψn+1 = 0, the yield function can be expressed as: 

1
2
kd(θn+1)

2
+

α
2(1 + λα)2

(

ede
trial

)

· ede
trial −

{
σ0 + H

(
εp

n + Δεp
n+1(λ)

)}2

6μ = 0 (40)  

where Δεp
n+1(λ) is the function of λ that given in Eq. (39). In this form of yield function, only parameter λ is unknown. The Eq. (40) can 

Fig. 6. Comparisons of elastic strain energy density: (a) FEM and (b) Peridynamics, and plastic strain energy density: (c) FEM and (d) peridynamics 
with load of u = 0.2 mm in the plane stress case. 

Fig. 7. The equivalent Mises stress along the x-axis with different values of δ in the plane stress (a) and plane strain (b) cases.  
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Fig. 8. The equivalent plastic strain along the x-axis with different values of δ in the plane stress (a) and plane strain (b) cases.  

Fig. 9. The elastic strain energy (Ue), plastic strain energy (Up) and total strain energy (Utotal) of the plate with increasing displacement load in the 
plane stress (a) and plane strain (b) cases. 

Fig. 10. The changing displacement load for the loading, unloading and reloading processes.  
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Fig. 11. The equivalent Mises stress of point A during the loading, unloading and reloading processes.  

Fig. 12. The elastic strain energy (Ue), plastic strain energy (Up) and total strain energy (Utotal) of the plate during the loading, unloading and 
reloading processes. 

Fig. 13. The elastic-plastic plate with a central crack under displacement loading.  
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be transformed into the quadratic equation of λ, which can be easily resolved. 
Thus, unlike the previous peridynamic elastic-plastic models in [24,31], for the linear hardening materials, the yield function can 

be directly solved in present model by Eq. (40) both for the 3D and 2D cases, no iterative process is required. That is because the present 
yield function of Eq. (14) and plastic flow rule of Eq. (17) are both defined only with the bond elastic deviatoric extension ede, no bond 
force state is related. The unknown λ is decomposed from the dot product, and the yield function can be transformed into the quadratic 
equation of parameter λ. However, if the material hardening law is nonlinear, the iterative process is still needed for the nonlinear 
function solution. 

4.3. Process of elastic-plastic fracture in peridynamics 

The process of peridynamics-based frame for elastic-plastic ductile fracture is given in Fig. 3. 
As shown in Fig. 3, for the elastic-plastic material modeling, the trial check method in Section 4.1 is utilized to update the elastic 

and plastic deformation states, and the yield function can be resolved in Section 4.2. The peridynamic bond force state can be obtained 
in Eq. (7) with the updated elastic deviatoric extension. For the elastic-plastic fracture analysis, the energy dissipation rate-based bond 
energy density criterion is applied, in which elastic and plastic bond density energy are calculated in Eqs. (20) and (21), and the critical 
value is computed in Eq. (27). 

In summary, a peridynamics-based frame is established for elastic-plastic fracture analysis. It can be utilized for elastic-plastic 
deformation analysis, and also elastic-plastic crack growth prediction. 

5. Numerical examples 

In this section, three numerical examples are studied. The elastic-plastic plates with a center hole or a center crack are analyzed for 
the proposed peridynamic elastic-plastic model verifications. Then, an elastic-plastic fracture example, the compact tension (CT) test, 
is quantitatively investigated for ductile crack growth study. 

Fig. 14. Comparisons of equivalent Mises stress: (a) FEM and (b) Peridynamics, and equivalent plastic strain: (c) FEM and (d) peridynamics with 
displacement load of u = 0.25 mm in plane stress case. 
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5.1. An elastic-plastic plate with a center hole 

A plate with a central open hole under displacement loading is first considered to validate the proposed peridynamic model for 
elastic-plastic deformation analysis. The geometrical sizes of the plate are shown in Fig. 4, and plane stress and plane strain conditions 
are, respectively considered, the plate thickness B is 1 mm. The elastic-plastic material with linear isotropic strain hardening is 
considered, and material properties are given in Table 1. 

In the numerical peridynamic model, uniform mesh size is utilized. The peridynamic elastic-plastic model is utilized for elastic- 
plastic behaviors prediction of this open-holed plate, and the adaptive dynamic relaxation (ADR) method [46] is utilized for 
quasi-static analysis. The results predicted by peridynamics are compared with those from the numerical finite element method (FEM), 
and the relative difference of peridynamic result to FEM solution is computed. 

For nonlocal peridynamic theory, the material points near boundary do not have a full horizon, which leads to the surface effect 
[47]. Since the skin effect can be relieved with the refined mesh sizes, the mesh refinement method [48] is utilized to handle this skin 
effect for simplification. Moreover, the surface correction [47,49] or the PD differential operator based methods [50] are other 
effective strategies to solve the skin effect. 

5.1.1. Elastic-plastic behaviors of open-holed plate 
First, the fixed displacement load of u = 0.2 mm is applied on the plate boundaries (see Fig. 4). The plots of equivalent Mises stress 

and equivalent plastic strain of the plate from the present peridynamic model and the FEM are given in Fig. 5; while distributions of 
elastic and plastic strain energy density are presented in Fig. 6, where the fixed values of δ = 0.4 mm and m = 4 with the plane stress 
condition are utilized. As shown in Figs. 5-6, the equivalent Mises stress, equivalent plastic strain, elastic and plastic strain energy 
density from the present model all greatly match those from the FEM solutions. 

For quantitative comparison, the equivalent Mises stress and equivalent plastic strain along the x-axis are presented in Figs. 7 and 8, 
where horizon values of δ = 1.6 mm, 0.8 mm and 0.4 mm, and a fixed value of m = 4 are considered for the δ-convergence [51]. 
Generally, it is shown that the results by proposed peridynamic elastic-plastic model are converging to the FEM solution as nonlocal 

Fig. 15. Comparisons of equivalent Mises stress: (a) FEM and (b) Peridynamics, and equivalent plastic strain: (c) FEM and (d) peridynamics with 
displacement load of u = 0.25 mm in plane strain case. 
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Fig. 16. Distributions of equivalent plastic strain zoom-in at the crack tip in the (a) plane stress and (b) plane strain cases.  

Fig. 17. The elastic strain energy (Ue), plastic strain energy (Up) and total strain energy (Utotal) of the whole system with increasing displacement 
load in the plane stress (a) and plane strain (b) cases. 
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horizon δ decreases, in both plane stress and plane strain cases. While the equivalent Mises stress of points within δ values of distance to 
the boundary are not reliable because of the nonlocal surface effect [47]. However, this skin effect can be relieved with the refining 
mesh sizes, and it has no much effect on points away from the boundary (see Fig. 7). 

Additionally, curves of the elastic strain energy, plastic strain energy and total strain energy of the plate under the linearly 
increasing displacement are given in Fig. 9. As shown, both for plane stress and plane strain cases, the strain energy density values 
predicted by peridynamics greatly fit the FEM solutions with the maximum relative difference of 2.0 %. 

5.1.2. Loading and unloading behaviors 
Then, the changing displacement load u(ti) in Fig. 10 is applied on the plate for loading, unloading and reloading processes. The 

point A (15 mm, 0 mm) near the open-hole edge (see Fig. 4) is typically analyzed, and the plane stress condition is considered. The 
adaptive dynamic relaxation (ADR) method [46] is used for each step quasi-static analysis. 

The equivalent Mises stress of point A during the loading, unloading and loading processes is presented in Fig. 11. As presented, in 
first loading process, the equivalent Mises stress curve increases with displacement load, and then bends around u = 0.18 mm for a 
smaller growth slope since the material point A yields and material hardening happens; when decreasing displacement is applied at the 
middle step, the curve linearly decreases for the material elastic unloading. In the last reloading process, the stress curve firstly 
elastically increases and bends at u = 0.245 mm when the material point A yields again. Meanwhile, the elastic strain energy, plastic 
strain energy and total strain energy of the plate during the loading, unloading and reloading processes are plotted in Fig. 12. Typically, 
the plastic strain energy is changeless during ti / t = 0.50–0.87 for the elastic unloading and reloading processes. The stress and the 
energy curves predicted from the peridynamics are greatly consistent to the FEM results within the relative difference of 3.8 %. 

5.2. An elastic-plastic plate with a center crack 

A plate with a center crack is then analyzed. The geometrical sizes and loading conditions are presented in Fig. 13. The fixed 
thickness is 1 mm, and plane stress and plane strain conditions are all considered. The elastic-plastic material in Table 1 is still utilized. 
For the peridynamic modeling, uniform mesh size is used. The elastic-plastic behaviors of this notched plated are predicted by peri
dynamics and compared with those from the FEM solutions. 

5.2.1. Elastic-plastic behaviors of the plate with a central crack 
The plots of equivalent Mises stress and equivalent plastic strain in plane stress and plane strain cases are, respectively presented in 

Figs 14-15, where the fixed displacement load of u = 0.25 mm is applied on the plate, and the fixed values of δ = 0.4 mm and m = 4 are 
used. As shown, both for plane stress and plane strain cases, the equivalent Mises stress and equivalent plastic strain obtained by the 
proposed peridynamic elastic-plastic model closely match those from the FEM. 

The equivalent plastic strain zoom-in at the crack tip is given in Fig. 16, which shows that the plastic strain value and size at the 
crack tip are much larger in plane stress than in plane strain. It is because the triaxial stress state associated with the plane strain 
condition restricts its plastic deformation, which is accordant with the analytical solution of the plastic size in [52]. 

Additionally, the elastic strain energy, plastic strain energy and total strain energy of the plate with increasing displacement are 
plotted in Fig. 17. As shown, the strain energy density results from peridynamics closely fit the FEM solutions both in plane stress and 
plane strain cases. 

5.2.2. Nonlinear energy release rate 
Then, the nonlinear energy release rate (J) is computed with the extended peridynamic finite crack extension (PFCE) method in Eq. 

Fig. 18. The nonlinear energy release rate (J) of the center crack with increasing displacement load in the plane stress (a) and plane strain (b) cases.  
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(25), and compared to the J-integral values from the numerical FEM solution. The increasing displacement loads from 0 mm to 0.25 
mm are applied. 

The curves of nonlinear energy release rate of the center crack with increasing displacement are presented in Fig. 18, where plane 
stress and plane strain cases are, respectively considered. As shown, the J values nonlinearly increase with the increasing displacement 

Fig. 19. Y-direction displacement (m) [(a) and (b)], local damage/crack path [(c) and (d)], equivalent plastic strain [(e) and (f)] and elastic strain 
energy density (J/m3) [(g) and (h)] of center- notched plate with the typical displacement loads. 
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load. The J values calculated from the extended PFCE method are consistent to those from the FEM J-integral within the relative 
difference of 3.9 %. 

5.2.3. Ductile crack growth of center-notched plate 
The ductile crack growth behaviors of center-notched plate are then predicted. The linear increasing displacement load is applied, 

and the plane strain condition is typically considered. The mesh sizes of δ = 0.8 mm and m = 4 are used. For elastic-plastic fracture 
analysis, the energy dissipation rate-based bond failure criterion in Eq. (28) is utilized, and the surface fracture energy Γs= 100 KJ/ m2 

is considered. 
Distributions of y-direction displacement, crack path, equivalent plastic strain, and elastic strain energy density of the center- 

notched plate at typical displacement loads of u = 0.16 mm and 0.27 mm are presented in Fig. 19. As shown, with the increasing 
displacement load, the crack starts to grow from two pre-crack tips, and grows symmetrically along the pre-crack (see Figs. 19(c) and 
(d)). The equivalent plastic strain first appears around crack tips (see Fig. 19(e)), then distributes along the fresh crack surfaces and 
nearby large areas (see Fig. 19(f)). While the elastic strain energy density is first concentrated at two crack tips (see Fig. 19(g)), then 
moving with the crack tip (see Fig. 19(f)), which means unloading happens and the elastic energy releases after the crack tips pass by. 

5.3. Compact tension (CT) test of elastic-plastic materials 

The compact tension (CT) (see Fig. 20) is a common specimen for measurement of fracture toughness of metallic materials. Based 
on the ASTM standard of CT test [53], the nonlinear energy release rate or J-Integral value can be given in terms of its elastic and 
plastic components: 

J = Je + Jp =
K2(1 − v2)

E
+

ηUp

B(w − a)
(41)  

where: 

K =
P

B
̅̅̅̅
w

√ f (a /w), η = 2 + 0.522(1 − a /w) (42)  

and 

Fig. 20. The compact tension (CT) specimen.  

Table 2 
Material constants for the CT specimen.   

Elastic modulus 
E (GPa) 

Poisson’s ratio 
v 

Density 
ρ (kg/m3) 

Yield stress 
σY(MPa)

Hardening modulus 
H (GPa) 

Material 213 0.3 7850 443.1 3.45  
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Fig. 21. Equivalent Mises stress [(a) and (b)] and equivalent plastic strain [(c) and (d)] of CT specimen with the typical displacement loads.  

Fig. 22. Appiled force versus displacement load during the CT test without crack growth.  
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w

)3/2 (43)  

where K is the stress intensity factor, P is the applied load, Up is the total plastic energy, a is the crack length, w is the width and B is the 
thickness of the specimen. 

In this example, the pre-crack length a = 20 mm and width w = 40 mm are used. The uniform thickness of 1 mm is used, and the 
plane strain condition is considered. The linear hardening elastic-plastic material is utilized, and the material parameters are reported 
in Table 2. For elastic-plastic fracture analysis, the surface fracture energy Γs= 33KJ/ m2 is adapted. 

In numerical peridynamic model, uniform mesh size is used. The proper grid size should be used to capture the elastic-plastic 
behaviors during crack growth. According to the fracture mechanic theory [52], the plastic zone size Rp ahead of the crack tip in 
the plane strain case, estimated based on the von Mises yield criterion, is: 

Rp =
K2

2πσ2
Y

(
1 − 2v2) (44)  

where K is the stress intensity factor, σY is the yield stress. Considering the material properties in Table 2 and the surface fracture 
energy Γs, the critical plastic zone size Rp for this CT specimen is equal to 1.0 mm. The mesh size of δ ≤ Rp would be appropriate to fully 
capture the elastic-plastic behaviors during crack growth. And the δ-convergence and m-convergence studies are performed for further 
analysis. The process in Fig. 3 is implemented for elastic-plastic fracture analysis. 

5.3.1. CT specimen with a stationary crack 
First, the elastic-plastic behaviors of the CT specimen is analyzed with a stationary crack of a = 20 mm, linearly increasing 

displacement load u(t) is symmetrically applied (see Fig. 20). 
The distributions of equivalent Mises stress and equivalent plastic strain of the CT specimen at typical displacement loads of u =

0.15 mm and 0.3 mm are presented in Fig. 21, where the fixed values of δ = 1.0 mm and m = 4 are utilized. As shown in Fig. 21, under 
the displacement load, the material plasticity happens not only around the crack tip, but also at loading areas and specimen right 
boundary. The plastic zone enlarges and connects together from crack tip to right boundary when u = 0.3 mm. 

Additionally, the curve of applied force related to increasing displacement load is given in Fig. 22. As shown, the applied force 
nonlinearly increases with the displacement load because of the material elastic-plastic property. Meanwhile, the nonlinear energy 
release rate of the CT crack is presented in Fig. 23, where the ASTM standard equation in Eq. (41), and the extended PFCE model are, 
respectively considered. For the stationary crack, the values of nonlinear energy release rate is composed of the elastic and plastic 
components, where the plastic part increases rapidly and the elastic part tends to be flat after material yielding widely happens. 
Meanwhile, the J values from the ASTM equation and PFCE model are greatly consistent, with the maximum relative difference of 3.3 
%. 

5.3.2. Elastic-plastic crack growth of CT specimen 
The crack initiation and growth processes of CT test are then analyzed. The increasing displacement load is still considered, and the 

proposed energy dissipation rate-based bond failure criterion in Eq. (28) is utilized for elastic-plastic fracture analysis. 
The distributions of y-direction displacement, crack path and equivalent plastic strain of the CT specimen at displacement loads of 

0.2 mm and 0.8 mm are presented in Fig. 24. With the increasing displacement load, the crack starts to grow from the pre-crack tip (see 
Fig. 24(c)) and propagates along the pre-crack direction (see Fig. 24(d)). Meanwhile, the equivalent plastic strain appears around fresh 

Fig. 23. The nonlinear energy release rate (J) computed by the ASTM equation, and the PFCE model with the increasing displacement loading.  
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crack surfaces, loading area and right boundary (see Figs. 24(e) and (f)). The crack grows with enlarging plastic zone, which is not only 
along the crack path, but also at right boundary and their middle areas (see Fig. 24(f)). 

For quantitatively analysis, curves of different energy components changing with the displacement are shown in Fig. 25. As shown 
in Fig. 25, the summation of Ue (the strain elastic energy), Up (the strain plastic energy), Uk (the kinetic energy), and WS (the incre
mental surface energy) is equal to WF (the work done by external forces) during the CT simulation, which is satisfied the energy 
conservation in Eq. (23) during this elastic-plastic fracture simulation. 

Typically, the plots of elastic strain energy density, plastic strain energy density, surface energy density, and dissipation energy 

Fig. 24. Y-direction displacement (m) [(a) and (b)], local damage/crack path [(c) and (d)], and equivalent plastic strain [(e) and (f)] of the CT 
specimen under typical loads during crack growth. 
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density of the CT specimen at typical loads of 0.28 mm and 0.6 mm are presented in Fig. 26. As shown, the elastic strain energy density 
is concentrated at the crack tip (see Fig. 26(a)), and moving with the crack tip (see Fig. 26(b)), which means unloading happens and the 
elastic energy releases after the crack passes by. The plastic strain energy density and released energy density irrecoverably distribute 
around pre-crack tip and extend with the crack path, where the plastic strain energy density is widely distributed at plastic zone (see 
Fig. 26(c) and (d)), while the released energy density only appears along the fresh crack surfaces (see Fig. 26(e) and (f)). Additionally, 
the dissipation energy density, as the summation of released energy density and plastic strain energy, is also given for the total 
dissipated energy representation. 

5.3.3. Convergence studies of elastic-plastic fracture 
The δ-convergence and m-convergence studies are performed with varying horizon values of δ = 2.0 mm, 1.0 mm and 0.5 mm, and 

of m = 4, 5 and 6. Since the analytical plastic zone size Rp is equal to 1.0 mm based on material properties, these horizon sizes also 
correspond to 2Rp, Rp and 0.5Rp. 

First, the mesh sizes of δ = 2 mm, 1 mm and 0.5 mm, and m = 4 are, respectively utilized for δ-convergence study. Distributions of 
equivalent plastic strain and dissipation energy density zoom-in at the plastic zone at displacement load of 0.6 mm are presented in 
Fig. 27. Generally, the plastic strain and dissipation energy distribute along the fresh crack surface, which reflects the leaving behind 
plastic wake. The horizon size has a great effect on elastic-plastic fracture behaviors. For the smaller horizon size, the crack extension 
length is shorter, and the maximum values of plastic strain and dissipation energy are much larger. Typically, when δ = 2 Rp, the plastic 
shape around the crack tip is not well modeled, the mesh size is too coarse to fully capture the elastic-plastic fracture behaviors. 

Additionally, the applied force and crack growth length changing with displacement load during the CT simulation are, respectively 
presented in Figs. 28 and 29. As shown, the applied forces for different horizons are nearly coincided before crack growth, then decline 
at different points with different slopes during crack growth. For horizon sizes of δ ≤ Rp (δ = 1 mm, 0.5 mm), the ductile fracture 
behaviors are presented, the applied forces continue increasing even after crack initiation as u = 0.2 mm (compare Fig 28 and 29), then 
bend curvilinearly at the similar critical value, and slide down with different slopes; for the smaller grid size of δ = 0.5 mm, the 
descending slope is lower. While as horizon size δ = 2 Rp (2 mm), the fracture is approximately brittle, the applied force drops suddenly 
as crack starts to grow. Meanwhile, as shown in Fig. 29, the crack lengths for different horizon sizes are different, the crack grows more 
slowly for the smaller horizon size. 

The incremental surface energy and plastic energy related to crack length for different horizon sizes are given in Fig. 30. For the 
different horizon sizes, the incremental surface energy curves are nearly coincided, and their slopes are closely equal to the standard 
surface fracture energy, which reflects the fracture energy equivalence during the elastic-plastic fracture. While the plastic energy is 
much larger for the smaller horizon size (see Fig. 30(b)), the CT fracture would experience more plastic deformation with the smaller 
horizon size. 

Then, the mesh sizes of δ = 1 mm, and m = 4, 5 and 6 are, respectively utilized for m-convergence study. The equivalent plastic 
strain and dissipation energy density zoom-in at the plastic zone are presented in Fig. 31. Overall, distributions of plastic strain and 
dissipation energy with different m are greatly consistent, the plastic wakes along the fresh crack surface are well captured. Meanwhile, 
the applied force changing with displacement load is given in Fig. 32, three curves for different values of m nearly coincide. The 
incremental surface energy and plastic energy during CT fracture are also given in Fig. 33. As presented, for different values of m, both 
the incremental surface energy and plastic energy are greatly consistent. The above figures all show that the value of m has small effect 
on elastic-plastic fracture behaviors. 

Generally, the convergence studies show that the horizon size δ has a great effect on elastic-plastic fracture, more ductile behaviors 
would be presented for the smaller horizon size. And the mesh size of δ ≤ Rp should be utilized to fully capture the elastic-plastic 
deformation during crack growth. While the value of m has small effect on elastic-plastic fracture, the CT fracture behaviors are 
greatly consistent for different values of m. 

Fig. 25. Different energy components during the CT test simulation.  
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5.3.4. Resistance curves of the CT test 
Then, the numerical resistance curve of the CT test simulation is computed. And two parameters, J-integral (J) and energy 

dissipation rate (R), are, respectively calculated for the J-resistance and R-resistance curves. 
The J-resistance curves of the CT test with different values of m are presented in Fig. 34, where the J-integral values are computed in 

Fig. 26. Elastic strain energy density [(a) and (b)], plastic strain energy density [(c) and (d)], surface energy density [(e) and (f)], and dissipation 
energy density [(g) and (h)] under typical loads (J/m3). 
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Eq. (41) with the corresponding crack length. As shown, the J value rapidly increases at crack initiation state, and continues to increase 
with slower slope during crack stable propagation, which fits the tendency of typical J-resistance curve for ductile materials [44]. 
Meanwhile, the R-resistance curves during the CT fracture are given in Fig. 35, where the energy dissipation rate values are calculated 
in Eq. (26). As presented, the energy dissipation rate decreases with crack growth length, and would converge to a stable value. 

6. Conclusions 

In this paper, the peridynamics-based frame are proposed for the elastic-plastic fracture analysis. First, the peridynamic elastic- 
plastic models are proposed for elastic-plastic deformation and fracture analysis, the numerical strategy is presented for elastic- 

Fig. 27. Equivalent plastic strain [(a), (b) and (c)] and dissipation energy density (J/m3) [(d), (e)] and (f) zoom-in at the plastic zone under u = 0.6 
mm with the mesh sizes of m = 4, δ = 2 mm, 1 mm and 0.5 mm. 
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Fig. 28. Applied force versus displacement load for different values of δ.  

Fig. 29. Crack growth length versus displacement load for different values of δ.  

Fig. 30. Incremental surface energy (a) and plastic energy (b) versus crack growth length for different values of δ.  
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plastic numerical solution. Then, examples of plates with a center hole or a center crack and compact tension (CT) tests, are analyzed 
for the model verification and application. 

In these numerical tests, the present peridynamic models can well capture the elastic-plastic deformation and fracture behaviors of 
specimens. The equivalent Mises stress, equivalent plastic strain and strain energy density of the plates are well presented, the loading 
and unloading behaviors are given. In the CT test, the nonlinear energy release rate J is computed with the ASTM equation and PFCE 
model, and they greatly match within the relative difference of 3.3 %. The crack initiation and growth processes of the CT test are 
analyzed with convergence studies. And the convergence studies show that the horizon size δ has a great effect on elastic-plastic 

Fig. 31. Equivalent plastic strain [(a) and (b)] and dissipation energy density (J/m3) [(c) and (d)] plots zoom-in at the plastic zone under u = 0.6 
mm with the mesh sizes of δ = 1 mm, m = 4 and m = 6. 

Fig. 32. Applied force versus displacement load for different values of m.  
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Fig. 33. Incremental surface energy (a) and plastic energy (b) versus crack growth length for different values of m.  

Fig. 34. J-resistance curves of the CT test.  

Fig. 35. R-resistance curves of the CT test.  

H. Zhang et al.                                                                                                                                                                                                         



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116560

29

fracture, while the value of m has small effect. More ductile behaviors would be presented for the smaller horizon size, and the horizon 
size of δ ≤ Rp (plastic size) should be chosen. 

In summary, the proposed peridynamics-based frame can well capture the elastic-plastic deformation and ductile fracture be
haviors. With which the peridynamic theory can be applied for quantitatively analysis of ductile fracture and failure problems. 
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